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Highlights 

 

 The effects of balance training on the ability to regain balance were examined. 

 The effect of whole-body vibration (WBV) added to standard balance exercise was 

examined.   

 Older women participated in balance exercise and WBV for 12 weeks. 

 Balance exercise improved step length, and adding WBV increased step velocity. 

 Step performance changes manifested as increased EMG activity in the stepping leg.  
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1. Introduction 

 

Falls can result in serious injuries, leading to bone fractures and, in some cases, long-

term disability. Most falls occur while walking on an even surface, followed by transfers 

while rising from a chair or while climbing stairs. Falls on an even surface are caused by an 

unexpected loss of balance such as slipping, tripping, or stumbling (Roudsari et al., 2005). 

After an unexpected loss of balance, the immediate response is to take a step to recover 

balance and avoid falling. One experimental approach to examine the ability to recover 

balance after a forward fall is the tether-release method (Hsiao-Wecksler, 2000), in which the 

participant is required to recover balance from a supported, forward-leaning posture after a 

sudden release of the cable providing the support. Earlier studies using this method showed 

that older women had poor stability performance, shorter step length, and slower step speed 

after unexpected disturbances compared with young people and older men (Wojcik et al., 

1999; Wojcik et al., 2001). In addition, older women with poor stability performance also had 

lower hip extension strength and produced less knee and ankle joint peak power during 

stepping (Carty et al., 2012). These results suggest that exercise interventions for older 

women need to target improvements in step performance, such as step length and step 

velocity, and lower limb muscle strength, power, and coordination, all of which are essential 

to improve stability performance in older women. Indeed, stepping behavior during a forward 

loss of balance and physiological profile assessment results were found to be independent 

predictors of a future fall in elderly individuals; hence, it can be assumed that exercise 

interventions designed to improve stepping behavior may protect against future falls (Carty et 

al., 2014). 

A few studies have demonstrated that training in a laboratory using an unpredictable 

perturbation, such as a waist pull or altered base of support, improved compensatory stepping 
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reaction for balance recovery in the elderly (Rogers et al., 2003; Mansfield et al., 2010; 

Grabiner et al., 2012). However, it is unclear whether training to improve a specific 

disturbance problem will help an individual avoid all potential falls in daily life. Therefore, 

more general training is recommended to improve stability performance and decrease falls in 

elderly individuals. Arampatzis et al. (2011) and Aragao et al. (2011) demonstrated that 

exercise for dynamic stability control and trampoline exercise in the elderly improved 

stability performance using the tether-release method (i.e., the participants were able to better 

recover balance from a more forward-leaning posture after the training). Because it improved 

step velocity and hip moment generation, the authors suggested that reinforcement of 

dynamic stability was caused by neuromuscular coordination upgraded to create a joint 

moment in the appropriate time element. However, these intervention studies used the 

stability performance index focusing on kinematic measurements, and no study to date has 

investigated changes in electromyography (EMG) activity, which serves as a neuromuscular 

parameter. Improvement of stability performance during balance recovery is also thought to 

be correlated with changes in lower-limb EMG activity, as individuals with poor stability 

performance counterparts recruit a lower proportion of the available motor unit pool during 

balance recovery compared to those with good stability performance (Cronin et al., 2013). 

The age-related loss of strength, power, and functional strength is termed as dynapenia 

(Clark and Manini, 2008), and has a negative influence on physical performance, which 

increases the risk of falling. Strength, power, and functional strength training are the most 

effective intervention methods for elderly individuals who have dynapenia. In recent years, 

whole-body vibration (WBV) has been the focus of attention as a method that can promote 

muscle strength, power, and balance control improvements in the elderly (Sitjà-Rabert et al., 

