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Bounded law of the iterated logarithm for
discrepancies of permutations of lacunary sequences

By

Katusi FUKuyAMA* and Yusaku MITSUHATA™*

Abstract

For a sequence {ny} satisfying the Hadamard’s gap condition, Philipp proved the bounded
law of the iterated logarithm for discrepancies {nyx}, and gave a concrete upperbound depend-
ing only on a constant in the gap condition. Recently Aistleitner gave much smaller constant
by using martingale approximation. In this note, we give an almost optimal upper bound
constant and prove that this bound is also valid for a permutation of a sequence satisfying the
gap condition.

§1. Introduction

In this note, we will be concerned with the asymptotic behavior of discrepancies
Dy{x} and star discrepancies D} {zx} of a sequence {z}, defined by

; Dy{zr} = sup
0<a<1

Dy{ar} = sup
0<a<b<1

Y

1L~ 1L~
N > Loy (@) N > 1.0 (@)
k=1 k=1

where I[a,b) () = Ljap)((7)) — (b—a), 1}q,) denotes the indicator function of [a,b), and
(x) denotes the fractional part of x.
Philipp [11, 12] assumed the Hadamard’s gap condition

(1.1) ner1/ng >qg>1 (k=1,2,...),
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and proved the bounded law of the iterated logarithm:

— ND 1 4
(1.2) Tim yAmer} g (166 + L) ae.
4\/_ N—oo /2N loglog N \/5 /2 1

As Berkes-Philipp-Tichy [5] noted, the above result is permutation invariant, i.e., the

inequalities remain valid if we change the order of {ns} .
Aistleitner [2] gave a preciser estimate when ¢ > 2:
2  ¢/%* 7 N-ooo /2NloglogN ~ N—ooo /2N loglog N — 2 ¢i/4

Recently, the exact values of limsup became possible to calculate explicitly. When ¢ is

(1.3) a.e.

an odd integer greater than 2, we have

o NDN{q x} _ m NDN{q x} 1 Jq+1 e
N-oco /2Nloglog N Nooo 2NloglogN 2V g—1 7
(Cf. [7]). When g — oo, we have

1 fg+1 1 1
1.4 S B
(1.4) 2\ -1 2+2q+0( Y

and hence it is natural to expect that Aistleitner’s upper bound estimate in (1.3) can be

improved to 1/2 4+ O(1/q). Since Aistleitner used martingale approximation technique,

which is hard to apply to the case when the sequence is permutated, it is not clear if the

same estimate is valid for permutated sequences. We try to contribute to these points.
Now we are in a position to state our theorem.

Theorem 1.1.  Let {ny} be a sequence of real numbers (not necessarily integers
nor positive) satisfying the gap condition

(1.5) ny # 0, ngs1/nel >q¢>1 (k=1,2,...).

Let @ be a permutation on N, i.e., a bijection N — N. Then for all countable dense
set S C [0,1), we have
— NDN{nw(k)x}
lim sup  lim

1 a w
N—oo /2NToglog N  §5a<bes N—oo «/2N—loglogN‘Z [a,6) (Mo (k)T

)

= sup lim

a nw X y
0<a<b<1N—oc /2N loglog N — [’b)( (k)T)

(1.6)
—_— ND}kv{nw(k)x'}
lim =sup lim

N
1 N
1 a kv
N—oo /2N loglog N aegweoo‘/—zmoglog]v‘l; 0,0) (k) T)

N
_ 1 ~
= li E 1y, w )
Oililzl NE}})o 2NlOglOgN’k:1 . )(n (k)aj)
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for almost every x € R. By denoting the d-th subsum of the Fourier series of I[a,b) by
I[a’b);d, we have

N
— 1
lim
N—o0 2NloglogNk !

1ia,b) (New(r)®)

(1.7)

ae. x€R.

dlirgo ngnoo 2N log log N ‘Z::l REECR

By putting Ny, = {2" +m2" % |n>u; 0 <m < 2"} for u € N, we have

N
. 1 ~
lim E 1, 0:d(Ne
Noeo V2N log logNL a0y (Mo (i)

(1.8) N

= lim  lim
u—00 N, dN—c0 /2N log logN

1iap):a(Po@y®)|, a.e. x€R.

As a byproduct of the proof of the above Theorem, we can prove the following.

Corollary 1.2. Under the same conditions as those assumed in Proposition 1.1,

1 < Tm NDyAnmmr} < Tm NDn{ngmwr} <( ;>1/2 »
Ve = N AN Toglog N = Mook VaNToglog N V3(g—1)/

This upper bound constant equals to 0.9095... when ¢ = 2, and is smaller than
Philipp’s constant 1050.898... and Aistleitner’s constant 5.545.... Because it asymp-
totically behaves like

1 1 /2 1 1
(Z‘Fm) =3 TqJFO( Y, (g — ),

as comparered to (1.4), it gives an optimal estimate except for the multiple constant of
1/q term.

We improve the upperbound estimate by thoroughly using the exponential integra-
bility technique which is invented around 1960’s and 1970’s.

§ 2. Exponential integrability

We follow the method of Philipp [11] and Takahashi [13] to give a refinement of
exponential integrability results.
Denote the d-th subsum of the Fourier series of i[a,b) by i[a’b);d and the d-th Cesaro

sum by Cligpya- BY [Ljaplloc < 1 1CTapyalloo < [ Ljaplloos and [Tiap ()] < 1/21jl,
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we have

s .
o T Z jll[a,b)(]” <2.
0<|j|<d

L (.5y;alloo < 1CT10,0)al

Consequently we have ||I[a’b) - I[a’b);d||oo <3.
We will be concerned with a real valued function f on R satisfying

Al <3,

A

1 1
far) =@, [ f@d=0, 1= [ P)ds<
(2.1) ’ - ’
lej| < 7%,, where f(z) = ch cos(2mjx + ;)
j=1

It is easily verified that functions I[a,b), I[a,b);d, and i[a,b) —I[a,b);d satisfy the conditions
(2.1).
By noting

1 / (Sin:l'}>2 27r\/—_1)\md 1— |7T)\| 7T|)\| <1,
— — ) e r =
TJrN T 0 otherwise,

we can define a probability measure p on (R, B) by

u(dr) = %(sizx)Q dz.

