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Abstract—This paper describes a monaural audio dereverber-
ation method that operates in the power spectrogram domain.
The method is robust to different kinds of source signals such as
speech or music. Moreover, it requires little manual intervention,
including the complexity of room acoustics. The method is based
on a non-conjugate Bayesian model of the power spectrogram. It
extends the idea of multi-channel linear prediction to the power
spectrogram domain, and formulates a model of reverberation
as a non-negative, infinite-order autoregressive process. To this
end, the power spectrogram is interpreted as a histogram count
data, which allows a nonparametric Bayesian model to be used
as the prior for the autoregressive process, allowing the effective
number of active components to grow, without bound, with the
complexity of data. In order to determine the marginal posterior
distribution, a convergent algorithm, inspired by the variational
Bayes method, is formulated. It employs the minorization-
maximization technique to arrive at an iterative, convergent
algorithm that approximates the marginal posterior distribution.
Both objective and subjective evaluations show advantage over
other methods based on the power spectrum. We also apply the
method to a music information retrieval task and demonstrate
its effectiveness.

Index Terms—Dereverberation, Nonparameteric Bayes, Mi-
norization Maximization

I. INTRODUCTION

N audio signal, in the real world, is a mixture of various

kinds of source signals, marred by different kinds of
reverberation. Reverberation is typically characterized by the
early reflection component and the late reverberation compo-
nent: the former refers to components of impulse response that
contributes to coloration of the spectrum, and the latter refers
to components that adds decaying sound. Many studies have
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tackled the problem of suppressing the reverberation through
dereverberation methods, methods for recovering the source
signal (“dry” signal) that has driven the reverberant acoustic
environment.

We are particularly interested in developing a late reverber-
ation suppression method that works with a wide variety of
audio, including speech and music. Such processing is mainly
useful for two purposes.

First, it is useful in its own right: the ability to con-
vert a reverberant audio signal to a dry audio signal is a
highly useful post-processing technique [1]. Presence of an
appropriate amount of reverberation is important for enjoying
musical audio, so it is important to be able to adjust the
degree of reverberation that is suited to the musical audio.
Suppose, for example, that an amateur musician recorded a
piece of music in a highly reverberant church, and later found
that reverberation smeared out the nuances he/she wanted to
convey. With dereverberation techniques, the musician could
retrieve the dry signal, change the mixing ratio of the dry
signal and reverberation, and emphasize the nuance he wanted
to convey. Dereverberation, akin to an equalizer, could also
tailor an audio recording to the user’s taste. For example, a
user might enjoy a more aggressive sound by attenuating the
reverberation of a music track, while another user might enjoy
a smoother sound by emphasizing the reverberation.

Second, it is a useful front-end to signal recognition task.
While recent studies in dereverberation tend to focus on speech
recognition tasks [2], we believe that various music informa-
tion retrieval (MIR) tasks will merit from dereverberation as
well. Take, for example, audio-to-score alignment, the task of
temporally matching an audio signal to a music score. Audio-
to-score alignment is based on matching a spectral time-slice
to an audio rendition of the music score (e.g. through the use
of a software synthesizer [3], or using a probabilistic model
of the audio signal given the music score [4]). Thus, it is
vitally important that the rendition of the music score is truly
representative of the audio signal that it tries to align. In many
musical audio signals, however, the acoustics of a concert
hall smears a musician’s performance. Therefore, achieving
robustness to different acoustics is necessary. Dereverberation
may be helpful in this kind of situation, by making the input
audio more representative of the music score. We expect other
MIR tasks to benefit from dereverberation.

This paper presents a dereverberation method that sup-
presses the late reverberation of a variety of audio signals,
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including music and speech, recorded under a variety of room
acoustics. Our goal mandates the following criteria for the
design of dereverberation algorithm:

1) Our method should operate using a single-channel input.
While there are many stereo recordings, many audio
signals are recorded as monaural tracks, e.g. digital re-
masters of early LP records or an audio signals recorded
on an end-user’s smartphone.

2) Our method should be robust to minor variations in
the spatial placement of sources that drive the room
acoustics, for musical audio has many sources that
are close to each other, meaning that each source is
convolved by impulse responses with similar magnitude
response but different phase response.

3) The model should be robust to various source signals,
since musical audio is a mixture of a wide variety of
musical instruments, ranging from a whistle to a snare
drum.

4) The user should not have to specify the complexity of
the reverberation in advance. This means that the method
should be robust to various room acoustics, since the
room acoustics of many musical audio cannot be known
in advance: the acoustics can range from dead-dry (e.g.
close-mic), to highly reverberant (e.g. a cathedral).

In order to achieve (1) and (2) simultaneously, we model a
reverberant signal on the power spectrogram domain, since
a method that operates in the power spectrum domain is
relatively insensitive to speaker movements [5].

In order to tackle (3), the constraints on the source signal
should be minimal. To this end, we opt to model the sparsity
of the source signal, similar to [5], [6]. By sparsity, we mean
the mode of the probability density function of each time-
frequency bin of the power spectrogram is zero.

Finally, we realize (4) by estimating the reverberation
complexity in a data-driven manner. To this end, we seek to
use the Dirichlet process (DP) [7], a data-driven approach to
infer the model complexity that has found success in various
tasks, such as the number of topics contained in a set of
documents [8], the number of speakers in a conversation [9],
or the number of fundamental frequencies present in a given
spectral time-slice [10]. We apply the DP by modeling a
reverberant power spectrogram as a mixture of count data,
with the mixture component derived from a non-negative
auto-regressive (AR) process defined for each frequency bin.
Modeling the reverberation as a mixture of count data allows
us to use the DP to model the AR coefficients, such that the AR
model complexity grows with the complexity of the observed
data. By using the DP, the model would introduce additional
AR model prediction coefficient when it is sensible to do so.
Thus, it infers AR model coefficients that are compact yet
expressive enough for the given audio signal. n Section II
introduces the readers to existing studies. We introduce our
model in Section III, and an inference algorithm in Section IV.
We evaluate our method in Section V.

II. PREVIOUS WORKS

There are many ways to partly dereverberate an audio
signal, with unique methods tailored for each application.

For example, for speech recognition purposes, it is possible
to dereverberate the sequence of speech recognition features
[11]. For post-production purposes, we seek to recover the
dereverberated audio signal. Dereverberation, for this use, may
operate either in non-invertible domain, i.e., the transformed
representation and the time-domain signal is not bijective, such
as the power spectrum, or in invertible domain such as the time
domain or the complex spectral domain. Typical dereverbera-
tion method focuses on suppressing the late reverberation.