2012; Osawa et al., 2013). The mechanisms by which WBV promotes muscle strength and 

power are not clear, but WBV increases lower limb EMG activity during induced stretch 
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reflexes (Ritzmann et al., 2010) and improves lower limb power, which affects vertical jump 

performance (Russo et al., 2003; Raimundo et al., 2009). Therefore, WBV is a valid exercise 

mode of sensorimotor training for increasing power, strength, and functional strength in 

elderly individuals (Rogan et al., 2014a; 2014b). Because WBV-based training is economical, 

takes less time, and is convenient, its use is considered most suitable for nursing home 

residents. Adding WBV to a balance training program might improve step performance during 

a simulated forward fall by enhancing lower limb muscle strength and power. The effect of 

balance training on changes in EMG activity during the balance recovery step induced by a 

simulated fall is currently unknown, but could provide insight into differences between WBV 

and standard balance exercise on functional enhancement of the balance recovery step. 

This study is a randomized controlled pilot trial based on a prospective intervention. 

The purpose was to examine the effect of balance exercise combined with WBV on step 

performance and lower limb EMG activity during a forward loss of balance. It was 

hypothesized that adding WBV training would improve step performance and enable balance 

recovery during a forward balance loss to a greater extent than balance training only, and that 

this improvement would be reflected in the EMG activity of the stepping leg. 

 

2. Methods 

 

2.1. Design and participants 

This study involved two randomized groups in a parallel-group controlled pilot trial, 

which was conducted from August to December 2012. Twenty healthy older women residents 

were recruited from two nursing homes using advertising literature. The inclusion criteria 

were as follows: aged ≥ 65; dwelling in a nursing home; able to walk independently (without 

a cane); willing to participate in group exercise classes; and minimal, if any, auditory or visual 
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impairment. Potential participants with central nervous system disorders, severe 

cardiovascular disease, advanced cognitive impairment, any history of major trauma, 

rheumatoid or osteoarthritis, or other major systematic diseases were excluded. Further 

exclusion criteria were any new medications during the study (e.g. against joint pain), limited 

range of motion in the legs affecting stepping, severe kyphosis, or pain in the trunk or lower 

limbs. Written informed consent was obtained from each participant in the trial in accordance 

with the Declaration of Human Rights, Helsinki, 1975. This research was approved by the 

Ethical Review Board of Kyoto University Graduate School of Medicine, Kyoto, Japan.  

       Participants were stratified by age and were allocated to two groups by simple 

randomization using a computer-generated sequence: 10 participated in standard exercise plus 

WBV and 10 participated in standard exercise without vibration (STE). As it was not possible 

to blind the subjects to the two types of exercise, on the first day of evaluation, the group 

assignment was orally reported to participants by nursing home staff not involved in the study. 

Evaluation and both types of exercise were performed in the waiting lounge of the respective 

nursing homes. 

 

2.2. Training protocol 

Each group exercised 3 d/week for 12 weeks × ~30 minutes/session, and all participants 

finished the experiment. The home-program intervention was conducted according to an 

individual schedule for each group. 

Participants performed five minutes of limb stretching before training as a warm-up. 

Following a five-minute break, WBV performed the vibration exercise in a standing position. 

In each session, vibration was provided by a commercially available device (Galileo 2000, 

Novotec GmbH, Pforzheim, Germany). The participants stood with their feet shoulder-width 

apart on the board, which produced side-alternating oscillations of the whole body. WBV 
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received three-minute vibration stimuli. During the vibrations, the participant performed a 

half squat, heel rise, and toe up on the WBV platform. Weight shift training was also 

performed on the WBV platform, including anterolateral and posterolateral weight shifting 

without stepping while reaching forward and laterally. Frequency, amplitude, and maximum 

acceleration parameters were set at 10 Hz, 3 mm, and 11.8 ms
-2

 during the first week, and 

increased to 21 Hz, 7 mm, and 121.9 ms
-2

 in the 12th week, respectively. Load progressions 

of the vibratory stimuli were increased by 1 Hz every week. STE performed the same 

exercises as WBV on the floor without vibration stimuli. 