Clearly p and the Lebesgue measure are mutually absolutely continuous.
We have an inequality

‘/ cos 2 (ax + ) p(dz)| < 1,

R

and the relation below: if |a| > 1/7, then

(2.2) / cos 2m(ax + ) p(dzx) = 0.
R

The target of this section is to prove the following:

Proposition 2.1.  Let {ny} be a sequence of real numbers satisfying (1.5). Sup-
pose that

(2.3) k| >1, (ke N).

Let f be a function satisfying (2.1). For any 0 < 6 < 1 there exists By > 3 depending
only on q and § such that for all integers A > 0 and B > By with

(2.4) I£ll2 > B~/4/4,
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for all real number R > 1, and for all permutation w on N, we have
A+B
Z J(no@yT)

‘ (
(2.5) k=A+1
< (Y exp(—(l +9)|fll2 1/2RloglogB) + C3R™2B77/8,

> (1+ 20)C1Rl 1 (2B 1og o B) )

Here constants are given by
8

4
— . Cy=2supexp(24N"*B(loglog N)/?), and C5 = —=.
\/§(q—1) 2 sz?, p( (loglog N) ) 3752

If f is a trigonometric polynomial satisfying (2.1) with degree d, for any 0 < § < 1 there
exists By > 3 depending only on q, 6 and d such that for all integers A >0 and B > B,
with (2.4) and for all permutation w on N, we have

> fomwe)

,u(
(2.6) k=A+1
< (s exp(—(l +6) log log B).

Ci=1+

A+B
> (1+0)

C1 ,1/2 1 )
— 2B log log B)!/?
ﬂllsz ( glog B)

To prove the above proposition, it is enough to prove the following lemma.

Lemma 2.2. For any 0 < § < 1 and q > 1, there exists an integer Ny > 3
depending only on § and q satisfying the following properties. If f satisfies (2.1), N >

Ny satisfies || f|l2 > N~1/*/4, and a set of real numbers {ni,...,nx} satisfies
@7 llz1 (h=1,..,N) and |mea/mel =g (h=1,...,N 1),
then
N
s (|3 s 2 (14 20111 2 g og )7
' k=1

< Cyexp(—(1+ 5)||f||2_1/2Rlog log N) + C3R2N"7/8

holds.

Forany0<§d<1,q>1, andd € N, there exists an integer N1 > 3 depending only
on q, § and d such that for any trigonometric polynomial f satisfying (2.1) with degree
d, for any N > Ny with ||f|l2 > N~'*/4, and for any set of real numbers {n1,...,ny}
satisfying (2.7), we have

N
Ch
o) u( > fimua) Ll

< Cyexp(—(1+6)loglog N).

> (1+6)

5/2(2N log log N)1/2>
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First we derive Proposition 2.1 from Lemma 2.2. Suppose that we are given a
sequence {ny} of real numbers satisfying (1.5) and (2.3). Take 0 < 6 < 1 arbitrarily
and take Ny given in the lemma and denote it by By. Take a function f with (2.1), a
permutation @ on N, and A > 0 arbitrarily. Assume that B > By and || f|l» > B~/*/4
are satisfied. Since we have

A+B
> fnawr) = > f(njx)
k=A+1 je€w({A+1,...,A+B})

and aset {n; | j € w({A+1,...,A+ B})} satisfies (2.7) with given ¢. Hence we have
(2.8) for Z?:fH Jf(no(y), which is identical with (2.5). The proof of (2.6) can be
done in the same way from (2.9).

Now we prove Lemma 2.2. Denote the d-th subsum of the Fourier series of f by
fa- We prepare two lemmas.

Lemma 2.3. We have
- 2 4g N
L(;(f - fd)(nkrc)) p(dz) < qquE, (N € N).

Proof. We prove by assuming that f is a trigonometric polynomial. The general
case follows automatically by Fatou’s lemma. By relation (2.2), we see

N

/R (Z(f - fd)(nk$)) ()

k=1

< D 22

k:k<I<Ni,j>ds==%1

< D> DY el (fing + gl < 1/7).

kl:k<I<Nij>de==1

Cicj / cos(2m(ing + sjng) + (v + ;) p(dx)

We have |n;| > |ng| > 1, and hence at least one of |ing+jn;| < 1/7 and |ing—jny| < 1/7
is false. Since we have |i|ng| — j|m|| < |ing + <jing|, the condition |ing + ¢jny| < 1/
implies |i — j|ny/ng|| < 1/m|ng| < 1/7. Hence by denoting [ ]* = [# + 1/2], we have

Z |cicjl Z 1(Jing + cjm| < 1/m) < Z |Clilne frnl]* 5
1,7>d ¢==1 j>d
By |¢j| <1/j and [jln/ng|]* = jln/ne| —1/2 > j|nl/nk|/2 > jq'* /2, we have
1
Z |Cjin/mal) €5 < 247 =0 Z = 2q_(l_k)_
d
j>d j>d

By taking summation for £ < < N, we have the conclusion. O
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Take 0 < 6 < 1 arbitrarily and put 1 — 8 = 1/4/1 + 4. Clearly we have 0 < 8 < 1.

There exists an x5 > 0 such that

V146
e < 1o+ Y002 (o] < ).