Dereverberation methods on a time-domain signal or com-
plex spectrum seeks to find the transfer function of a room, and
recover the dry signal using inverse filtering [12], [13]. When
reverberation is assumed to be a moving-average process, and
the reverberation filter satisfies a few reasonable assumptions,
the problem of source signal estimation becomes that of re-
covering the noise that drives an auto-regressive system, using
a formulation known as the multi-step linear prediction [14]-
[16]. By changing the noise model, the reverberation method
can be tuned to dereverberate a particular kind of signal. For
example, white Gaussian noise [17], auto-regressive model for
speech [18]-[22], or mixture of harmonic sounds [23] have
been proposed. If one over-specifies the model of the source
signal, the method becomes selective. Inversely, if one under-
specifies the model, the method becomes more versatile, at the
expense of reduced accuracy.

On the other hand, many studies focus on suppressing
reverberant signal in the power spectrum domain [5], [24]-
[27]. For example reverberation has been formulated as a
moving-average process [5], or as a moving-average process
with an exponential decay, i.e., as an AR(1) process [6], [27],
[28]. In this family of algorithms, the source model can be
customized to suit the characteristics of the source signal. To
name a few, additive white Gaussian noise [24] or generalized
Normal distribution [5] are some of the possibilities.

Dereverberation methods based on the power domain typ-
ically assume additivity of the power spectrum, which may
degrade the performance. Methods based on the complex
spectrum, on the other hand, require no such assumptions,
but are highly sensitive to movement of the source signal.
To see this, note that the phase response of reverberation
changes drastically with a slight displacement of the source
signal. However, the magnitude response changes very slightly.
Therefore, methods based on the magnitude or power spectrum
representation is more robust to source signal displacement
than methods based on complex spectrum.

A more general survey of dereverberation that encompasses
various topics can be found in [2].

III. MODEL FORMULATION

To recap from the introduction, we aim to design a dere-
verberation method that works with various kinds of audio
signals, including music and speech. It models the power
spectrogram as a histogram count data, and incorporate prior
information that guides the reverberation model towards a
good posterior distribution. Namely, it incorporates a sparse
prior on the source signal, and uses the DP to model the
AR coefficients, allowing the model order of AR to increase
without bound as the data mandates.
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We develop on the exponential decaying model (AR(1)
model) of reverberation in the power spectrogram domain [27],
and incorporate ideas from methods formulated in complex
spectrum representation [18] to arrive at a higher order AR
model — AR(c0), in fact — over the power spectrogram. The
infinite limit of the AR order is captured using the DP, and
allows the “effective” number of active components in the AR
model to be tuned to the input audio signal.

With these in mind, the main contribution of this paper is the
extension of the AR(1) model of reverberation in the power
spectrum domain [27] to infinite order. First, we justify the
higher order AR model, and lay the foundation of the statistical
model. Next, we introduce a novel model of reverberant audio
that uses the DP to express the reverberation coefficients.
Finally, since our model cannot be solved using standard tech-
niques [29], we present a novel posterior inference algorithm
based on minorization maximization.

A. Signal Model

In order to model the power spectrogram as a mixture
model, we first define what kind of components would com-
prise the mixture. To this end, we shall extend the multi-
channel linear prediction (MCLP) [18] to model the observed
power spectrogram as a mixture of a source signal and
previous observations.

Let y(f,t) € CF*T be the short-time Fourier transform
(STFT) of the observation, and s(f,t) € CF*T be that
of the source signal. Here, F' and T denote the number
of frequency bins and the number of frames, respectively.
Then, under reasonable assumptions [18], reverberation can
be modeled as follows, for some time-invariant filter of order
I, h(f,t) € CFxI:

I
y(f,t) = s(f:t) + D h(f,i)y(f,t ). )

i=1
This kind of formulation is known as MCLP, which is origi-
nally formulated as a multichannel problem, but is known to
work with single-channel audio as well [18]. This formulation
ignores early reflection, and takes into account of the late
reverberation, whose impulse response is greater than the

frame length of the STFT.

We extend MCLP to the power domain. Note that for all
(f,1), h(f,i) is zero-mean because its expectation should be
invariant to rotations in the complex plane. In other words,
where one defines the reverberation to begin should not affect
the distribution inherent to the reverberation. Now, let us
ignore the short-term correlation typically present in A and
assume that for each f, {h(f,1),---h(f,I)} are mutually
independent. Moreover, assume s(f,t) and h(f,t) are inde-
pendent for all ¢ € [1,T]. Then, in terms of expectation, the
following model of the power spectrogram may be formulated,
where | - | denotes the l-norm:

I
(£ 012 = Is(LOP + ) RO Plu(ft =D @)

i=1
Hereon, we shall denote Y (f,t) =
|s(f,t)[%, and H(f,i) = |h(f,7)].
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Fig. 1: Distribution of the effective complexity.

Our model can be thought of as a generalization of the
exponentially decaying model of reverberation used in [27],
where I = 1 reduces (2) to an exponential decay model.
Note that increasing I makes the reverberation model more
expressive but complicates the inference due to the increased
number of free parameters. Hence, it is important to choose
an [ that is compact yet expressive enough for the observed
signal.

An investigation suggests that I is best modeled by some
finite number that is dependent on the nature of reverberation.
Specifically, we determined the AR coefficients of the impulse
responses used in Sec. V. A frame length of 1024 samples at
16kHz sampling rate with no overlap was used to compute
the power spectrogram of each impulse response. Then, for
each impulse response, each frequency bin of the power
spectrogram was modeled as a non-negative AR(200) process.
The non-negative AR coefficients were estimated using non-
negative least squares (NNLS). For each frequency bin, we
then sorted the coefficients in descending order, evaluated
the cumulative sum, and determined the smallest number for
which the cumulative sum exceeds 99% of the total sum. We
call this the “effective complexity” at a given frequency bin,
in that a significant portion of reverberation is expressed using
this number of components.

Fig. 1 shows the density of the effective complexity for
different reverberation time (7o, the time it takes for the
impulse response of the reverberation to attenuate by 60dB)
associated with each impulse response. This figure suggests
that the effective complexity is a random variable that is rela-
tively invariant to the kind of reverberation (the reverberation
time of the impulse responses ranges from 0 to 2.7 seconds).
From this, the figure also suggests that an exponential decay
(non-negative AR(1)) model such as [27] may merit from a
higher order non-negative AR process.

With this signal model, the fraction of Y (f,¢) generated by
the source S(f,t), Ro(f,t), is given as follows:

S(/,1) .
(f. 1)+ H(f DY (.t —i)

Moreover, the fraction of Y (f, t) generated by the contribution
from frame ¢ — i, R;(f,t), is given as follows:

H(fJ)Y(fut_i) .
(FO+i H(fA)Y (ft—i)

Ro(f.1) = g 3)

4)

Ri(fvt) = S
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Y(£t-1)

Fig. 2: Conceptual diagram of our statistical model. Power
spectrum is treated as a histogram, and each count is associated
with a latent component that created it.

