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Metric discrepancy results for geometric progressions
and variations

By

Katusi FUKUYAMA*

Abstract

In the first section, we make a brief survey of studies on metric discrepancy results for
geometric progressions and variations. After announcing a few new results, we show the law
of the iterated logarithm for discrepancies of geometric progressions including the case when
the common ratio is negative.

§1. Introduction

We say that a sequence {zy} is uniformly distributed modulo 1 if

1
1 —# < —h —
(1.1) A}I_I)Iéo {k < N|{(xx) €la,b)} =b—a
holds for every [a,b) C [0,1). Here (x) denotes the fractional part  — [z ] of z. This

definition is to be equivalent to the condition that
1
1 —# < —
(1.2) ]\}1_{%0 N {k <N |(zx)€[0,a)} =a

holds for all 0 < a < 1. We can also see that the convergence (1.2) is uniform in a, and
the convergence (1.1) is uniform in [a,b).

We introduce the notion of discrepancy which measures the speed of the uniform
convergence by means of supremum norm. We define the discrepancy Dy and the star
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discrepancy D3 of a sequence {zx} by

Da{oil = sup %#{kSNka)E[a,b)}—(b—a)

0<a<b<1
L
= sup |[= > lgp(ze)|;
0<a<b<1| N kZ:l [2-b)

Dz} = sup %#{k <N | el[0,a)}—a

0<a<1
| X
= sup |= D 1 (Tk)|;
0<a<l N,; 0w (k)

where i[a’b)(@ =14 ((x)) — (b—a), and 1}, ) denotes the indicator function of [a,b).

The most well known and investigated sequences which are uniformly distributed
are arithmetic progressions {ka} with irrational common difference o ¢ Q. Kronecker
[39] proved that the fractional parts are dense in unit interval, and Weyl [51], Sierpiriski
[48], and Bohl [20] proved independently that they are uniformly distributed modulo 1.

Weyl also succeeded in giving metric results. He proved for every strictly increasing
sequence {ng} of integers, {niz} is uniformly distributed modulo 1 for almost every x
with respect to the Lebesgue measure. But we cannot say that it holds for every .
Actually, {k!z} is uniformly distributed modulo 1 for almost every z, but the fractional
parts of {kle} converge to 0 and cannot be distributed uniformly. In this case the set
of x for which the sequence is not uniformly distributed is very large and has Hausdorff
dimension 1.

Since {kx} is uniformly distributed a.e., we have D3 {kxz} — 0 a.e. As to the speed
of convergence, we have two major results. One is proved by Khintchine [38] that

NDy {kz} = O ((log N)g(loglog N)), ae. z

if and only if an increasing function g satisfies Y 1/g(n) < co. Kesten [37] showed the
following result and proved that the speed of convergence is determined in the sense of

>6}:0.

For a sequence {n} satisfying Hadamard’s gap condition

convergence in measure: For any € > 0, it holds that

NDi{kz} 2
log Nloglog N =2

lim Leb{x €[0,1] ’

N—o00

(1.3) ner1/ng >qg>1 (k=1,2,...),
Erdés-Gal conjectured that

NDy{ngz} = O((Nloglog N)/?), a.e.
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By applying methods due to Erdés-Gal [23], Gal-Gal [36], and Takahashi [47],
Philipp [43] proved the next theorem and solved the conjecture.

Theorem 1.1.  If a sequence {n} of integers satisfies Hadamard’s gap condition
(1.3), then

— ND
lim MAUIED <(C<oo, ae.

1
— <

4y/2 ~ N—oo /2N loglog N —
Here C = (166 + 664/(¢*/? — 1)) /V2.

(1.4)

It is proved by the argument of exponential integrability, i.e., by a method of real
analysis.

Philipp [44] proved it again by the method of martingale approximations, and
removed the assumption that nj are integers. This method became the main stream of
the investigation. But, as Aistleitner-Berkes-Tichy [11] pointed out, it is not appropriate
for the study of the permutation of {ny}, and there still remains a merit of the method
of exponential integrability.