Take H € N large enough to satisfy
(2.10) ¢ >3HS/8, 3/HY? <us; HOq ' >1,
and put

H(m+1)

Un(z)= > fuo(ngx).
k=Hm-+1

Lemma 2.4. Ifa € R satisfies 2|a|H3/? < 1, then for all P € N we have

2P

/Rexp (a Z Um(x)> pu(dz) < exp((l + 5)%%a2||f||22HP).

m=1

Proof. We assume |a|H?/? < 1 and prove

" 144 C3
(2.11) / exp(a Z Ugm_w(aj)> p(dr) < exp(TéCﬁHfHQHP)
R m=1
for w = 0, 1. By assumption we have |aU,,| < 3H|a| < 3/H'/? < x5 and hence
V149
exp(aUy,) < 1+ aU,, + i a’UZ,.

2
By defining

H(m+1)—1 H(m+1)

Win(z) = Z Z Z Z cres cos(2m (nyr + <nys)T 4 Y + <)

I=Hm+1 j=l+1 ¢==1 1<r,s<HS:
[nir+sn;s|<Blnmml

o &
Vi = Hllfell3 = 55",
r=1

we decompose U2, in the following way:

H(m+1)

Un(z)= > [ie(mz) = Vy
I=Hm-+1
H(m+1)—1 H(m+1)

+20 > Y fue(mx) fye(nx) — Wi(z)

I=Hm+1 j=I+1
+ Wi (x) + V.
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We here prove that absolute values of frequencies in trigonometric polynomial expansion

of
V149§
wh =Yt
belong to [ B|nwm|, 28| H(m+2)]/3]-
The frequencies of U, are written as n;r where Hm +1 <[ < H(m + 1) and
1 <r < HY and hence we have

a*>(U2, — W — Vi) + aU,,

BInsm| < Inpm| < ] < He gy < Hoq T npgmao | < BInmumz)1/3-

6
The frequencies of fZs(nz) — 3 Z]HZI ¢3 are written as n;(r +¢s) where Hm +1 <

I<H(m+1),r+¢s#0,1<r, s<HS and ¢ = &1, and hence we have

BIngm| < [nam| < Ini(r + )| < 2H|ngminy| < 28/nmomi2)|/3.

By definition we have

H(m+1)—1 H(m+1)

2 Z Z frs () fre(njx) — Wy ()
I=Hm+1 j=I+1
H(m+1)—1 H(m+1)

— Z Z Z Z CrCy cos(27r(nl7’ +cn;s)r + 7y + C%)~

I=Hm+1 j=I+1 s==1 1<r,s<HS:
|nir+sn;s|>Bnmm|

Hence the frequencies n;r + ¢n;s appearing here obey the following estimate.
BIngm| < [mr + snys| < 2H |npmy1)| < 28|nm@mr2))/3-

Take 0 < m; < mg < --- < my arbitrarily. Expand Wﬁm_w into trigonometric
polynomial and denote a term by cos 27 (c;x + I';). By [nm@m—w)/MHEM—1)—w)| =
" >9/8% > 9, we have

oy a1 £t aq| > |ay] — lag—1| — - — |aa]

> BInm@m,—wyl — 2B/3)(Ina@m. ) —wi2)| T IMHE@m s —wi2)| + )

> B @m,—w)| = (28/3)nm@m,—w) |1+ (1/9) + (1/9)* + -+ ) = Blnm@m, —w) /4
> Blnul/4>q" Hni|B/4 > 3¢ H® /4> 3/4 > 1 /7.

Thanks to the relation (2.2), we have

/R H cos 27 (ax + T') u(dz) =0

=1

and thereby we obtain the multiple orthogonality

/ Wap () ... Wiy, (z) p(dz) = 0.
R
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Let us consider W,,. In the definition of W,,, for given [, j, r, s, the inequality
|nyr +sn;s| < Blnmm| can be valid at most one of the cases among ¢ = +1 and ¢ = —1,
since |n;s| > |nj| > |npm|. Since [nyr + snjs| < B|npmy,| implies |1 — s|n;/n;|| < B, for
each s, there exists at most only one such r, and we have

1 2 1 SWIHS 1y

2
<Zley|——— < = -
lescr| < 7r|c$|s|nj/nl| -5~ 7r|cs|s|nj/nl|(1 -p) ~ T lcS'sq

Here we used 8 < fs|n;/n;|. Hence by noting

Z|cs|—<f(2 D) =i

s=1 s=1
we have
2vV/1+06 .
R I o TS

¢==£1 1<r,s<HS:
|nyr+sn;s|<B|lnmml

By taking summation for [ and j, we have

(2.13) (Wil <V1I+6—=——Ifl2H.
\/_( 1)

On the other hand, by

(2.14) Vi < H||fI3 < VI+0|fll2H/2,

we have

V1446
2

a?U2 =1+ a? (W + Vi) + WE

V1
exp(aUy,) < 1+ aU,, + 2+ i

1+6Ct
<1+ | fllH + W

By integrating this, we have

/exp( ZUgm wl ) (da) /H ﬂﬁazﬂfﬂgH—i—W@m o) 1ldz)

= (1+ 13501 271a#)” < exo(SE a2 prrp).

Let us now take a € R satisfying 2|a|H3/? < 1. By applying Schwarz inequality and
(2.11), we have

1

[enle = (oo )

w=0

C?
< exp((1+0)Sa? | f]1:2HP),
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which completes the proof. O

Now we prove the first half of Lemma 2.2. Note that we are assuming || f|l2 >
N-14/4,
Take sufficiently large Ny such that for all N > Ny,

01_18N_1/16(log10g]\7)1/2 <1
holds and H = [Nl/ﬁ] satisfies (2.10). Put
Q= 01||f||1/4 R(2N loglogN)l/2 > C,RN7/16,

We have

(-

Zf (ngx)
( Z fH6 nkx

Thanks to the Chebyshev’s inequality and by H > (N/2)'/¢, the second term is bounded
by

(1+20)Q)

N
D = fue) (na)

k=1

1+5)Q> +u(a:

2 s0).