These form the basis of the statistical model, which will be
discussed next.

B. Statistical Model

We treat a discretized version of Y(f,¢) as a histogram
count data and formulate a latent variable model that assigns a
latent component to each count of the histogram. Such an inter-
pretation are often used either explicitly [30] or implicitly [31]
in source separation literatures. It is useful because treating the
spectrum as a histogram allows us to apply techniques used
in mixture modeling tasks, including the DP. The distributions
introduced hereon are defined in Appendix B.

In order to formulate a latent variable model, let us dis-
cretize Y(f,¢) and set Y(f,t) := round@Y (f,t)) for some
v > 0. We treat Y(f,t) as the number of times a time-
frequency bin (f,¢) was observed. According to (2), each
of Y(f,t) counts in time-frequency bin (f,¢) is generated
by either the source S(f,t) with a likelihood of (3) or
previous observation Y (f, ¢ — i) with a likelihood of (4). The
independence of (3) and (4) on the actual count index shows
that the counts are independently and identically distributed
given (f,t). This concept is illustrated in Fig. 2.

To record the originating component for the kth count in
time-frequency bin (f,t), let us introduce Z;(k, f,t), a one-
of-I + 1 binary variable'. “1-of-I 4+ 1” means that Z is set
such that given (k, f,t), exactly one element of I+ 1 choices
is 1 and the rest is 0. Zy(k, f,t) = 1 indicates that the kth
count in time-frequency bin (f,¢) originated from the source
S(f,t). Fori € [1,I], Z;(k, f,t) = 1 indicates that kth count
originated from observation from i frames ago, Y (f,t — ).
Note that for a given f and ¢, Z(k, f,t) is defined up to the
number of observation at (f,t), that is, k € [1,Y(f, t)].

Let us re-write Eq. (3) and (4) by introducing, for each f,
B(f) €10,1] and an I-simplex w(f) as follows:

L=BU) _ N~
50 —;H(f, ) (5)
wi(f) H{f i) ©6)

Tl H(R)

'In this paper, an index that is normalized to 1 is denoted using subscripts,
eg >, Zi(k,f,t) = 1 for all (k, f,t). An exception to this convention
is the hyperparameters of the prior distribution, which by convention is
denoted using a subscript zero. The exceptions to the hyperparameter notation
are the variables Z and ¢, which are zero-indexed variables but are not
hyperparameters.

Together, they give the following:

Ro(f,t) = W %
Ri(f,t) = (1 ﬂ(f))jvuz;fz)y(f,tz) ®
where
I
N(ED=BNSH1) + D (1= BUNwl Y (£t =1)- O

With this kind of reparametrization, 5(f) may be thought of
as the source signal-to-reverberation ratio for frequency f: the
source S(f,t) dominates the observation when §(f) = 1, and
the late reverberation dominates the observation when 5(f) =
0. w;(f) may be thought of as the relative contribution of the
observation from ¢ frames before, for frequency f.

Equations (7) and (8) respectively indicate the likelihoods
that, for a given k, f and ¢, Zy(k, f,t) = 1 and Z;(k, f,t) =1
for i € [1,I]. With these in mind, the conditional posterior of
Z given Y 1is described as follows:

FT,Y (f,t) Zo (ko ft)
B(f)S(ft)
(Z2|Y, S, B,w) = Il [ B(f)s(t)
! F=1,t=1k=1 ( N(ft) )
]II 1— B(H))wi(HY (f,t — i)\ Z*S
“l (( (f))N(Efis)) i )> ] (10)

Next, we incorporate prior information on the parameters.
Prior information is essential because the maximum likelihood
estimation of (10), i.e., maximizing (10) w.r.t. S, Z, 3, and
w, is susceptible to degenerate solutions. To see why, observe
that the maximum value of (10) is 1, for the terms to be
exponentiated is at most 1 and the exponent is a binary
variable. The maximum likelihood of 1 is attained under many
degenerate conditions, such as (1) setting 5(f) = 1, (2) setting
B(f) = 0and w;(f) = §(:—1) for some (4,7') € [1,1] x[1, ]
where §(¢) is the Kronecker delta, or (3) setting 5(f) > 0 and
letting S(f,t) — oo. Therefore, it is critical to incorporate
prior on both the source and the reverberation parameters.

1) Prior of w as a Dirichlet Process: Recall that in
Section III-A, we observed that I was a random quantity that
is dependent on the frequency bin f. Therefore, we seek to
convey the idea that the effective complexity grows without
bound with the complexity of the observation. We therefore
use the DP, which allows a data-driven approach to determine
the effective complexity.

To briefly review, a random variable X is said to be
drawn from a DP over a set S with a base distribu-
tion H and concentration parameter & if, for any measur-
able partition over S, {A;}N,, (X(41), -, X(An)) ~
Dir(aH (A;),---,aH(Ay))). GEM (Griffiths, Engen and
McCloskey) distribution [32], is a way to represent the dis-
tribution of the frequency of each possible value that the
base measure emits, and is given as the following infinite-
dimensional simplex w, given infinitely many 6:

i—1

w; = 0(i) [T(1 - 0(j)), () ~ Beta(1,a).

j=1

(an
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U(f.t) Vi(f.t)

F

Fig. 3: Graphical model of our method.

w; defines an infinite-dimensional multinomial variable, which
can be used as the probability of choosing the ¢th value. w;
can also be thought of as drawing a I-dimensional Dirichlet
distribution Dir (64 /T ) as I tends to infinity, and permuting it
such that the signficant components come first. Because such a
Dirichlet distribution is highly sparse, it almost surely outputs
a finite number of non-negligible components. It tends to emit
more non-zero components as & increases, or as the observed
data becomes so complex that it merits to introduce a new
component.

DP has gained popularity in mixture modeling tasks because
it specifies the model complexity in a data-driven approach in-
stead of manual specification. Specifically, DP exhibits a “rich-
gets-richer” effect [8], where a frequently used component is
increasingly likely to be used, and new component becomes
less likely to be introduced.

With these in mind, let us apply the DP to model the
complexity of reverberation, or the number of effective com-
ponents in w. Specifically, we let ] — oo, and assume that
w;(f) is an infinite-dimensional simplex drawn from the GEM
distribution. That is, for 7 € [1, 00], w;(f) has a prior of the
following form:

i—1
wi(f) =0(i, f) [ [(1 =04, f)), 00, f) ~ Beta(1,a). (12)
j=1
Therefore, we assume that reverberation is a non-negative
AR(c0) process, but only a finite number of coefficients
contribute to the observation.