Philipp [41] also proved that

—  NDy{2Fz}
lim
N—oo /2N loglog N

equals to a constant a.e., but did not evaluate the explicit value of this constant.

Dhompongsa [22] assumed a very strong gap condition
log(ng+1/nk)/loglogk — o0 as k — oo

and approximated the empirical process by the Kiefer process. As a corollary of this we

can derive
—  NDy{ngz} m NDn{ngz} 1 e

lim = lm ~ 5
N—oo /2N loglogN  N—oo /2N loglog N 2
1

This value 3 is the same as that appears in Chung-Smirnov theorem [21, 49], and

it shows that the sequence is extremely nearly independent. The gap condition was

weakened to
Ngt1/nk — 00 as  k — oo,

and the same law of the iterated logarithm was proved in [26].

It is very natural to ask if Hadamard’s gap condition is really necessary to have the
bounded law of the iterated logarithm (1.4), since the gap condition can be replaced by
weaker one to have the central limit theorem for lacunary trigonometric series.

It was prove by Berkes-Philipp [16] that it is impossible to replace the gap condition
by weaker ones.
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Theorem 1.2 ([16]).  For any 0 < gi, | 0, there exists a sequence {ny} satisfying
Ng11/nk > 1+ e such that

—  ND; — ND
lim niner = lim Aner = 00
N—oo /2N loglog N  N—oo /2N loglog N

The next is a recent result which gives explicit values appearing in the law of the

a.e.

iterated logarithm for discrepancies of geometric progressions {#*z}.

Theorem 1.3 ([25, 27]).  For any 0 > 1, there exists a real number X9 such that

—  ND% {0 —  NDy{6*
(1.5) lim {072} = lim AU = Xy,
N—oo /2N loglog N N—oo /2N loglog N

a.e.

We have
Sp=1/2

if and only if 0 satisfies
(1.6) "¢ Q (reN).
In other cases, 6 can be written uniquely by
(1.7) 0=1</p/lg, r=min{neN|0"cQl, pgeN, gcd(p,q)=1.
In this case Xg does not depend on r and satisfies
1/2 < %p < V/(pa+1)/(pa — 1)/2.

Moreover, we can evaluate it in the following cases:

( Vv (pg+1)/(pg —1)/2, if p and q are both odd;
Vip+1)/(p—1)/2, especially if p is odd and ¢ = 1;
Yo=9V+plp—2)/(p—1)3/2, ifp>4iseven andq=1;
v42/9, ifp=2andq=1;
\\/ﬁ/& if p=>5and g =2.

If we regard ¥y as a function of 8 > 1, it is discontinuous at every € which is a
power root of a rational number, and is continuous elsewhere. We can also say that the
maximum value of Yy is V42 /9 which is taken at the points § = v/2. In other words,
the geometric progression with ratio 2 is furthest from the uniform distribution.

We can evaluate in a way that X3 = \/5/2 =0.707..., X9 = \/5/4 = 0.559...,
Yo7 = /14/13/2 = 0.518. .., and see that the subsequences {9%z}, {27%z}, ... of {3¥x}
seem to approach to the uniform distribution. Actually we can prove the following result
showing that any subsequence of the geometric progression is closer to the uniform
distribution.
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Theorem 1.4 ([30]).  Let N be the collection of all strictly increasing sequences
of positive integers. For any 6 > 1 and {m(k)} € N, there exists a real number
Yo, {m(k)} = 1/2 such that

— ND%{om*) — NDpy{om*)
lim IR AT lim AUl 20, {m(k)}>
N—oo /2N loglog N N—oo /2N loglog N ’

a.e.

We have
{ Zogmmyy | {m(k)} e N} =[1/2,%].

As to the question if every positive number can be a constant appearing in the law
of the iterated logarithm for discrepancies of some sequence {ny}, we have the following
two results.

Theorem 1.5 ([35]).  For any ¥ > 1/2, there exists a sequence {ny} of positive
integers satisfying Hadamard’s gap condition and
— NDx — ND
lim Az} = lim ez} =3, a.e.