1 al 2 49 N 8¢
(5Q)2 /R<Z(f_fH6)(nk$)> :U/(dx) < q— 152Q2H6 < (q_ 1)5QC%N7/8R2

k=1
. \/§(q—1)+\/§§ 1 < Cs
- \/5((]—1)—1-4 02 N7/8R2 — NT/8R2’

Put
a=CyH(If)15%*2N " oglog N)/? < C; Y (16N 5% log log N)'/2.

We can verify the condition in Lemma 2.4 by 2|a|H?/? < C7 '8N ~Y/16(loglog N)1/2? < 1.
By using the Chebyshev’s inequality, we have the following bound for the first term.

_(1+6)Qa/ exp( > < e~ (1+9)Qa Z / exp(gaZst nET ) (dz).
R

¢==1
By taking P such that 2HP < N < 2H(P + 1), we have

a ZfHe(nkx) — Z U ()
k=1 m=1

< 2Hal|froloe < 6Ha < 24CT*N~7/*8(loglog N)'/2

< 24N~/ (loglog N)*/? < log(Cy/2)
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by C7 > 1 and the definition of C5. It implies

N c 2P
/ exp (gaZfHe(nkx)> p(dr) < 72/ exp (ga Z Um(a:)> w(dx)
R k=1 R m=1
2 2
< %exp((l +5)%a2||f||22HP> < %exp((l +5)%a2||f||2N).

By noting

C? -
~(L+0)Qa+ (L+8)5a 2N = —(1+ 9|/l /*(2R ~ 1) loglog N

< —(1+)lflls/*Rloglog N,

we see that the first term is bounded by Co exp(—(l + 5)||f||2_1/2Rlog log N). Combin-
ing these estimates, we complete the proof of the first half of Lemma 2.2.

Let us proceed to the proof of the last half of Lemma 2.2. Let f be a trigonometric
polynomial with degree d. For arbitrary 0 <d <1put Sby 1—f =1 / \/m Take
K satisfying

¢ >6d/3, ¢~ >1/B.

Take H sufficiently large to satisfy

(2.15) g" >3, K(1+6/8) <H/6, 3/HY*< x5
Put
H(m+1) Hm+K
Un(z) = Z fngx) and Up(x) = Z f(ngx).
k=Hm-+K+1 k=Hm+1

By assuming 2|a|H3/? < 1, we prove

(2.16) /Rexp (a PZ_:l(Um(x) + Um+1(:c))) pu(dr) < exp((l + 5)%12a2||f||2HP).

m=0

Let us assume |¢|H%? < 1 and |a|H3/? < 1+6/5. By (2.15) we have |aU,,| <
3H|d| < 3/HY? < 25/3 and |aU,,| < 3K |a| < 3K (1+6/8)/H/? < 3(6/6)/H"? < x;5/3.
Hence

. , V1+46/3 ,. . . V14+6/3 5
exp(aUp,) < 1+ aU,, + +/d2Ufn and exp(aU,,) <1+ aU,, + +/d2U§1.
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By defining

H(m+1)—1 H(m+1)

Win () = Z Z Z Z Cres cos(2m(mr 4 snjs)x + Yy +$7s),
I=Hm+K+1 j=I+1 ¢==%1 1§r,§§d:
[nir4sn;s|<B|InHmt+ K41

Hm+K—-1 Hm+K

Wm(l“) = Z Z Z Z CrCy cos(27r(nlr +snjs)r + v + g%),

l=Hm+1 j=I+1 ¢==+1 1<r,5<d:
[nyr+sn;s|<BlnEm1]

d
A I N A
r=1

we decompose U% and U% in the following ways:

H(m+1) H(m+1)—1 H(m+1)

o= X Pan-ta)r (2 XX s ) - W)

I=Hm+K+1 I=Hm+K+1 j=I+1
+ Wi (z) + Vi

) = ( S ) - )+ (2 SIS ) g — W) )

I=Hm-+1 I=Hm+1 j=Ii+1
+ Wi (x) + Vi

We can prove in the same way as before that absolute values of frequencies of trigono-
metric polynomial expansion of

o STE By ,
o - VIFOB g gy LG

m 2 m
belong to [ B|num+k+1l, 2dnr(m+1)]], and those of

Y By \
e = YVIFOB g

m 9 m

belong to [ Blngm1l, 2d|nsm k|-

We prove the multiple orthogonality of Wrﬁl, cee Wrﬁt for0<m; <mg <--- <
my, and that oan%l, e W,%t for 1 <mqg <mg < -+ < my.
Expand W,%Z into trigonometric polynomial and denote a term by cos 27 (d&;x +I‘1)

By |nHm—|—K—|—l/nHm| 2 CIKH > Gd/B and |nH(m—|—l)/nHm| 2 qH 2 37 we have

|G Gy £ - £ dy| > B|nHmt+K+]_| — 2d(|np (my 40|+ P, + )
> B|nHmt—|—K+1| —2d(|ngm, | + M@, —1)| + )
> BN, + k1] — 2d|ngm, |(1+1/3+1/32+--+)
> BInpmrk111/2 > Blnk11/2 > ¢%B8/2 > 1/2 > 1/x.
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Hence we can prove multiple orthogonality in the same way as before.

Expand Wn% into trigonometric polynomial and denote a term by cos 27 (&« —I—F,)
Because 7K < K(6/6 4+ 1) < H, we have H — K +1 > K and [ngmi1/MHm-1)+K]| =
g K+l > ¢K > 6d/3. By N H (et 1)+ K /M Hmy K| > g > 3, we have

o £y + -+ | > Blngmea| — 2d(nmm, x| + [nmm,_pr x|+ )
> Blnmm, 1| = 2d(10 s (m, 1)1 5| + [RE(my -2y 1K)+ )
> Blnsrm,r1l = 2dnn, 1)1k |(1+1/3+1/3% +---)
> BIngm+1l/2 > Blnul/2 > ¢ B/2 > ¢5B/2 > 1/2.