The training protocol for both groups included an exercise aimed to increase step length 

and other balance exercises. The exercise to increase step length included large and small 

steps, fast and slow steps, and single spontaneous steps in anterior–posterior and medial-

lateral directions. The participant was required to flex the knees deeply at foot contact. Other 

balance training consisted of standing on one leg, tandem standing, walking with very small 

and large steps, and hopping or landing. All training was supervised by the nursing home 

staff. All session time (minutes) and training days were recorded by the participant.  

 

2.3. Evaluation of physical function characteristics 

The physical function characteristics and balance recovery after simulated forward falls 

were examined before and after the 12 weeks of intervention.  

The walking speed, timed up-and-go (TUG) test time, and maximum isometric knee 

extension strength of the dominant leg were recorded as indices of physical function. 

Participants were asked to perform walking trials at their maximum speed over a 12-m 

walkway. The examiner measured the time for the middle 10 m. Following instruction, a 

single trial was conducted, and walking speed (m/s) was calculated. A Chapman dominant leg 

test was performed to define the dominant leg (Chapman et al., 1987). Maximum isometric 



6 

 

muscle strength was determined using a hand-held dynamometer (μTas MT-1, ANIMA, Inc., 

Japan) with a fixation band during maximal isometric contraction of the quadriceps in the 

dominant leg with both the knee and hip joints flexed to 90°. 

The test-retest inter-day reliability for evaluating physical function characteristics was 

estimated using intra-class correlation (ICC). The ICCs for the function characteristics were 

as follows: 0.73 (95% CI: 0.45–0.88) for the walking speed, 0.93 (95% CI: 0.84–0.97) for the 

TUG, and 0.62 (95% CI: 0.26–0.83) for the maximum isometric muscle strength. These ICCs 

indicated substantial to almost perfect reliability. 

 

2.4. Evaluation of step performance during balance recovery 

The tether-release method was conducted as described previously for evaluation of the 

balance recovery from a simulated forward fall (Ochi et al., 2014). Briefly, it involves 

positioning the participant in a static forward-leaning posture using a horizontal tether that is 

subsequently released after a randomly determined time delay. Participants stood barefoot 

with feet shoulder-width apart and were tilted forward, keeping their feet flat on the ground, 

until a specified percentage of the participant’s body weight (BW) was recorded on a load cell 

(EM-554, Noraxon USA Inc., Scottsdale, AZ) placed in series with an inextensible cable. One 

end of the cable was attached to a safety harness worn by the participant at the pelvic level, 

and the other end was attached to a metal pole that allowed height adjustment. The release 

switch was custom-made from a car seatbelt buckle and installed between the cable and a 

metal pole. The angle of the forward lean was controlled by adjusting the cable length. For 

safety, a shock-absorbent lanyard was attached at the participant’s upper back and to a support 

beam on the research facility ceiling. Foot switches were attached to the heel and ball of both 

feet (EM-556, Noraxon USA Inc., Scottsdale, AZ). Foot-off was determined as the timing 

when both the heel and ball of the foot of the stepping leg was off the ground, and the 
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subsequent foot contact was determined as the timing of foot contact during the step. It was 

also confirmed that the stance foot remained in contact with the ground prior to release. A 

three-dimensional motion capture system (MA 2000 Systems, ANIMA Inc., Japan) was used 

to measure step length, kinematic parameters of the stepping leg, and trunk angle in the 

sagittal plane, with four cameras operating at 120 Hz. The trajectories of 12 reflective markers 

were tracked; the markers were attached bilaterally to the acromion, iliac crest, greater 

trochanter, knee joint, malleolus lateralis, and head of the fifth metatarsal. 

The participant was asked to lean forward against the tether and step forward once with 

the predetermined stepping leg to regain balance as quickly as possible after tether release. 

Following achievement of the prescribed posture and cable force (± 2% body weight; BW), 

the cable was released at a random time interval (2–10 s) by disengaging a release switch 

located in series with the cable. In the first pre-intervention trial, the tension on the load cell 

achieved through forward leaning was set to 9% of the participant’s BW, and the load was 

then increased by 3% of BW after every fifth successful recovery of balance. The maximum 

cable tension from which all participants could recover with a single step was 21% of BW, 

thus 20% of BW was used for all subsequent assessments. After three practices, five 

successful steps were measured for each participant, and the last three data sets were 

analyzed. 