N—oo /2N loglogN N> /2Nloglog N

Theorem 1.6 ([27]). For any 0 < ¥ < 1/2, there exists a sequence {ny} of
positive integers such that 1 < njyq —ng < [(1+4%2)%/(1 — 4%2)?] and

—  NDx} — ND
lim nAner = lim n{nir} =
N—oo /2N loglog N  N—oo /2N loglog N

Above results are proved by means of technique of randomization. As to the ran-
domly generated sequences, we have some results by Weber [50]. One of these gives
a metric discrepancy result for sequences defined by sum of random variables. For
sequences defined by product of random integers, we can show the following:

Theorem 1.7 ([34]).  Let A and B be subsets of {1,2,...} satisfying the condi-
tion below: there exist ¢ > 1 and q > 1 such that

(1.8) b/a >q and ged(a,b)=1 forall a€ A and b€ B.

Let {( Xk, Yr)} be an A x B-valued i.i.d. For a sequence {ny} of integers given by

k
(1.9) ny = H ﬁ
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there exists a constant Yo x, v,y depending only on the law L£(X1,Y1) of the random
variable (X1,Y1) such that

__ ND: __ ND
(1.10) P( Tim IR S N I Sexivi), e x| =1,
N—oo /2N loglog N N—oo /2N loglog N

When A and B both consist of odd numbers, we have

1 [Texy vy +1 1 -1
(1]‘]‘) Eﬁ(Xl,Yl) - 5\/# where Tﬁ(Xl,Yl) = E( > .

Trxyv) — 1 X1
We can investigate the following variation of geometric progressions.

Example 1.8. Let {n;} be the arrangement in increasing order of the union of
{15%} and {15% - 3}. Then

(1.12) T v Dndmery o NDwdmer) 30

NS ZNIoglog N Noso 2Nloglog N V7

For an arrangement in increasing order of the union of {15%} and {15% -5}, we have the

same result.

We can explain the reason why these two sequences obey the same limiting behavior
by the fact that these two sequences are transformed to the other if we replace x by 3x
or 5z and omit the first few terms. We have the same situation for {#*z} U {6* Az} and
{6%x} U {0*Bx} if we take positive A and B with § = AB.

This example can be regarded as a special case of the result below.

Theorem 1.9 ([34]).  For 6, ..., 0, > 1, we define a sequence {ny} by
no=1, ngy1=0;11n ifk=jmod 7T and j=0,...,7—1

Then there exists a constant Yo, ... ¢, periodic Such that

*y

—  NDj — ND
(113) lim N{nkx} = lim N{nkx} - 201 ...,0;periodic) a.e.
N—oo /2N loglog N  N—oo /2N loglog N e

We have permutation invariance among generators when T =2, 3, i.e.,
(114) E191,192;periodic - E192,91;periodi67
and

(1.15) 201,02,03;periodic = 240,03,01;periodic = 263,0;,02;periodic

- E91,193,192;periodic - E93,92,01;peri0dic - E192,191,93;periodic-
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Let A and B be sets of positive integers satisfying (1.8). If A and B both consist of odd
numbers, and if p; € B and q; € A (j=1,...,7), then

Dy

p1/41,-.-,pr /q-;periodic

1 1 2
:5\/m(1+31...87+; Z (Sj...Sk_l+31...Sj_18k...87-)>,

1<j<k<T

where s; = p;q;.

The other interesting example is a union of geometric progressions. Although it
does not satisfy Hadamard’s gap condition anymore, we still have a metric discrepancy
result below:

Theorem 1.10 ([34]).  Suppose that 0y, ..., 0, > 1 are given and that geometric
progressions {05}, ..., {0F} are mutually disjoint from each other, i.e.,

(1.16) log0;/logl; ¢ Q, (i # j).

Let {ny} be the arrangement in increasing order of {0F}U---U {0k}, Then there exists
a real number Xg, . o .union such that

— ND* — ND
lim N{nkx} = lim N{nkx} - 291 ...,0,;union» a.e.
N—oo /2N loglog N N—oo /2N loglog N T

If each 0; satisfies (1.6) or given by (1.7) with odd p and q, then

S =\ (e + i) / (g )
01,...,0,-;union = log 6; log 0 log 64 log 6. )

where X, , ..., Xg, are defined by (1.5).