Hence we can complete the proof of multiple orthogonality.
In the same way as before, we can verify

, 2 ’ 1
(Win| < V1+08/3—=——|fll2H, Vi < V1+6/3[|fl2H

V3(g—1) 2’
Wl < V1 +5/3#||f||2K, Vin < V1 +5/3||f||2K1.
V3(g—1) 2

Hence in the same way as before, we have

P-1

, / 1+5/30]2.,2
expl a Umaj>udaj <exp| ———=4a°||f|2HP),
[ (432 Onte)) o) < exp (3R G s

(2.17)

P—1
. . 1+6/3C%,
/Rexp (a E Um+1(x)> p(dr) < exp(T/TlaQHngKP).
m=0

Put ¢ =144/6 and & = 1+6/6. By noting é—l—é = 1 and applying Hélder’s inequality,
we have
P—1

/Rexp(aﬂ;(Um(az) + Umﬂ(x))) u(dz)
) (/R o (da :é Um(x)> u(dx)> h (/R P (da :é) Umﬂ(x)) u(dx)> h

By putting ¢ = da and a = &a, we can verify by 2|a|H?/? < 1 that |¢|H%/? < d/2 <1
and |a|H3/? < &/2 <1+ 6/5, and hence we can apply (2.17) and have

P-1

[ exp(0 X Unlo) + Urnss() ) ntae) < exp (FETE L (st + aop).

m=0
Because of ¢H + &K < &H +dH/6 = (14 §/3)H and (1 +§/3)%? < 1+ §, we have

P—-1

/Rexp (a Z (Um(x) + Um(x))> p(dr) < exp((l + 5)%%az||f||2HP).

m=0
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Let Ny be sufficiently large such that C;'SN~1/8(loglog N)/2 < 1 holds and
H = [N'/6] satisfies (2.15) for all N > N;. Note that we are assuming || f||2 > N~'/4/4.
Put

a=CrW2|| £, (2N loglog N)'/?

and take P such that HP < N < H(P +1). By noting HP < HP+ K < H(P + 1)
and 7K < H, we have

—1

N P
Z f(ngz) — Z (Um($) + Um+1(x)) <3a(K + H) <6aH
k=1 m=0

< 24C7 N5/ (loglog N)Y/? < 24N ~5/?%(loglog N)'/? < log(Cy/2).

a

Since we have 2aH%/? < C;'8N~1/8(loglog N)*/? < 1, the condition for (2.16) is

verified. Hence we have

/Rexp (:I:aif(nm:)) u(dr) < % exp((l + 5)%12a2||f||2N).
k=1

By putting
Q- %||f||$/2(2Nloglog N2,
we have
N N
([ s = 14900 <exp-140)0Q) 3 [ exp(sa D f(ma)) utao
k=1 c=+1"R k=1

02
<Oy exp(—(l +8)aQ + (1+ 5)T1a2||f||2N) — Oy exp(—(l +6)loglog N>.

§3. Exchange of sup and limsup

By following and modifying the method presented in [7, 9], Erdés-Gal [6], Gal-Gal
[10], and Philipp [11], we prove the fundamental result for the exchange of order of sup
and limsup appearing in the investigation of the asymptotics of discrepancies.

Although it is proved originally for lacunary series on the probability space [0, 1]
equipped with the Borel field and the Lebesgue measure, we formulate it as a result on
an abstract probability space. It makes it possible to apply the result for lacunary series
on the probability space (R, B, ), which is convenient when we consider non-integer

sequences.
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Proposition 3.1.  Suppose that a sequence {&;} of random variables satisfies the
condition below: There exists By > 0 and C; (i =1, 2, 3) such that

A+B
o

> f&)
k=A+1

holds for any function f satisfying (2.1), for any R > 1, for any integer A > 0, and for

any B > By with

> Curl 1Y (2B loglog B)17

< Cqy exp(—2||f||2_1/2Rlog log B) + C3R2B3/4

(3.2) 1 fllo > B~/4/4.

Then for a countable dense set S C [0,1), we have

N
— ND N 1 -
lim M&) sup lim (a’,a) (§x)
N—oo /2N log logN S3a’<acs N—oo /2N loglog N P ’

JR— 1 _
- I 1a’a y .S.,
L o DEIC R
(3.3) —
N
—  NDj 1 B
lim N{gk} sup llm Z 1[0 a) (é-k)
N—oo /2N log logN acs N—oo /2N Toglog N L 70
1 N
= i s
02221 Ngnoo 2N loglog N o [0,a) (fk) , a.s

Suppose that f — fq satisfies (2.1) for all d € N, where fq is the d-th sub-sum of the
Fourier series of f. Then

S 1 1
34) 1 = lim lim .S.
(34) N oo \/2NloglogNLz::lf(£k dmro0 Noyoo V2N loglog N ’I;fd(gk) -5
For all f satisfying (2.1), we have
(3.5)
1 N N
lim = i lim a.s.
NS5 AN loglog N kzzl &) = w300 Ny SN 00 /2N log log N 21 ’
where Ny, = {2" +m2" " |n > u; 0 <m < 2%}
Let us fix L € N arbitrarily and take arbitrary I =0, ..., 2F — 1.
For h > L and ¢(L+1), ..., e(h) € {0,1}, we denote by p.(r+1),. (n)(x) the

indicator function of the interval

{L1+Z2J L1+22J )

j=L+1 j=L+1



80 K. FUKUYAMA AND Y. MITSUHATA

and denote by o.(z41),....«(n)(x) the indicator function of the interval

h h
{2—L1+ > 2,27+ 2_j5(j)+2_h>.

We define
Pe(L41), e () = Ge(prn),. e () =27 (p=p,0).