2) Prior of S: In order to prevent the degeneracy of (10) by
increasing S arbitrarily, we place a sparse prior on S, such that
the mode of the distribution is 0. Specifically, we let S(f,t) ~
Gam(Uy(f, 1), Vo(f, t)). By setting Uy = 1, the prior of S
has a mode at zero, with an exponentially decaying likelihood
proportional to exp(—S(f,t)/Vo(f,t)). Moreover, the Gamma
distribution is also the simplest distribution that allows for an
analytically tractable inference scheme — namely, the sufficient
statistics include —S and log S.

The Gamma distribution is chosen because not only is it
mathematically convenient but it is also an acceptable posterior
distribution for both musical audio and speech signals. We
prepared power spectrograms of musical audio signals [33] and
speech signals [34], using conditions used in Table I. Then,
for each frequency bin, parameters to the Gamma distribution
was estimated using maximum-likelihood estimation using
90% of the frames. Finally, Kolmogorov-Smirnov test was
performed on the remaining 10% of the dataset to evaluate
the goodness-of-fit. We found that the null hypothesis that the

underlying distribution of the power spectrogram is distributed
as a Gamma was accepted 44% of the time for speech signals,
and 67% of the time for musical audio. Therefore, we believe
that the Gamma distribution is an acceptable model of the
posterior distribution.

3) Prior of B: We let B(f) ~ Beta(aéﬁ)(f),bgﬁ)(f)). By

setting aéﬂ)(f) = béﬂ)(f) = 1 for all f, 8 becomes non-
informative, in that no assumption is made on the signal-to-
reverberation ratio, and it is inferred solely from the data. Even
though S may cause degenerate solutions as argued previously,
we anticipate the sparse prior of S and the prior of w to
“compete” with each other to yield in a meaningful posterior
distribution. With these in mind, the joint posterior pdf is given
as follows, up to a constant normalization factor:

Ing(Z, Sa 5; w|Yv «, 07 a(()ﬁ), b(()ﬂ)a UO, VO)
FT,Y (ft)

-5

f=1,t=1,k=1

+ Zilk, £.)log (1= B())wi(£)Y (f.t — 1))

Y (1) log N(£, 1) + log p(S U DITo(f, ), Vo £, 1)
+log p(w(f)]a) + log p(B(F)lal (£),657 (). (13)

The graphical model is shown in Fig. 3. Once the posterior
distribution is found, the dry signal may be recovered by
multiplying the following time-frequency mask M (f,t) to the
power spectrogram:

Z()(ka fﬂ t) log (ﬁ(f)s(f? t))

YU (Zo(k, £,1))
Y (/1)

for any k € [1,Y(ft)]. Here, (f(#,9)),(,) denotes the
expectation of f(x,y) with respect to a distribution p(y),
where p(y) is assumed to be the posterior distribution unless
otherwise mentioned.

M(f1) = (2ok, £.0) (%)

IV. MARGINAL POSTERIOR INFERENCE BASED ON MM

In order to compute (14), we seek to marginalize the poste-
rior over all variables but Z. In other words, we want to find
the expectation of Z, weighed by all possible combinations
of reverberation parameters and source signals. Unfortunately,
direct integration p(Z|Y) = [[[p(Z,S, B, w|Y)dSdBdw is
analytically intractable. Therefore, we will approximate this
integral in a manner similar to the Variational Bayes (VB)
method, a method to approximate a posterior distribution. In
this study, we tighten a constant (= 0), using an approximate
posterior distribution ¢(Z, S, w, ), which is assumed to be of
a factored form (“mean-field” approximation, MFA), as done
in VB. Similar approach based on MFA has been employed
for discriminative models [35] in the context of conditional
random fields. Our model, however, uses MFA to approximate
the posterior distribution to a Bayesian latent variable model.
To this end, we approximate the posterior ¢(Z,S,w,3) as
[T a(Z(f.0)a(S(f.£)a(w(f))a(B(f)). Moreover, we con-

sider only up to a finite dimension I of ¢(w). This is
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known as the truncation approximation [8]. Note that in this
case, the marginal posterior w.r.t. Z(f,t) simply becomes
q(Z(f,t)). To find an approximate posterior, we optimize the
following lower bound?, obtained using Jensen’s inequality,

ie., Zle dif(x;) < f(ZZI':1 ¢;x;) for a convex function f
and an [’-simplex:
0=1logl= log/p(S, Z,B,w|Y)dSdZdBdw

p(S,Z7B7w|Y)

Z/Q(Sazﬁ,w)logm

= <10gp(Z‘YaSﬁ’w»q(s,z,ﬁ,w) — (log (J(Z)>q(z)
+ <10gp(S|U07V0)>q(s) - <10gQ(S)>q(s)

+ <10gp(ﬁlaéﬁ),bém)>q(ﬂ) — (log q(B)) (s

+ <10gp(w‘a)>q(w) — (log q(w)>q(w) :

dSdzdpdw

15)

The bound is tightened when ¢ is closest, in Kullback-Leibler
divergence sense, to the posterior distribution. Note that when
no restriction on the functional form of ¢ is assumed, the
bound is tightened when ¢(S, Z, 8,w) = p(S, Z, B, w|Y).
Optimization of (15) w.r.t. ¢(Z) yields the following:

FT.Y(ft),I
9(2) = I erpz®sn (16)
f=1,t=1,k=1,i=0
where ¢:(f.t) = di(f.t)/ X27_o (1), and
log ¢i(f,t) =
(log B(f)) + (log S(f,1)) , i=0
(log(1 = B(f))) + (logw;(f)) +logY(f,t —4), >0
(17)

o(f,t), or (Z(k, f,t)), is independent of k because given
f and t, Z(k, f,t)’s are distributed i.i.d*>. From this follows
that, since Z:z({t) (Zi(k, f,0)) =Y (f,t)pi(f, ), (14) can be
simplified as M (f,t) = ¢o(f,1).

Updating with respect other variables is complicated since
the term (—log N(fz ) a(8)a(B)q(w) 1N (.13) rpakes our model
non-conjugate, meaning that the expectations in (15) cannot be
computed analytically. To attack this problem, we optimize a
lower-bound to the objective function (15), using minorization-
maximization (MM) technique.

4) Design of the minorization function: In order to find
an analytical inference rule for the model, we use the MM
algorithm [36], also known as auxiliary function method in the
context of signal decomposition [5], [37]. The MM algorithm
is a convergent algorithm for maximizing an objective function
by designing a lower bound to the objective by introducing
additional variables (auxiliary variables), and iteratively tight-
ening the bound with respect to the auxiliary variables and
the parameter. The key is to design a lower bound such that
it is easy to update w.r.t. both the auxiliary variables and the
parameter.