We here introduce the Hardy-Littlewood-Pdlya sequences which are extensions of
geometric progressions and have been investigated well. When relatively prime positive
integers q1, ..., q, are given, a Hardy-Littlewood-Pdlya sequence is the arrangement in
increasing order of the semigroup

{CI;lqi—T |i17"'7i7'€{0,1,2,...}}.

Although these sequences do not satisfy Hadamard’s gap condition, Philipp [45] proved
the bounded law of the iterated logarithm (1.4) and solved Baker’s conjecture. In this
case upper bound constant C' depends on 7, the number of generators.

We here present a recently proved preciser result.
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Theorem 1.11 ([32]).  Let {ny} be the Hardy-Littlewood-Pdlya sequence gener-
ated by q1, ..., gr. There exists a real number Xy, .. 4 .urp such that

lim = lim =X : ,  a.e.
Nooo /2N Iloglog N Nooo 2Nloglog N @vmdriHLP
If q1, ..., q- are odd numbers, we have
; ()
qlv"'aq‘r;HLP - 2 Pl qz _ 1 .

In case when T > 2 and q1 is even, we have an estimate

1/ g+ 1) V2 1/ g+ 1) V2
— <X . < = .

1=
Aistleitner gave an almost optimal condition to have the Chung-Smirnov type result
for a sequence satisfying Hadamard’s gap condition.

Theorem 1.12 (Aistleitner [2]).  For positive integers N and d, and for non-
negative integer v, we denote

L(N,d,v) = #({(a,b,k,l) e [1,d2x[1, N2 | anp—bn; = v\ {(a,a, k. k) | a, k € N}).

If

N
L(N,d,v)=0(——5=) (N
sup L(N,d.v) O((logN)HE) (N = o)

holds for any d, we have

 — ND?V{Tka'} . 1— NDN{nkx} _l 0e

lim = lim = -,
N—oo /2N loglog N N—oo /2N loglog N 2

Under a gap condition which is weaker than the Hadamard’s, Aistleitner [6] also

gave a stronger Diophantus condition and succeeded in proving the same conclusion.
As to the question if there exists very slowly diverging sequence which obeys the
Chung-Smirnov type limiting behavior, we have the following result.

Theorem 1.13 ([29]).  For any sequence {G(k)} of real numbers satisfying 1 <

G(k) 1 oo, there exists a sequence {ny} of integers satisfying 1 < ngy1 —ni < G(k) and
—  NDx — ND 1
lim I lim N I —, a.e.

N—oo /2N loglogN N /2Nloglog N 2’

So far we have concerned with the results in which both limsups concerning the

discrepancies and the star discrepancies equal to some constant for almost every x, and
it was open if there exists a case in which they are not constant. As to this problem,
we have the following three answers.
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Theorem 1.14 ([28]).  Put

4z, 0<z<1/4;
Y (r) =<1, 1/4 <z <1/2;
Y21 —x), 1/2<z<1.

There exists a sequence {ny} of positive integers such that 1 < ngiq —ng <5 and

—  NDxj — ND
lim bl = lim miniz) =X(z), a.e.
N—oo /2N loglog N  N—oo /2N loglog N

Theorem 1.15 (Aistleitner [3]).  For the sequence defined by nop—1 = 2% and
noj = 28+ — 1, (k=1, 2, ...). we have

—  ND3 — ND
lim NG = X(x), im n{nr) = 3 ,  a.e.,
N—oo /2N loglog N N—ooo \/2Nloglog N 44/2
where
9/32, 0 <z <3/8;
Y2 (z) = ¢ (4z(l —2) —x)/2, 3/8<z<1/2
¥2(1 —x), 1/2<z< 1.