 

2.5. Determination of leg muscle activity during balance recovery 

Electrical activity of the rectus femoris (RF), vastus lateralis (VAS), biceps femoris 

(BF), tibialis anterior (TA), and lateral head of the gastrocnemius muscle (GC) of the stepping 

leg were examined by surface EMG. The skin superficial to these muscles was prepared so 

that skin resistance was < 5 kΩ, and disposable electrodes were attached with paste at 2-cm 

intervals parallel to the muscle fibers in reference to the motor points of each muscle (Ambu, 
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Blue sensor N-00-S, Denmark, 30 mm × 22 mm). The ground electrode was attached 5 cm 

superior to the patella superficial to the vastus medialis. Distances and angles from bone 

landmarks and electrode positions were recorded for the each participant, so that the electrode 

could be identically positioned for the pre- and post-evaluations. Muscle activity was 

measured with a Telemyo 2400 EMG system (Noraxon USA Inc., Scottsdale, AZ) using the 

bipolar stepping method. The EMG was band-pass-filtered with a frequency setting of 10–500 

Hz. The load cell and foot switch output were synchronized with the EMG. The EMG, foot 

switch, and load cell data were uploaded at a sampling frequency of 1,500 Hz. 

EMG activity was recorded from the five muscles during maximal voluntary 

contractions (MVC). The MVCs of the GC and the TA were performed with maximal 

isometric ankle plantar flexion and dorsiflexion at 0°. Similarly, the MVCs of the RF, VAS, 

and BF were performed during maximal isometric knee extension and flexion with the knee 

flexed at 90°. Strong verbal encouragement was provided to promote maximal effort. The 

EMG data from the MVCs were used to normalize the EMG amplitude (% MVC) during the 

postural tasks. The MVCs were recalculated for the post-training measurement. 

 

2.6. Data analysis 

The EMG data was analyzed using Myoresearch version 2.1. The spatiotemporal 

parameters of balance recovery were determined from the EMG, load cell, foot switch, and 

motion capture data. The time of cable release was defined as the moment when the load cell 

reading dropped two standard deviations (SD) below the average value during the 1 s before 

release. Balance recovery was divided into two phases as follows: 1) lift-off time: from tether 

release until foot-off of the stepping limb; 2) step time: from foot-off until foot contact. Step 

length was defined as the distance between the malleolus lateralis of the stance leg and 

stepping leg at foot contact and was normalized to each participant’s height (% height). The 
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step velocity (m/sec) was calculated from the step time and step length. Step length and 

velocity were the main outcomes in this study because these are important characteristics for 

regaining balance from a forward fall and are the factors that discriminate the risk of falling in 

elderly individuals (Cronin et al., 2013; Ochi et al., 2014). The trunk angle was defined as the 

angle from absolute vertical to a line connecting the two acromion markers to the greater 

trochanter markers and was obtained during initial lean before tether release and at foot 

contact. 

The raw EMG data were full-wave rectified and band-pass filtered at 20–500 Hz with 

second-order Butterworth characteristics. The temporal aspects of the EMG responses, i.e. the 

onset time and first peak during the recovery step, were assessed. Onset latency was defined 

as the time between tether release and the instant that EMG amplitude exceeded the mean pre-

release EMG by two standard deviations for at least 200 ms. To normalize muscle activity 

during balance recovery, EMG signals were root-mean-square-integrated at 50 ms. The EMG 

first peak was determined as the time point when EMG peak amplitude appeared during the 

period between cable-release to foot contact. BF and GC have two peaks of muscle activity, 

one during the lift-off time and one just before foot contact (Fig. 1.). Therefore, the EMG first 

peak of BF and GC from the lift-off time were derived. EMG data during the stepping 

movement were expressed relative to the mean integrated EMG during the 1-s period 

surrounding the peak EMG amplitude phase of the respective MVC. The peak-normalized 

EMG, onset and peak timing were indexed to reflect stepping behavior (Thelen et al., 2000; 

Cronin et al., 2013; Ochi et al., 2014); these EMG profiles were determined as secondary 

outcomes in this study. 