2Using Jensen’s equality to lower-bound the evidence p(Y) instead of 0
yields in a typical formulation of VB.

3This is not to say that, for a given (f,t), Z’s are identical for all k, i.e.,
they are constrained to take on the same value: they are separate random
variables that have the same expectations.

Inspecting (10) and (13) reveals that inference is compli-
cated by the term (—log N(f,t)) that appears in the log-
joint posterior distribution. Computation of the expectation
is complicated because the term is cannot be expressed as
a weighted sum of the natural parameters of the posterior.
Analytical computation of the expectation is possible if we
could express it as a weighted sum of the expectations of the
natural parameters, (log 5(f)), (log(1 — B(f))), (logw;(f)),
(log S(f,t)), and (—S(f,t)). Hence, we shall design a lower
bound for (—log N(f,t)) that satisfies these properties.

We will introduce a set of auxiliary variables A to design a
lower bound J(Z, S, w, 3, A), such that maximizing J w.r.t.
Z,S,w, B and A is possible. Our function J shall satisfy the
following criteria:

1) (logp(Y, Z,5,w, ), = maxa J(Z, 5w, B, A)

2) (ogp(Y,Z,5,w,B)), = J(Z,5,w,B,A)

3) J(Z,S,w,p,A) is a weighted sum of the expectations
of the natural parameters of the posterior, plus A and a
constant.

To simplify the notation, we shall hereon abbreviate the time-
frequency index (f,¢) when it is obvious, and notate Y (f, t—1)
as Y0,

First, we lower-bound (— log N (f, t)) by a first-order Taylor
expansion about R(f,t):

(N(f1)) = R(f, 1)
R(f.1)
This bound is expressed in terms of a weighted sum of

log S(f,t) and —S(f,t), so we can immediately optimize the
objective w.r.t. ¢(S) to obtain the following:

<_ 1OgN(fa t)> 2 _logR(f’t)_ . (18)

S(fat) NGam(U(f,t),V(f,t)) (19)

where
U(f7 t) = UO(fa t) +Y<f7 t)¢0(f7 t) (20
V([ 1) =Vo(f, 1) + Y (£, 0)(B())/R(f,1). 2D

The bound is tightened by setting R(f,t) = (N(f,1)).

In order to update (15) w.r.t. g(w) and ¢(3), we set another
lower bound to — (N(f,t)) used in the right-hand side of
(18). Namely, we first bound — (N(f,¢)) from below by the
following bound, for a set of auxiliary variables V(f,t) > 0
and some constant C(f,t) > V(f,1):

— (N(f;1)) 2 V(1) =C(f,t) = V(f,t) log V(1)

V) (1o (CUED ~ NG Do)y @D

The variable C can be chosen arbitrarily, provided that
Clft) > Camlfit) = \[(SUDN )+ DIy V(i t—i)
Appendix A presents the detailed proof for this bound and
the derivation of Cpin.

The lower bound of (22) is still not a linear combination
of the natural parameters, as it now contains the logarithm of
a linear combination of the exponents of natural parameters.
Observe, however, that log(C(f,t)—(N(f,t)),(s)) is expressed
as a logarithm of a weighted combination of the exponent of
natural parameters. Therefore, we can extract the summation
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outside the logarithm by applying Jensen’s inequality and
obtain the following bound, where Q(f,¢) is a (I+1)-simplex:

(log(C(£t) = (N(£8)5))) -

a(B)a(w)

<1og [0 (et~ (5

i nen- <f,t—z'>>]>
. Qozf, t)<log(5(f) (ctrn-(s(r t>>q<3)))q§mq<w)
+Zng, ) (ogl(1-

a(B)a(w)

BUNwiF) (€)=Y (f.t=)] )

q(B)a(w)
T

=Y Qi(fit)log Qi(fi1). (23)
=0

The right-hand side is a weighted sum of the expectations of
the natural parameters of 5 and w used by the joint posterior.
Therefore, this bound can be used to analytically optimize the
objective function in (15) with respect to ¢(3) and g(w).

Optimizing the function w.r.t. ¢(w) leads us to the following
update (recall w is expressed in terms of 6, by (12)):

06, /) ~ Beta (a6, )00 6. /) @4
where
di, ) =1 +£<' f) (25)
b, f) =+ Z £, f) (26)
Jj=i+1
- V(1)
H=>_Y(fit ( )+ Qi(ft) R(f t)) L@
t=1 ’
Likewise, optimizing w.r.t. ¢(3) leads to the following:
B(f) ~ Beta(al(£), b)) 28)
where a'®) and b(#) are the following:
) = ag”(f) + €00, ) (29)
I

The bound is tightened by updating Q as follows, and nor-
malizing it such that >, Q;(f,t) = 1:

x(C(fit) = (S(£,1))) exp (log B(f))
x(C(fit) =Y (f,t =)
x exp((log(1 = B(f))) +

Qo(f,1)
Qio(fit)

(logwi(f)))- (1)

5) Expectation of the sufficient statistics: The sufficient
statistics are given as follows, where ¥(x) is the digamma

TABLE I: List of the parameters used.

Parameter ~ Description Value
N/A  Waveform Format mono, 16bit unsigned
N/A Sampling Frequency 16kHz
F Frame Length 1024
N/A Hop Size 25% overlap
N/A  Window function Modified  Bartlett-Hann
Window
a®, 6P Signal-to-Reverb Ratio 1.0, 1.0
Uop , Vo Source Sparseness 1.0, 10—3
«  Reverberation Concentration 50.0
I Truncation order 50
Number of iterations of
N/A the MM algorithm 20

function:
(log A()) = (a (1) = () + 1)) (32)
(log(1-B(£))) = (1)) = (aVf) +6PXp)) - 33)
a(B)( 1))
(B(f)) = W (34)
(S(f.0)) =U(f.OV(/.1) (35)
(log S(f,1)) =log(U(f,1)) +¥(V(£.1)) (36)
(log wi(£)) = (£ )+Zw(b<9 )
- Z o0 + 7)) (37)
a? 1b9)
(i) —— DL b ) %)

(
iy (670 +07)

V. EVALUATION

We conduct three experiments to assess the proposed
method. First, we compare the performance of our method
against two existing methods in the power-spectrum domain,
one which relies on source sparsity [5] and another that
relies on an AR(1) model of reverberation [27]. Moreover,
we explore the behavior of the algorithm when changing a
few key parameters. Second, we evaluate our method through
a listening test. Finally, we evaluate the effectiveness of
dereverberation using audio-to-score alignment, a method in
MIR for temporal matching of a piece of musical audio and
a music score.