Theorem 1.16 (Aistleitner [7]).  For the sequence

( 2

2k" k=1 mod 4;
o(k=1)*+1 _ 1 k=2 mod 4;
ng = 9
ok +k k=3 mod 4;
\2("3_1)2“’“3_1”3l —2, k=0 mod 4,
we have ND
lim iz} = X(z), a.e.,
N—oo y/2N loglog N
where )
9/32, 0<x<3/8;
52 (z) = (dx(1 —x) —x)/2, 3/8<x<T7/16;
49/128 — z /4, 7/16 < x < 1/2;
| 22(1 - 2), 1/2<z<1.

The above two examples by Aistleitner can be regarded as modifications of sub-
sequences of Erdés-Fortet sequence {2¥ — 1}. As to the asymptotic behavior of this
sequence itself, we have the following result.
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Figure 1. Graph of ¥3(z).

Theorem 1.17 ([31]).  For any 6 > 1, we have

— ND{(0F -1 — ND{(0F -1
i af )} =Yy and lim i i = 35(x), a.e.
N—oo /2N loglog N N—oo /2N loglog N

Here 3 is a constant defined by (1.5) and 33 (x) is a continuous function on the torus.
FEspecially if 0 satisfies (1.6), then we have ¥j(x) = 1/2 = 4.
If 9 is given by (1.7) and satisfies one of the following conditions, then Xj(x) is
not a constant, and ¥j(x) < Xg holds except for finitely many x:
(i) both of p and q are odd;
(i) ¢ = 1;
(i) p="5 and q = 2.

We can see an irregular nature of the function ¥j(x) by the graph of ¥3(z) in
Figure 1.
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By recalling the definition of discrepancy, we have

—_— NDN{nka:} . m sup 1

N
lim = 1
N—oo /2N loglog N N—oog<a<be1 V2N loglog N 1

To determine the exact value, it is always difficult to calculate the limsup of sup with

).

respect to a < b. If we abbreviate taking sup for a < b, calculating limsup correspond
to the law of the iterated logarithm in probability theory, which have been investigated
very well. Since the calculation of

N
. 1 ~
li 1
Nooso V2N loglog N Lz::l .0 (14:2)

is rather classical, it is very natural to expect to have the change of order of these
limiting procedure in the following way:

N
_ 1 -
li 1
N 3o o<i1£<1 2N loglog N Lz::l o) (147)
) N
= Ti 1 :
0<il£<1 NS 2N loglog N Lz::l o) (742)

Almost all results so far we have explained was proved by showing this exchange in-
dividually in each cases. Actually, it is valid for every sequence of positive numbers
satisfying Hadamard’s gap condition. ([27]).

We can also prove the following version of this result, which removes the assumption
of positivity of nj; and includes permutations of sequences.

Proposition 1.18 ([33]).  Let {nx} be a sequence of real numbers satisfying
(1.17) ny # 0, ngr1/nel >q¢>1 (k=1,2,...),

and w be a permutation of N, i.e., a bijection N — N. Then for any dense countable
set S C [0,1), we have

— NDN{nw(k)l’} — al
lim sup lim 110 (N (k) )
N=oo /2N1oglog N ss3a<bes N—oo /2N log log N
N
= li [a w
0<ililg<1 Ngnoo 2N log lOgN —1 b) " (k)x
(1.18)
— ND{ng 1 ~
lim v (k)x} = sup lim Z 10,0) (nw(k)x)
N—oo /2N loglog N  4ecs5 N—oo /2N loglog N ’
N
= l_ a w
02101}21 N1—r>r<l>o 2N log logN L, ) " (k)x
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or almost every x € R. If we denote the d-th subsum of the Fourier series ofi ab) by
J [a,b)
1(4,6);d, we have

= lim lim
d—oo N—oo /2N log logN

a ,b):d nw(k)x)

_ N

1 N

lim i

NS V2N Toglog N ; la.b) (N (k)T)| =

for almost every x € R.

Usually, a result of this kind is that for a.e. = € [0,1]. In case when all nj are
integers, then the limsup clearly has period 1, and the result is known to be valid for
a.e. x € R. But when ny is not necessarily integers, this point is not trivial.