 

2.7. Statistical analysis 

The normality of all distributions was confirmed using the Shapiro-Wilk test. A two-
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factor repeated-measures ANOVA with time (pre vs. post) and intervention groups as factors 

was used to examine the intervention effects on physical function and analyzed 

spatiotemporal parameters, including EMG data from the balance recovery task. Significant 

interactions were further analyzed by using post-hoc paired and unpaired t-tests using a 

Bonferroni adjustment. The significance level for all comparisons was set at α = 0.05.  

 

3. Results 

 

3.1. Adherence to the study protocol 

Table 1 summarizes the anthropometric data for the 20 participants who completed the 

study. No significant differences between WBV and STE were observed in any of the 

characteristics examined, including age, height, and weight. During the 12-week intervention 

phase, 36 exercise sessions were scheduled and performed. Both groups had an overall 

attendance rate of 99% over the 12 weeks. The training volume was evenly distributed 

between WBV and STE. No health problems, including cardiovascular or musculoskeletal 

complications, occurred during training sessions or testing. No adverse event that prevented 

progress occurred due to the intervention. 

 

3.2. Effects of intervention on physical function 

After the 12-week intervention phase, walking speed (time effect: F1,18 = 5.24, p < 0.05, 

η
2
 = 0.19), TUG (F1,18 = 4.78, p < 0.05, η

2
 = 0.16), and maximum knee extension strength 

(F1,18 = 5.73, p < 0.05, η
2
 = 0.27) were significantly improved in both groups (Table 1). No 

significant difference in improvement between WBV and STE was observed. 

 

3.3. Effects of intervention on step performance during balance recovery 
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Spatio-temporal variables such as step performance in pre- and post-intervention in 

both groups are shown in Table 2. There was no significant difference in lift-off time or step 

time between the two groups or between interventions. A significant time effect was observed 

for step length, which was significantly longer at post-intervention in both groups (F1,18 = 

4.51, p < 0.05, η
2
 = 0.20). Further, there was a significant group × time interaction in step 

velocity (F1,18 = 5.18, p < 0.05, η
2
 = 0.07); a significant post-training increase was found in 

WBV by a post-hoc test (WBV pre- vs. post-training, p < 0.05). For both the trunk angle at 

initial lean and at foot contact, significant effects for groups or interventions were not found. 

 

3.4. Changes in EMG activation during balance recovery 

No pre- and post-intervention statistical differences were observed between groups for 

EMG onset or timing of first-peak EMG. The EMG onset and timing of first-peak EMG 

amplitude are shown in Table 3. The normalized EMG pattern was similar between pre- and 

post-intervention for all muscles in both groups (see Fig. 1.). A significant time effect was 

observed for peak normalized EMG (％ MVC) for RF (F1,18 = 10.59, p < 0.01, η
2
 = 0.34) and 

BF (F1,18 = 5.33, p < 0.05, η
2
 = 0.23), but not for VAS and TA (Fig. 2.). Significant group × 

time interactions in GC activity were observed (F1,18 = 5.23, p < 0.05, η
2
 = 0.09), and a 

significant post-training increase was found only in WBV by a post-hoc test (WBV pre- vs 

post-training, p < 0.05; Fig. 2.). 

 

4. Discussion 

 

After the 12-week intervention, both groups showed improvements in physical function 

such as walking speed, knee extension strength, and the TUG test. In addition, a longer step 

length during a simulated forward fall was observed post-intervention, which was reflected in 
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increased EMG activity in the RF and BF muscles in the stepping leg. Compared to an equal 

amount of training, the combination of balance training and WBV did not improve physical 

function. However, WBV improved balance recovery from a forward fall, resulting in a 

higher step velocity and increased EMG peak activity of the GC muscle, which is involved 

with ankle action immediately before foot-off. This is the first report showing changes in 

lower limb EMG activity during balance recovery from a forward fall before and after balance 

exercise with the addition of WBV. 