Clearly we see fol Pe(L+41),....e(n) (@) dx = 0 and (141, o(n) satisfies (2.1). Put

A+B
Fpie(rs1),e) (A B) W) = | D Be(ri),..en) (£k(w))’, (¢ =p,0).
k=At1

Forne N, h>L 1<n,m<2" ! eL+1),...,e)e€{0,1}, ¢ = p, o, denote
Y(N) = C1(2N loglog N)/2,
G opie(tr1)... () (M) = {Fpe(rr1),.e(ny (0,27) > 271/8p(2m)},
Hope(ni1y,eny (0 1,m) = {Fpe(riny,...eny (27 +m2!, 2171) > 27 1/820mn=2)/9,(on)1,
We introduce the notation Hg = [ B/2].

Lemma 3.2.  For almost every w, there exists anng € N satisfying the following:
1. For allmn > ng, h € [L,n/2], (e(L+1),...,e(h)) € {0,1}L and v € {p,0}, it
holds that w & Go.c(141),...c(n)(N);

2. For alln > ng, 1 € [n/2,n], h € [L,1/2], m € [0,2"7Y), (e(L+1),...,e(h)) €
{0,1}"=L and ¢ € {p, 0}, it holds that w ¢ Hoyoo(r41),....e(n) (0, 1,m).

Proof. The assertion follows from the estimates below and application of the first

Borel-Cantelli lemma.
H,

i > ( > > P(Goie(r+1),....e() (1))

n=8 p=p,0 “h=L+1 (¢(L+1),...,e(h))€{0,1}r—L
(3.6) (e ),--e(h))€{0,1}

n H, on—l

T Z Z Z Z P(Hy(r41),..., g(h)(n,l,m))> < 00.

I=H, h=L+1m=1 (¢(L+1),...,.e(h))€{0,1}r—L
By assuming h=L+1, ..., H,, we apply (3.1) with A =0, B=2", R =1 to have
P(Gpie(r11)....e(n) (1))
< P(Fper i), con(0,2") = Crlle(L + 1), ,e(h)]|/*(2 - 2" loglog 2")'/?)
< Coexp(=2[|e(L +1),...,e(h)[l5 "/ loglog 2") + Ca2~ 3"/
< (s exp(—2 L Qh/4 log log 2”) + Cy273n/4,
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Here the condition (3.2) is verified by ||@e(r 11y, e l|3 =27 —272" > 2701 > /B/2.
By noting —2 - 2"/* < —3/2 — 2"/4 /2, the first term is estimated by Con=3/2n=2""/2 <
an_3/22_2h/4/2. Therefore

Z Z Zn: Z P(ch;s(LJrl)w,&(h)(n))

n=8 ¢=p,0 h=L+1 (¢(L+1),...,e(h))€{0,1}»—L

(37) oo oo 00 H
S 202 Z n—3/2 Z 2h—L2_2h/4/2 + 203 Z Z 2h—L2—3n/4‘
n=8 h=L+1 n=8 h=L+1

While the first sum is clearly finite, the second sum is bounded by 2C3 Y 7 ¢ on/2—L+1
2731/4 < 0. Since we have
P(Hypie(L11),....c(n) (7, 1,m))
< P(Fap;e(L—l—l),...,s(h) (2n + 7,',1,2l7 2l—1) > 2—h/80127(n—l)/18(2 . 2l—l log log 2l—l)1/2)
<P ( Foe(ri1),...e(m) (2" +m2', 2171 )
- > C1l| @iy, eqmlly’ 27 D/18(2. 21 L log log 21-1)1/2 )7
we apply the estimate (3.1) by putting A = 2" 4+ m2!, B =2!-1 R = 27(»=10/18_ Here

we can verify the condition (3.2) by h < H; and ||Pe(z41),..cm |3 > 27071 > 271271 >
V'B/2. Therefore we have

P(H@;E(L—l—l),...,s(h) (na [ m))
< 02 eXp(—Q X 2h/427(n—l)/18 log lOg 2l—1) + C327<l_n)/92_3(l_1)/4.
By —2.2M/427(n=0/18 < _4/3 — oh/4/3 _ 2T(n=D/18 /3 and | — 1 > n/2 — 2 > 2, the
summation of the first terms is bounded by

n H,; gn—!

f: Z Z Z Z Z 02 (7’1,/2 o 2)—4/32_2h/4/32_27(n—l)/18/3

n=8 ¢=p,0 I=H, h=L+1m=1 (¢(L+1),....e(h))e{0,1}r—L

o n o
_ n—lo—oT(n=1)/18 _ T .._oh/4
<201 ) (n/2-2)"*3 " ontla? BN 2 RS <o,
n=8 I=H, h=L+1

The summation of the second term is estimated by

n H,; gn—l

i Z Z Z Z Z C427(=n)/99=3(1-1)/4

n=8 ¢=p,0 I=H,, h=L+1m=1 (e(L+1),...,e(h))€{0,1}h—L
n Hl

< 204 f: Z Z 2h—L2n—l27(l—n)/92—3(l—1)/4

n=8=H, h=L+1

o n
S 203 Z Z 2l/2—L—|—12n—l27(l—n)/92—3(l—1)/4

n=81=H,
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which is less than a constant multiple of

(3] n
Z 2n/2—3n/4 Z 2(l—n)/22n—l27(l—n)/92—3(l—n)/4
n==8 l=H,

00 n 00 (3]
< Z 2n/2—3n/4 Z 217(n—l)/36 < Z 2n/2—3n/4+17n/72 _ Z 2—n/72 < 0.

To show (3.3), we first prove

— 1
(3.8) lim  sup < C297E8 ) as.