In the following experiments, unless otherwise stated, we
use the parameters shown in Table I. The dereverberated signal
is created by first multiplying the STFT of the observation
y(f, t) and the square-root of the time-frequency mask M (f,t)
defined in (14). Then, the time-domain signal is recovered us-
ing inverse STFT. This way, the recovered power spectrogram
becomes M (f,t)Y (f,t), as specified in (14).

A. Dereverberation performance

1) Data: For the source signals, we used utterances from
the DARPA TIMIT Acoustic-Phonetic Continuous Speech
Corpus’s core test dataset of 24 speakers [34]. For musical
sources, we used the BACH10 dataset [33], a database of Bach
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chorales recorded in an anechoic chamber. Each signal has a
duration of 20 to 30 seconds.

For the impulse response, we prepared real and simulated
responses. We prepared five real-world impulse responses,
three of which are from the “Impulse response and speech data
with microphone array” data from the RWCP Sound Scene
Database in Real Acoustic Environment [38], which consist of
impulse responses of reverberations whose reverberation time
is up to 780ms (33 frames). They include an impulse response
of an echo room (denoted “E2A,” reverb length of 120ms),
a tatami-floored room (“JR1;” 600ms), and a Conference
room (“OFC;” 780ms). Here, the length of reverberation is
defined as the time that the power of reverberation decays by
-60dB compared to the start. The remaining two are from the
Promenadikeskus Concert Hall impulse response [39], which
contains long reverberation of up to about 3s (130 frames).
One impulse response is recorded with a source on stage and
mic on stage (“sl_rl_o;” 2.7s); another is recorded with a
source on stage and mic on the audience seat (“sl_pl_o;”
2.6s). Therefore, even though they have similar reverberation
times, dereverberating the latter is more difficult: the direct-
path component is weaker relative to the reverberation, so
the source signal is less clear. In other words, the posterior
distribution of the variable 3 is likely to be different, where
sl_rl_o is expected to have a smaller (3) compared to
sl_pl_o.

For the synthesized response, the image method [40] was
used to synthesize artificial impulse responses. Eighteen im-
pulse responses were generated, with uniform lengths of 20m,
heights of 8m, absorption coefficients of 0.19, and widths of
Sm to 95m in 5Sm increment.

2) Metrics: To evaluate our method, we used two metrics:
Signal-to-Reverberation Modulation Energy Ratio (SRMR)
[41] and the Itakura-Saito Distance (ISD)*.

SRMR is a non-intrusive measure that increases for signals
with shorter late reverberation. Therefore, a dereverberation
method should improve the SRMR of the estimated signal
from that of the wet signal. The SRMR, however, should not
be the only figure of merit because it ignores signal distortion
caused by dereverberation: a method may attenuate the late
reverberation drastically but sound extremely poorly.

In order to evaluate how close the dereverberated signal
sounds to the true dry signal, we evaluate the ISD, an asym-
metric measure of spectral dissimilarity defined as follows:

S X(hY) XD
ISD(X,X)_FTg;(X(ﬁt) ng(ﬁt) 1) (39)

where X (f,t) is the power spectrogram of the ground-truth
dry signal and X (f,t) is that of the dereverberated signal.
Since we are interested in evaluating the degree to which
spectral shapes are distorted in the process of dereverberation,
the evaluation metric should be invariant to the output gain.
Therefore, the estimated signal X is scaled by a constant
that minimizes the ISD from X to X. Moreover, we add

4Note that there is yet no single validated measure for dereverberation.
Therefore, the numerical results presented here should be considered an
indication, and not conclusion, on the effectiveness of our method.

TABLE II: Comparison of different methods, averaged over
impulse response.

Method | Wet KAMO09 LEBOl Proposed Proposed
(finite) (infinite)
E2A 3.73 6.24 13.01 3.10 3.09
JR1 3.73 6.55 12.94 3.29 3.28
OFC 4.14 6.66 12.30 3.34 3.33
sl_pl_o | 5.35 7.53 10.19 3.98 3.93
sl_rl_o | 5.12 7.37 9.66 3.96 391
Ave. 4.41 6.87 11.62 3.53 3.51
(a) Itakura-Saito Distance.
Method | Dry Wet KAMO09 LEBOl Proposed Proposed
(finite) (infinite)
E2A 501 7.03 9.94 8.80 8.52 8.61
JR1 501 447 6.52 7.60 5.72 5.83
OFC 501 4.60 6.75 7.57 5.88 6.01
sl_pl_o | 501 349 5.40 6.38 4.72 4.88
sl_rl_o | 501 3.13 4.76 7.55 4.12 4.23
Ave. 501 454 6.67 7.58 5.79 591

(b) Signal-to-Reverberation Modulation Energy Ratio.

a small constant 1074 x X to both X and X ; because
ISD is sensitive to signal power ratios, adding a small floor
prevents minute differences in weak signal components from
adversely affecting the ISD. Since ISD is a good measure of
speech perception [42], we expect ISD to be indicative of the
perceptual similarity between the estimated dry signal and the
ground-truth dry signal.

We evaluated the data corresponding to the last 10 seconds,
since, empirically, all of the methods require some time (about
2s) to settle-in.

3) Comparison with existing methods: We compare our
method with two methods that perform dereverberation in the
power spectrum domain. The first method, denoted “KAMO09,”
uses a frequency bin-wise convolutive model of reverberation
with a sparse source prior [5]. It is similar to our method in
that it relies on the sparseness of the source, but different
in that it uses a convolutive reverberation model that only
incorporates prior on the source signal. The second method,
denoted “LEBO1,” uses a frequency bin-wise AR(1) model of
reverberation [27]. It is similar to our method in that it uses an
auto-regressive model of reverberation, but different in that it
assumes very little on the source signal, incorporates no prior
information on the reverberation coefficients, and is restricted
to AR(1).

Moreover, we compare our method with a finite-mixture
version of our model, which is realized by replacing GEM(«)
(with truncation approximation /th component) with a finite
I-dimensional Dir(a/50). This is an approximation of the
DP at T = 50, and the but the expected number of effective
component increases with I whereas it is fixed in GEM().
The inference algorithm is quite similar, and so is omitted;
the difference is in the update of ¢(w), given by (24), and the
computation of the sufficient statistics in (37) and (38).

Table II shows the evaluation measures averaged over the
source signals. Table Ila shows that our method is capable of
decreasing the ISD compared to the wet signal. This is unlike
the existing methods, where the ISD increases by attenuating
the late reverberation. Comparing the infinite version and
the finite version of our method suggests that the difference
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TABLE III: Evaluation measures averaged over source signals.