WBV has been shown to have a beneficial effect on mobility and dynamic balance in 

elderly individuals compared to typical exercise in several studies (Rogan et al., 2011). On the 

other hand, no significant improvement in walking score was reported (Lam et al., 2012). 

Bruyere et al. (2005) reported that WBV training, compared with typical physiotherapy, 

decreased fall risk and improved gait score and TUG performance in elderly nursing home 

residents. This is in contrast to the present study, as there were no differences in 

improvements in walking speed or TUG performance between WBV and STE. Baselines 

walking speed and TUG performance in the present study were better compared to those in 

the study of Bruyere et al. (2005); this may explain the lack of effect of WBV on physical 

function. In a recent study, Rogan et al. (2014b) reported that stochastic resonance WBV can 

be used for training elderly individuals who have marked physical limitations, equivalent to 

the “frail and/or prefrail” level, as classified by the Physical Performance Classification for 

Elderly. WBV is the most likely effective method that can improve the physical performance 

and general health status, especially in frail older adults (Zhang et al., 2014). However, the 

participants in this study may potentially have had physical function that was initially too 

high; therefore, the additional effect of WBV may have been diminished. 

Arampatzis et al. (2011) reported that exercise focusing on dynamic stability improved 

stability performance and increased step velocity in elderly individuals, and the balance 
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exercise program in the current study was similar to those focusing on dynamic stability used 

in that particular study (Arampatzis et al., 2011). General exercise for dynamic stability may 

be effective in improving step performance during balance recovery in the elderly; this is 

partially supported by the present data. However, improvements in stability performance were 

unclear, as the tether traction was constant in the pre- and post-intervention periods. Traction 

of 20% BW was used during the balance recovery test, but this was close to the pre-

intervention limit of balance recovery using a single step, whereas step length extended in 

both groups after the intervention. As the participants were able to take a longer step when 

needed, it is assumed that participants had enhanced balance recovery ability, even though the 

tested task was the same. This assumption is supported by the finding that both young and 

elderly women showed a dramatic increase in single-step balance recovery ability when the 

step length was increased (Hsiao-Wecksler and Robinovitch, 2007). 

The EMG analysis in this study demonstrated a post-intervention increase in peak EMG 

activity of the RF and BF in both groups. However, pre- and post-intervention differences 

were not seen in EMG onset or peak timing. Cronin et al. (2013) compared the stepping leg 

EMG activity during balance recovery between multiple steppers with increased fall risk and 

single steppers with high stability, finding that peak EMG activity of the main stepping leg 

during the stepping movement was greater in the single steppers. Furthermore, step length 

positively correlated with the amount of hamstring EMG peak activity in the same study. BF 

activation generates a flexion torque about the knee at lift-off time, and RF activation flexes 

the hip and extends the knee during the swing phase in the stepping leg (Thelen et al., 2000). 

Therefore, increased post-intervention peak EMG activity of the RF and BF may be related to 

extended step length in the current study. However, the main effect of the balance exercise 

with or without WBV was increased motor unit recruitment in the stepping leg during balance 

recovery. 
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Compared with STE, WBV increased step velocity and peak EMG activity of the GC 

muscle during balance recovery. It has also been reported that squat movement on a WBV 

platform promoted muscle activity in the GC compared to the RF (Roelants M, et al., 2006). 