Let us go back to a classical result, the bounded law of the iterated logarithm (1.4)
by Philipp. As to this result, Aistleitner [2] recently proved the following result and
gave a preciser estimate in the case ¢ > 2.

Theorem 1.19.  If a sequence {ny} of integers satisfies Hadamard’s gap condi-
tion (1.3) with ¢ > 2, then
l_ 8 Sm NDN{Tka'} Sl-l- 67
2  ¢/* ~ Nooo2NloglogN ~— 2 ¢'/4
Berkes-Philipp-Tichy [18] stated that the bounded law of the iterated logarithm
(1.4) is invariant if we permute the sequence {nj}. Since Aistleitner proved (1.19) by

(1.19) a.e.

using martingale approximation technique, it is not clear if it is permutation invariant

or not. As to this point we can prove the following by applying the above proposition.

Corollary 1.20 ([33]).  If a sequence {ny} of real numbers satisfies (1.17), then
for any permutation w of N,

1 — NDY{nomwz} = +—— NDn{ngmz} 1 1 1/2
—— < lim < lim < (— —) . a.e
4\/§ N—oo /2N loglog N ~ N-5oo /2N loglog N V3(qg—1)

We here emphasize that we succeeded in taking very small upper bound constant.
This constant equals to 0.9095... when ¢ = 2, and is much smaller than Philipp’s
constant 1050.898 ... and Aistleitner’s constant 5.545.... Moreover we have

1 1 /21 1 1
LSS S S N S R
(4 V3(g—1) 2 V3q 7 (
If we consider a geometric progression nj = ¢* for odd ¢, Theorem 1.3 implies that
1 1

zq—§+z+o(;), (g = o0).

Therefore we gave an optimal estimate beside of multiple constant of 1/g.
By the above extension to allow negative nj, we can prove a result for geometric
progression {#*x} whose ratio 6 is less than —1.
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Theorem 1.21.  For 0 < —1, there exist constants ¥ and X} such that

— ND%{0F —  NDy{6*
(1.20) lim alasd =%, and lim {07} =Yy, a.e
N—oo /2N loglog N N—oo /2N loglog N

We prove (1.20) by assuming [f] > 1 in Section 2. The constants ¥y and 3} are

evaluated in the following way except for countable many 6.
Theorem 1.22.  Suppose that |0| > 1. When 6 satisfies (1.6), then
Yp=%p=1/2.
When 6 < —1 does not satisfy (1.6), we express 0 in the following way:
(1.21) 0=—</p/q where r=min{n e N |6" € Q}, p,¢e N, and ged(p,q) = 1.

When 0 is given by (1.21), then we have

1 1 1
(1.22) L Ry L kg
2 2V pg—1
And moreover, if r is even, then
(1.23) Yy =g =X
We have
(1.24) Yo =Yg

in the following cases: (1) r, p, and q are odd; (2) r is odd, p > 4 is even, and q = 1;
(8) r is odd, p =5, and q = 2.
If r and p are odd, and q = 1, then we have

1 34 2p2 —p+2
(1.25) EZ:_\/p(p+p p+2)

2 (p—1(p+1)3

It is bigger than 1/2 if p =3, and less than 1/2 otherwise.
If r is odd and pq is even, then we have

1

1.2 Sy = —.

(1.26) 6= 3
If r, p, and g > 3 are odd, then we have

. 1

(1.27) ¥y < 3

We will prove this theorem in a separate paper. We can summarize as below:
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Corollary 1.23.  Suppose that 0 < —1. We have X5 # Xg if and only if 0 is
given by (1.21) with odd r.