N—oo o-1 \/2NloglogN 1
Assume n > ng and take N satisfying 2" < N < 2"T!. We express N by N =
2™ + bn_12n—1 4+ 4 b12 + bo, (bj = 0, 1) We set bn =1.
Defining A(A, B) by

(&x)

A+B

> Tp-rro-rria)(&)l,

k=A+1
we have the subadditivity A(A4,B) < A(A,B') + A(A+ B',B - B') (B’ < B). By
putting 72" = b, 12" + .- + ;2! (note that m,, = 0), we have

A(A, B) =

A(O,N) SA0,2")+ > AR 4,12+ 2 b2
l=H,+1

+ A" by 127 by, 280 by 2T b))

A(0,27) Z A2 + 2hmy, 2171 + 280,
l=H,+1

Expressing a € [0,27L) by a = Z;X;LH 277¢(4) (e(j) = 0, 1), we have

(3.9) 223 <a<Z2J + 2~

j=L+1 j=L+1
H,; H,
and hence Y pori1),.eh) S Lp-t12-L14a) < Do Pe(Lt1),ne(h) T O(Lt1),. e (Hy)-
h=L+1 h=L+1
By subtracting (3.9), we have
H,
Z ﬁs(L—i—l),...,s(h) (x) - 2_Hl
h=L+1 ,
<1 (z)+7 (z) + 271
[2-L1,2- L1+a) ps(L—i—l) Le(M)\T Oc(L+1),...,e(H)\L .

h=L+1
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By substituting = by & and summing for 2" + 2'm; < k < 2" + 2'm; + 2/71, we have

o,
AR"+2m, 27 < Y T Y Fe(man)aem (2" +2my, 2171 + 272,
p=p,0 h=L+1
where the last error term is produced by 2= H12!=1 < 21/2 Therefore we have

H,
A(0,N) < Z ( Z F, ;E(L+1),...,E(h)(072n)

p=p,c “h=L+1

n Hl
+ { D Foewan e (@ +2'm, 27 + 2l/2}) 2
l

=H, “h=L+1
H, n H;
<2 Z 2—h/8,¢(2n) +2 Z Z 2—h/82(l—n—2)/9,¢(2n) + 2n/2
h=L+1 l=H, h=L+1
< 2_L/8¢(N);(1 + ﬂ) +4VN
= 1—2-1/80 " 1271/ ’

which implies (3.8).
Now we are in a position to prove (3.3). By denoting

(N) 1 S

N ~

J/ - 1 ’ y

ana 2N loglog N — ') (&)

the first part of (3.3) is written as
lim  sup JN = sup lim JN) = sup  lim JN
N —o0 0<a’<a<l a,a Soa’<a< S N—o0 aha 0<a’'<a<l Nooo 4@

Because of the trivial inequalities

— (N — (N — N
sup lim J é, (3 < sup lim Jé, (3 < lim sup Jo(u 02,
Soa'<a<S N—o0 ’ 0<a’<a<l N —o00 ’ N—o00 0<a’'<a<l ’

it is enough to prove

lim  sup JN) < sup im J).
N—oop<ar<a<i S3a’ <a<§ N—o0

For each I” =0, ..., 27F — 1, we take s(I") € Sn[27L1",27L(I" 4+ 1)). For
arbitrary 0 < o/ < a < 1, we take integers I’ and I < 2~ such that 2711’ < d’ <
27L(I' + 1) and 2711 < a < 27L(I +1). We can easily verify

Yara) = —lp-rra) + -0 sy + 1sn,sn) — Lp-t1s() + 12-21.0),
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1 1 1
/0 1[a/’a) - —/(; 1[2_LI/,0/) +/0 1[2_L1/,S(1/))
1 1 1
+/ 1[s<1'>,s<1>>—/ 1[2—L1,s<1>>+/ li-r1,0)-
0 0 0

Thanks to I[a/’a) = 1o 0) — fol 1(4.q), we have

and hence

L) = —I[z—wxa') + I[z—wf,su')) + 1[s(11),5(1)) — I[z—w,sm) + I[z—bf,aw
and thereby

JN) < g ) s(I) +4 max sup J)

a’ a — S(I’) [ <ol W <L 2 LI// 2— LI//—I-(I”
(N) (N)
(3.10) < I/1<nIa,<x2L JS(I,) sy T 4 max sup J,i,, oLy

<2k al'<2—-L

Hence sup J, (N ) is bounded by (3.10), and by taking the limsup and by noting (3.8)
0<a’<a<l
we have

T (N) (N) 9—L/8
1\}E>n00 0<Su<1?z<1 Jar oo S I'I<11Ia%)(2L 1\}1—r>noo JS(I/) s(I) 402

< sup hm J( )—|—4C 29~ L/8,
S3s'<ses N—oo
By letting L — 0o, we complete the proof of this part. The second part can be proved
in the same way.
Secondly we prove (3.4). It is enough to prove the next lemma.

Lemma 3.3.  For any f satisfying (2.1) and any {&} satisfying (3.1), we have

Zf (&k)

_ 1
(3.11) lim

<C 1/4 N
N-o0 /2N loglog N alfll2™,  as.,

where Cy depends only on C.

Actually, by noting

N
Zf &k) Z fa—1f <D fal&)
- k=1

by taking the limsup with respect to IV, and by applying (3.11) for f; — f, we have

<

N
()| + D (fa— (&),

k=1

lim
— 00

1/4
] — Callf - fall

oo /2N log log N ’Z fa(&)

N
— 1
< 1
= N3 V2N loglog N Lz::l S (&)

\/2NloglogN‘Zf )

+ Cullf — falld*.
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We have (3.4) by letting d — oc.
We prove (3.11) by assuming || f||2 > 0, since everything is trivial when || f|l2 = 0

or f =0 a.e. Denote
A+B

> F&)

k=A+1

By putting

G(n) = {A(0,2") > || £l *w(2™)}
H(n,l,m) = {AQ2" +m2,2571) > 20-m/9) 7|3/ 4 (27)},
. = min{n > 8 : || fll2 > 27"/%/2},
we call prove