Wet KAMO9 LEBOl1 Proposed Proposed
(finite) (infinite)
Voice | 4.31 6.51 1141 343 3.41
Music | 5.35 10.02 13.47 4.46 4.37
(a) Itakura-Saito Distance.
Dry Wet KAM09 LEBO1 Proposed Proposed
(finite) (infinite)
Voice | 5.11 4.63 6.97 7.78 591 6.04
Music | 2.06  3.02 3.73 5.86 3.37 3.39

(b) Signal-to-Reverberation Modulation Energy Ratio.

between the two is negligible, in terms of the ISD. Table IIb
shows that all the dereverberation methods under consideration
are capable of attenuating the late reverberation, since the
SRMR increases relative to the wet signal. The data shows
that the proposed method is better capable of suppressing the
late reverberation compared to the finite version. Even though
the existing methods consistently attain higher SRMR than
our method, it comes at the price of vastly increased ISD. In
this respect, our method is advantageous because its SRMR
is comparable to that of the true dry signal, while its ISD is
smaller than the wet signal.

Next, we show in Table III the evaluation measures averaged
over source signals. Table IIla shows that our method, again,
is capable of making the ISD closer to the true dry signal,
and Table IIIb shows that the resulting signal is at least as dry
as the true dry signal. The table also shows that the SRMR
for music is substantially lower than that of speech, even if
they are averaged over the same impulse responses. We believe
this owes to the fact that pitched musical instrument sounds are
stationary compared to speech, which induces a low-frequency
envelope modulation, which in turn decreases the SRMR; in
other words, sustained pitched notes sound like reverb.

Next, we present the evaluation measures of the synthetic
impulse data in Fig. 5. Fig. 5a shows that the ISD increases
with the reverberation time, reflecting the intuition that re-
cuperating source signal that has been convolved by a long
reverberation is difficult. Fig. 5b shows that the SRMR initially
decreases, then increases. In the decreasing region (reverb
time<1s), early reflection is dominant because the simulated
room width is less than the wavelength of the framesize;
dereverberation fails in this case because our method only
suppresses the late reverberation. In the increasing region,
our method starts to suppress late reverberation since late
reverberation starts to dominate over early reflection with
increased room size.

4) Robustness to noise: We tested the robustness of our
method against noise. This is important because our model
assumes that the observation is an output from a purely
autoregressive system — it ignores the presence of additive
noise, such as the LP noise, which is not driven by the AR
system that our method tries to estimate.

To this end, the reverberant audio was corrupted by a pink
noise, the power spectrum of which rolls off at -10dB per
decade. The signal-to-noise ratio (SNR) ranged from -20dB
to 60dB, in 10dB increment.
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Fig. 4: Evaluation measures with different SNR.

Fig. 4 shows the result. From Fig. 4a, we note that our
method fails to dereverberate the signal for a low SNR of
less than 0dB. As the SNR increases, the ISD improvement
increases, and saturates after about SNR>50dB. Our method
suffers at a low SNR because the noise masks the wet signal,
in particular the weak late reverberation component; the weak
late reverberation component provides a valuable cue on higher
order AR model parameters, so loss of late reverberation
leads to decreased performance. From Fig. 4b, we find that
the capability to attenuate the late reverberation saturates
after SNR of 10dB or better. These results suggest that our
method is admits a weak noise with SNR of about 10dB. This
is acceptable for our intended usage of postproduction and
preprocessing for MIR tasks: in a typical musical audio, very
little noise is introduced after the recording phase.

5) Analysis of key parameters: We evaluate the effect of
manually-set room acoustics parameter /. We have already
seen in Table II and III that the infinite model performs
better than the finite model, in that the infinite version
exhibits roughly the same ISD as the finite version while
having higher mean SRMR. This experiment compares the
robustness of finite and infinite model by changing I, which
governs the underlying model complexity for the finite case.
Recall that the finite version assumes reverberation of AR(J),
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Fig. 5: Evaluation measures of synthetic impulse response as
the reverberation time is varied.

TABLE IV: Standard deviation, evaluated over I, of ISD and
SRMR for finite and infinite mixtures, averaged over impulse
responses.

Finite  Proposed Finite Proposed

‘ (ISD) (ISD) ‘ (SRMR)  (SRMR)
Voice 0.66 0.42 0.68 0.17
Music | 0.12 0.07 ‘ 0.28 0.14

and the infinite version assumes AR(co) but evaluates an
approximation that computes up to I. Therefore, we expect
the infinite version to be more robust against choice of I,
that is, it is less prone to misspecification of I. Table IV
shows the standard deviation of ISD and SRMR taken for
each I € [32,48, 64,96,128,192, 256]. Note that the standard
deviation of the infinite model is smaller than the finite model
except for SRMR of speech, where the difference is small.
This suggests that the infinite model is less sensitive to the
manually predetermined complexity of room acoustics, I, than
the finite model. We found that in the finite version, both the
SRMR and the ISD tends to increase with increased I after
a certain point; this suggests that the finite version tends to
over-attenuate the reverberation by increasing I beyond some
optimal point.

Next, we investigate the effect of «, the parameter that
governs the tendency for new filter component to be activated.
In this experiment, we used only the TIMIT data. To this end,
we evaluated the ISD and the SRMR for a € [1071,10%]. We

6.5
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1
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(b) Signal-to-Reverberation Modulation Energy Ratio.

Fig. 6: Evaluation measures as « is varied.

show the ISD and SRMR in Fig. 6a and Fig. 6b, respectively.
These figures show two tendencies. First, SRMR increases
and saturates by increasing «. This matches the intuition that
as more components of w are activated, the capability to
suppress reverberation tails increase. Second, as « increases,
the ISD decreases first and then increases. We believe this
behavior is caused by two factors at play. First, as « is
increased, the reverberation tail is attenuated, which causes
the dereverberated signal to look more like the dry signal.
However, after a certain point, the decaying component is
attenuated too excessively that the ISD starts to increase.
Fortunately, the tendencies of ISD and SRMR as a function
of a does not vary too significantly, so very little manual
intervention is required for practical purposes.

B. Listening Tests

We performed a subjective evaluation of our method. First,
eight 15-second excerpts were prepared. Of eight, three are
orchestral excerpts, three are chamber music excerpts (piano
solo, piano solo + tenor singer, piano trio), one is a popular
music excerpt and one is a male speech. For each excerpt,
each subject was first presented, using a headphone, the
original reverberant signal. Then, the dereverberated signal
using KAMO09 and the proposed method were presented in
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TABLE V: Average rating (on a 5 point scale) of excerpts
averaged over the musical genre. Number following =+ is the
standard deviation.

| KAMO09 Proposed

Orchestra 1.724+0.74  3.4040.81
Chamber Music | 1.644+0.67 3.7440.76
Popular Song 1.70£0.74  3.1740.98
Speech 2.00+1.13  3.174+1.04

random order’. Finally, the subjects were asked to rate the
sound quality on a 1-5 scale. LEBO1 was not used because
Table II suggests that KAMOQ9 is preferable over LEBO1 both
in terms of ISD and SRMR. The test subjects (17 subjects)
were all male between the age range of 20 to 40, and deal
with sound signal processing technology on a daily basis.
Table V shows the average rating and the standard deviation.
The data seems to be in favor of our algorithm. To investigate
this, two-way ANOVA was performed on the collected ratings
data. With a significance level of 0.01, interaction between
the excerpt and deverberation method was not seen (p-value
of 0.02), nor did the excerpt itself (p-value of 0.29), but the
effect of dereverberation method was significant (p-value of
1.1716), This suggests that our method produces a more natu-
ral sounding dereverberated signal than the existing method®.