Recently Aistleitner-Berkes-Tichy [9, 10, 11, 12, 13] investigated in details about
asymptotic behavior of permutated sequences. We here state some related results.
By using the argument in [26], we have the following:

Theorem 1.24.  Let {ny} be a sequence of real numbers. If there exists a sub-
sequence {ny,} such that

— NDj ,
0< Tm DNt}
N—oo /2N loglog N

then there exists a permutation w of N such that

a.e.,

— ND {nomwr} _ T NDyAng,; v}

lim = , a.e., and
N—oo /2N loglog N  N—oo /2N loglog N
— NDy{ngmz} T NDy{ng,x} .

lim = lim ,
N—oo /2N loglog N  N—oo /2N loglog N
By applying this, we can deduce the results below:

Corollary 1.25 ([30]).  Suppose that @ > 1. For any ¥ € [1/2,%¢], there exists
a permutation w of N such that

S ND}‘V{nw(k)x} — NDN{nw(k)x}
lim = lim =3
N—oo /2NloglogN  N—oo /2N loglog N

Corollary 1.26 ([26]).  If a sequence {ny} of real numbers is not bounded from

a.e.

above, there exists a permutation w of N such that

— NDy{ngmz} = NDy{ngmaz} 1

lim = li ==, a.e.
N—oo /2N loglog N  N—oo /2N loglog N 2
For anya=2, 3, ..., there exists a permutation @ of N such that
_ ND* {ow(k) - w(k) a aloa _
T ~i x} _ T NDn{2 x} :1 (2¢ +1)29(2 2), e
N—oo y/2Nloglog N  N—oo /2N loglog N 2 (20 —1)3

Corollary 1.27.  For any positive number X2, there exists a permutation @ of N

such that
— ND3{w(k)x} o NDy{w(k)x} B

m = lm -
N—oo /2N loglog N  N—oo /2N loglog N

The last corollary can be derived from Theorems 1.5 and 1.6.

a.e.
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§2. Geometric progressions

We assume |0 > 1 and prove (1.20). We denote ¢ = 1 if 6 is given by (1.7), and
¢ = (—1)"if 0 is given by (1.21).

For a function f of bounded variation over the unit interval with period 1 satisfying
fol f =0, we define

Jo F2() dy if 9 satisfies (1.6),

o%(f,0) = 1 .
0 Jo P@)dy+23732, [y F((sp)*y) f(q*y) dy if 6 is given by (1.7) or (1.21).

We prove the next proposition which is an extension of the result given in [25].

Proposition 2.1.  For a function f of bounded variation with period 1 satisfying
fo =0, 0%(f,0) is well defined and we have

1 N
=
N3se 2N log log N P

(0" x)

=o(f,0), a.e.,

and i
—  ND3{6 ~
lim {07} = sup o(lj,q),0), a.e.,

N—oo /2N loglog N o<a<1

| = Lian),0), .€.
NE}})O 2N loglog N ogililz<1 o [a,0) ), e

First we prove that o2(f,0) is well defined. When 6 satisfies (1.6), it is trivial. We
consider the case when 6 is given by (1.7) or (1.21).

Because f is of bounded variation, we have a constant C'y such that |f(n)| < C¢/|n|.
Note that f(O) = 0. Hence we have

1 . 02 C’J%ﬂ'2
/ F(sp)*y) f(d"y) dy‘ > |FUd) F(=1sp)F)| < le S kg
) o 5 Prrdt T 3phq

which is summable in k. Therefore the series defining o2(f, #) is absolutely convergent
and o2 (f,0) is well defined.
Denote by fg4 the d-th subsum of the Fourier series of f. If we prove both of

—_ 1
(2.1) lim
N—oo y/2N loglog N :

(2.2) Jim o (fa,0) = o(f,0),

(ka) =o(fq,0), a.e.,
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then by putting f = i[a,b) and applying Proposition 1.18, we have the conclusions of
Proposition 2.1.
Here we prove (2.2). Since fq — f in L2, we have

/O fal(sp)*y) fa(d"y) dy — /O F((sp)*y) f(d"y) dy.

In the same way as above, we can verify
2.2
Cim

~ 3pkgk’

/fd p)*y) falq y)dy’

Since the right hand side is summable in & and independent of d, we have (2.2) by
regarding the series appearing in the definition of 02(fg, #) as an integral and by applying
the dominated convergence theorem.

To prove (2.1), we prepare some lemmas.