WBV also helped improve lower limb joint torque and power compared to standard strength 

training. Rees et al. (2008) provided evidence that WBV improves plantar flexor strength and 

power to a higher extent than knee flexor or extensor strength. The effects of vibration 

training may increase motor potentials (Kossev A, et al., 2001) as well as EMG signal 

frequency (Ritzmann R et al., 2010), suggesting an important excitability of the motor cortex 

along with muscle adaptations, producing greater neuromuscular efficiency (Bosco C et al., 

1999; 2000). WBV adaptations at the neuromuscular level could improve the reflex response 

of the ankle muscles, which is thought to be indicated by the increased peak EMG activity of 

the plantar flexor during the stepping recovery in WBV after training. GC muscle activity 

provides a push-off during balance recovery from a forward fall (Thelen et al., 2000). Our 

earlier study showed that older women with a history of falls had significantly lower step 

length and velocity compared to those without a fall history (Ochi et al., 2014), suggesting the 

delay in peak EMG activity of the GC muscle was related with the reduced stability. There 

were gender differences in balance recovery from a forward fall as women also used greater 

plantar flexion torque than did men (Wojcik et al., 2001). The improvement in the plantar 

flexion response after WBV might contribute to an increased step velocity in older women. 

Because plantar flexion plays an important role in mobility and stability in older women 

(Suzuki et al., 2001; Kirkwood et al., 2011), the combination of WBV and balance training in 

the present study should help to improve functional performance and potential stability, i.e., 

the ability to recover balance from a simulated forward fall. These results show that adding 

WBV to balance training is promotes the ability to rapidly regain balance from a forward fall, 

though it did not affect walking speed or TUG as indices of fall risk. 
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A limitation of this study is that lower limb EMG activity was used as the main 

outcome for of the balance recovery step, and the changes of each joint moment were not used 

to address these issues. In addition, to assess the total index of lower limb muscle strength, 

only maximum isometric knee extension strength was measured, thus the hip and ankle joint 

torques are unknown. However, it was clarified that WBV and balance training increased step 

performance ability and lower limb muscle activity during balance recovery from a simulated 

fall in older women. Whether these effects correlate to the actual reduction of fall risk requires 

further investigation. 

 

5. Conclusions 

This study successfully reports that a home program including stability exercise 

improves mobility and balance recovery ability in older female nursing home residents. 

Enhanced function in balance recovery from a simulated fall was reflected in an increased 

amount of muscle activity rather than in changes in timing of EMG activity in the stepping 

leg. The addition of WBV further improved step velocity and promoted a greater peak EMG 

activity in the plantar flexors, which are responsible for push-off prior to foot-off during 

balance recovery. 
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Table 1. Anthropometric data, physical function, and knee extension moments for the examined groups (mean ± SD).  

Intervention   WBV group (n = 10)   STE group (n = 10)             

    Pre Post   Pre Post   
Group 

effect (p) 
  

Time 

effect (p) 
  Group × Time (p) 

Age (yr)   80.9 ± 2.8 ―   80.2 ± 3.3 ―   ―   ―   ― 

Height (cm)   151.5 ± 3.8 ―   150.2 ± 3.4 ―   ―   ―   ― 

Body weight (kg)   53.7 ± 7.8 53.1 ± 6.8   55.6 ± 7.6 55.7 ± 7.8   0.51   0.50   0.35 

Walking speed (m/s)    1.38 ± 0.18 1.50 ± 0.20   1.44 ± 0.24 1.45 ± 0.19   0.93   < 0.05   0.07 

TUG (s)   9.06 ± 2.10 8.53 ± 1.85   8.52 ± 1.89 8.46 ± 1.59   0.72   < 0.05   0.09 

Maximum KE strength (Nm/kg)   1.29 ± 0.29 1.47 ± 0.33   1.25 ± 0.25 1.40 ± 0.38   0.69   < 0.05   0.81 

Number of absence/all training days   ― 3/360   ― 2/360   ―   ―   ― 

Total training volume (min)   ― 1243 ± 97   ― 1204 ± 56   ―   ―   ― 

Significance in each item except age, height, and total training volume were tested using a two-way analysis of variance. 

Walking speed was calculated from 10-m walking time, TUG = timed up and go test time, Maximum KE strength = maximum isometric knee extension strength. 
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Table 2. Spatiotemporal parameters during step recovery from a forward fall for the examined groups (mean ± SD).         