C. Application to MIR Tasks — Audio-to-score Alignment

Audio-to-score alignment is a method to temporally align
a music score (e.g. standard MIDI file (SMF)), and an audio
recording that plays the music score. It has uses in applications
such as score-aided source separation [43], or automated page
turning [44].

We use a score alignment method based on [4]. The method
is based on fitting a sum of sinusoids to the observed power
spectrogram, by interpreting the spectrogram as a histogram.
Such interpretation dovetails with our treatment of power
spectrogram.

We synthesize three kinds of audio signals. First, ten SMF
files from the RWC Classical Music Database [45] are used
to synthesize a musical audio signal with a synthesizer, along
with a mapping of ground truth score position to audio
position. The instrumentations of the chosen SMFs are duets
of a single instrument and a piano. Hence, the SMFs are a
polyphonic mixture of both sustained and decaying instru-
mental sound. Next, another set of audio signal is created by
convolving the synthesized audio with a reverberation [39]
(sl_rl_o). Finally, another set of audio signal is created by
dereverberating the synthesized audio with reverb.

We align the music score to three kinds of audio signals, and
compare the alignment error percentile. The result is shown in
Fig. 7. We first find that audio reverberation multiplicatively
corrupts the alignment. At the same time, we also find that

SLEBO1 was omitted because KAMO9 consistently outperformed LEBO1
in terms of ISD, suggesting that KAMO09 produces dereverberated signals that
perceptually sounds closer to the dry signal.

6We provide sample audio signals at:
http://winnie.kuis.kyoto-u.ac.jp/
members/amaezawl/taslp2014

1000
)
@
(%]
£
£ 100
i}
Q
5 —e—w/o Dereverberation
§ —&—w/ Dereverberation
< - - -Ideal (clean signal)
10

25% 50% 75%

Percentile [%]

90% 95%

Fig. 7: Percentile of Audio-to-Score Alignment Error.

dereverberation brings the performance of score alignment to
the same level as the ideal case, where no reverberation is
added. The dereverberated signal sometimes performs better
than the ideal case presumably because our method suppressed
not only the reverberation but also sustain pedals of the piano
parts; sustain pedal causes the piano string to vibrate freely,
elongating duration of the played notes than that notated in
the music score.

Dereverberation is clearly beneficial for improving score
alignment accuracy. This is particularly beneficial for score-
aided source separation, where the fundamental assumption is
that the music score and the audio signal is aligned perfectly.

VI. CONCLUSION

This paper presented a dereverberation method based on
the power-spectrogram representation of audio. The method
developed on the frequency-dependent auto-regressive model
of reverberation to atrive at a statistical model of non-negative
auto-regressive model of reverberation based on the DP, such
that the effective number of component grows without bound
as the data mandates it. Moreover, it incorporated sparse
source prior and a non-informative source-to-reverberation
ratio prior.

We formulated an iterative, convergent method to approx-
imate the marginal posterior distribution given the joint pos-
terior distribution. The iterative algorithm was inspired by
variational Bayesian method and minorization maximization
techniques.

Objective and subjective evaluation showed its effectiveness
over existing methods in the power spectrum domain, espe-
cially in the perceptual quality of the dereverberated audio.
Moreover, it showed that the infinite model performs better
than an equivalent model formulated as a finite model. We also
evaluated our model using audio-to-score alignment task in
MIR, and found that dereverberation improves the robustness
of score alignment method, suggesting that other MIR tasks
may merit from having a dereverberation front-end.

Future work include hierarchical modeling of the presented
model, so that human intervention is completely unnecessary.
In particular, a model that does require the user to set Up, Vj
and « is expected to make the system more robust, as these
parameters tend to be counter-intuitive for the end-users. Real-
time inference is another future work.
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APPENDIX A
PROOF OF (22)

Theorem A.1: For a differentiable and strictly monotonic
function f(x), a positive density function ¢ over the domain
of z and some C such that 0 < f(z) < C for all z in its
domain, the following holds for all V € (0,C):

<—f(33)>q(x) >V (log (C — f(x))>q(m)

—VlegV —C+V. (40)

The bound is tight at V = exp (log (C — f(2))) ;()-

Proof: Consider a function @log(C — f(z)) + v for some
% > 0 and . Match the tangent of this function and that of
—f(x) about x = x( such that f(x¢) € (0,C), and solve for
@ and 0. Set V = C — f(z() and take the expectation of both
sides to obtain (40). Since the r.h.s. is strictly concave, it meets
the Lh.s. at exactly one point.

To tighten the bound, optimize the r.h.s. with respect to xg
to obtain f(zo) = M — exp (log(C — f(2))),(,)- Substitute
this to the definition of V to tighten the bound w.rt. V by
setting it to exp (log(C — f(2))) .- [ |
Apply this theorem, where f(8,w) = (N) ) and ¢(z) =
q(B,w) to obtain the desired inequality in (22).

Next, we shall derive Cpin. First note that log(C(f,t) —
(N(f,t))q($)q(z)) is defined for the domain of g(w)q(B);

therefore, for all w’ in I-simplex and 8’ € [0,1], C(f,t) —
N(f, t)qES)q(Z)|w:w/,5:g/ should be greater than zero. Note

that (N(f,t)),s can be expressed an inner product of two
vectors v(f,t) and w(f,t), where
B(f) (S(h Ddacss0)
(L= B(fHwi(f) Y(f,t—1)
vif,it)=| (L= B(HHwa(f) | and W(f,t)=| Y (f,t=2) |,
(1= B(fHwzr(f) Y (f,t—1I)

with Y. v;(f,t) = 1. Since |v(f,t)] < 1, we can bound
[v(f,t) - w(f,t)] < |w(f,t)|- Therefore, the bound is valid if
C(fit) > [w(ft)]-

APPENDIX B
LIST OF DISTRIBUTIONS

Cam(X|U, V) oc XU~leVX
Beta(X|A,B)  X4(1 - X)B

Dir(wla) oc [ Jwi ™
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