5 (pG+ 32 3 Pt <o

N="N l=H, m=1

Actually, by applying (3.1) for R=1, A =0, and B = 2", we have
P(G(n)) < Cy exp(—2||f||2_1/2 loglog 2™) + 32734 < Con™2 4 032737/4,

and we see that it is summable in n. Here (3.2) can be verified by n > n, and || f|2 >
2 /82 > 2 /4 /4,

By applying (3.1) for R = 2(=m)/92(n=0/2+1/2 — /597(n=D/18 and B = 211 we
have

P(H(n,1)) < P(A(2" +m2!, 27 1) > 20=m/99(n=0/241/2) g 1/4(2 . 91— Jog 1og 21~1)1/2)
<0y exp(—2||f||2_1/2 2T =D/18 /3 16 log 2l> 1 (527 /99=31/4.
Here (3.2) can be verified by n > n,, [ > n/2 — 1, and ||f|2 > 27/8/2 > 271/4/4. By
noting ||f||2_1/2 > /2, we have
exp(—2||f||2_1/2 2T =0/18. /9 10g log Ql) < exp(—4 L 2T=0/18 156 10g 2l)

_4.97(n=0)/18 < (n/2 B 1)_4_27(n—z)/18

<(-1) < (nj2—1)"3272"""

and hence we see that summation of these can be bounded by

n 27! 00
_oT(n—1)/18 l) 27(77, 1)/18
DD ID SRR SRR SET <o
n=ny l=H, m=1 n=n. l=—

n 2nl

Z Z Z 9—Tn/991/36 _ i Zn: gn—lg=Tn/99l/36 i o—10n/72 _

n=ny l=H, m=1 n=n. l=H,, N="4
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After applying the first Borel-Cantelli lemma, we discuss in the same way as before.
Let n > ng and take N satisfying 2" < N < 2", Expand N into N = 2" +b,,_12" ' +
<+ 012+ bg (b; =0, 1), and set m; by m;2t = b, 12"t + .- + 52!, We can prove

A(0,N) < A(0,2") + Z A" +m2h, 2 + VN
lI=H,+1

<IAY e (1+ 30 2070 4 VE < oI ) + V.

I=H,+1
Lastly we prove (3.5). For fixed u, and for n satisfying n/2 > u, by using the same

notation as the last proof and putting N, n, m; in the same way, we have

A0, N) < A0,2" + myp_y 2"~ “)+A(2”+mn W2V N — (27 4 27

—Uu

< A0,2" 4+ my 2" + A" +mi2h 27 + VN
l=H,+1
n—u
S A0,2" +m 2" + [l e > 20+ VN
I=H,+1

n n—u 2_u/ 4
< A0,2" +mnu2" ) + o 1 (V) + V.

Therefore we have
— A0, N _ A0, N 2-u/9
Tim ON) o ON) Lo I3,
N-oo /2N loglog N ~ N.3N—oo /2N loglog N 2-1/9

and by letting u — oo, we have the ‘<’ part of (3.5). Since the ‘>’ part is trivial, the

proof is over.

§4. Proof of the Main Theorem

Put & (x) = ngyxr. We prove by assuming |ni| > 1. The general case follows
trivially, because there are at most finitely many k such that |ng| < 1. By applying
Proposition 2.1 for § = 1, we can verify the condition (3.1). Hence we can apply

Proposition 3.1 and have the conclusion of Theorem 1.1.

§5. Hadamard gap sequences

Here we prove Corollary 1.2. By applying Koksma’s inequality

—N/Olf(aj)daj

(5.1) < Var(f)NDy
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to f(x) = cos2mx, by noting Var(f) = 4, we have

N
- 1 — NDnngm))T
— = lim Zcos%'nw(k)x <4 lim N (o) a.e.
V2 N—oo/2Nloglog N — N—oo /2N loglog N

Here the left side equality is due to the law of the iterated logarithm for a permutation
of lacunary trigonometric series by Aistleitner-Berkes-Tichy [4].

We prove
— 1 ~ C
(5.2) lim )< (1+6)—= a.e.
N.,oN—oo /2N loglog N Pt
for any 0 < 6 < 1. By this together with (1.8) 9 < 1/2, we have
N

— 1 ~ 172 _ Cl

1 1iovd(Ne <(1+94 1 1446 €.
NS e rrarmy 2 la,b):d (N ()| < (1+ )\/—|| abyall2’” = (L+0)==, ae

Since 0 < 0 < 1 is arbitrary, we have

1 N
(5.3) lim
N—o0 2N10glogNk f

Lia,b);d(Neo (i) T)

<

Cq
—. ae.
2

Therefore, by applying (1.7) and (1.6) in turn, we have the upper bound estimate part
of Corollary 1.2.
The proof of (5.2) can be done in the following way. By Proposition 2.1 and the
inequality (2.6), we have
N ~
M( Z l[a,b);d(nw(k)x)
k=1
< Cyexp(—(1 4 §)loglog N).

Ch o~
> (148) Tyl og log N>1/2>

Hence we have the following summability estimate, which proves (5.2) by Borel-Cantelli

Lemma.
y C
13 1/2
5= ([ Trsratnewe)| 2 (149 I Tunald 2N 0glog )
NeN,, k=1
oo 2%—1
< Oy Z Z exp(—(1 + d) loglog(2™ +m2" ™)) < 2% Z exp(—(1 + ) loglog2™)
n=u m=0 n=u
< 00.

Finally, we mention the following lemma, which may be convenient in some situa-
tion. It can be derived from Proposition 2.1 and Lemma 3.3.
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Lemma 5.1.  For any {n} satisfying (1.5), for any f satisfying (2.1), and for
any permutation w of N, we have

N
— 1 e
< . .
N TosTos ]glf(”w(k)x) <CIfFI",  ae.,

where C' depends only on q.
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