Intervention   WBV group (n = 10)   STE group (n = 10)             

    Pre Post   Pre Post   Group effect (p)   Time effect (p)   Group × Time (p) 

Lift-off time (ms)   281 ± 29 276 ± 55   272 ± 46 268 ± 59   0.65   0.71   0.99 

Step time (ms)   276 ± 46 263 ± 43   290 ± 39 299 ± 31   0.10   0.86   0.29 

Step length (%height)   32.1 ± 5.2 33.8 ± 5.8   31.9 ± 5.0 34.2 ± 6.3   0.97   < 0.05   0.75 

Step velocity (m/s)   1.79 ± 0.29 1.97 ± 0.31   1.67 ± 0.28 1.71 ± 0.24   0.15   < 0.01   < 0.05 

Trunk angle at IL (deg) 13.1 ± 1.9 13.5 ± 2.3   12.9 ± 1.7 13.1 ± 2.0   0.72   0.34   0.75 

Trunk angle at FC (deg) 23.5 ± 2.5 23.1 ± 2.6   22.0 ± 2.4 21.5 ± 2.3   0.15   0.24   0.89 

Significance was tested using two-way factorial analysis of variance.  

IL= initial lean during pre-release, FC= foot contact after tether-release. 
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Table 3. EMG onset times (ms) and timing of first-peak EMG amplitude (ms) for all muscles from cable-release until foot contact (mean ± SD). 

Intervention   WBV (n = 10)   STE (n = 10)             

    Pre Post   Pre Post   Group effect (p)   Time effect (p)   
Group × Time 

(p) 

EMG onset times                         

RF   110 ± 22 107 ± 20   102 ± 28 103 ± 27   0.55   0.86   0.63 

VAS   105 ± 23 103 ± 22   106 ± 19 101 ± 21   0.95   0.55   0.78 

BF   96 ± 19 98 ± 19   93 ± 22 97 ± 17   0.75   0.62   0.85 

TA   99 ± 19 97 ± 20   97 ± 19 101 ± 20   0.85   0.92   0.72 

GC   93 ± 23 90 ± 14   97 ± 13 93 ± 22   0.62   0.40   0.92 

Timing of first-peak EMG amplitude                         

RF   310 ± 43 297 ± 43   300 ± 47 317 ± 41   0.70   0.87   0.33 

VAS   446 ± 81 444 ± 77   431 ± 76 459 ± 82   0.99   0.48   0.44 

BF   164 ± 36 163 ± 33   150 ± 32 159 ± 39   0.48   0.70   0.63 

TA   288 ± 45 272 ± 47   280 ± 53 282 ± 60   0.93   0.65   0.58 

GC   172 ± 31 160 ± 29   178 ± 49 169 ± 44   0.64   0.23   0.88 

RF: rectus femoris, VAS: vastus lateralis, BF: biceps femoris, TA: tibialis anterior, GC: lateral head of gastrocnemius  
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Figure 1 
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Figure 1 Title 

 

Fig.1. Ensemble-averaged myoelectric signals during the balance-recovery step.  
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Figure 1 Caption 

 

Muscle activation levels were normalized by isometric maximum voluntary contraction 

for each muscle (% MVCs). The step time was normalized for the time from 

cable release to foot contact. The timing of foot-off in all participants appeared in 

about 47 - 51 %. 
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Figure 2 
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Figure 2 Title 

 

Fig.2. Pre- and post-training comparisons of mean normalized peak EMG amplitude 

（% MVC）during balance recovery from a forward fall.  
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Figure 2 Caption 

 

The EMG amplitude of each muscle was expressed as a percentage of the EMG value 

during the MVCs, which were calculated for both pre- and post-training. Significance 

was tested using a two-way ANOVA. The black circle and solid lines indicate WBV, and 

the white circle and broken lines indicate STE.  

* p < 0.05 time effect  

† p < 0.05 group × time interaction 

 

 

 