For a bounded measurable function g, we introduce a mean value fR g(z) pr(dx)
by

T
/Rg(w) pr(de) ZTILH;O%/_TQ(?E) dx

if the right hand side limit exists.
For a trigonometric polynomial g with period 1 satisfying fol g = 0, we have

/ 9(0z)g(x) pr(dr) =0
R
if © ¢ Q, and

/ o((P/Q))g(x) pnldz) = / 9(Pe)g(Qx) jig(dr) = / 9(Pr)g(Qx) da
R R 0

if P and () are non-zero integers.
We prove the next key lemma.

Lemma 2.2.  For a trigonometric polynomial with period 1 satisfying fol g=0,
we have
M+N 2
(2.3 L (3 60*)) nnias) ~ No*(g.0)
R \k=nm11

Proof By changing variable §™+1z by x, we see that the integral equals to

Je (S 9(0%2)) up(da).
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First assume that 6 is given by (1.7) or (1.21). We can easily see that it is enough
to show the behavior of [ (ZQZO_I g(ekx))QuR(dx). By noting

/ GO ) (07 ) pp(dn) =0,  (0<j<i <r—1),
R

we have
A(]\glg(ek >2,uR dx) TZ;/ (]j;:g Qriti )>2uR(da?)

where the last equality is proved by changing 672 by x. By noting

1
/ 9(072)g(67" 2) () = / o((ep) “0)gl’ “a)dz (i <),
R 0

we have

Nr—1 2 1 N—-1 1

[ (3 00%0)) untao) = [ oo s 20 S0 -0 [ attntorglate) o
R\ k=0 0 1 0
~ Nro*(g,0).
On the other hand, when 6 satisfies (1.6), we have Jr9(0Fz)g (0% ) pr(dx) = 0 if
k # k'. Hence we have [g g(0%x) pp(dz) fo x) dx and thereby
M+N 2 1
L3 900 untdr) = [ a)as
R \g=m+1 0

(]

The next two lemmas are used in martingale approximation procedure, which is
one of the main part of the proof.

Lemma 2.3. Let g be a bounded measurable function with period 1 satisfying
folg =0. For alla <b and A > 0, we have

/ab g(A\x) dx

Proof. By changing variables y = Ax, the integral is written by

_ Dol
- A

[A(b—a)]

1 [ 1 -1 Natk+1 1 [N
< gy)dy = < / gydy+—/ g(y)dy.
A />\a ( ) A kZ:O Aa+k ( ) A Aa+[A(b—a)] ( )
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. Ab
Since we have | 30,1, 9w)dy| < (A(b —a) = Ab — a)) gl < 9]l we can

complete the proof. O

Lemma 2.4.  Suppose that a trigonometric polynomial g with degree d and period
1 satisfies fol g = 0. There exists a constant C, depending only on q such that

/AAH (:%:ig(kkw)y dz < Cy (Eﬁ:d |§(V)I)4N2

holds for any integer A and for every sequence {\r} satisfying |[A\1| > 1 and the gener-
alized Hadamard’s gap condition |Ag+1/ k| > q > 1.

Proof. 1t is enough to prove for A = 0. The general case can be proved by trivial
modification. By the triangle inequality of L*-norm, the left hand side is less than

(%}d i) [ (;%i expn o))

When A, > 0, we already proved (Lemma 1 (1) of [24]) that

[e.9]

1 [e%¢] 4 2
(2.4) / (Z(cj cos 2w\ + d; sin 27r)\jaj)> dx < C, (Z(C? + d?)) .
0

j=1 j=1
holds for a constant C; depending only on q. When A; > 0 is not assumed, by noting
c;j €08 2mAjx +d; sin 27\ jo = ¢ cos 2|\ j|x + (£d;) sin 27|\ |z, we see that (2.4) is valid
under the generalized Hadamard’s gap condition above.

By combining these, we have the conclusion. O

We take an arbitrary integer A and prove (1.20) on [ A, A+ 1). Here we adopt the
method of martingale approximation, which is a simplification of the proof given by
Aistleitner [2] and originated with Berkes [14] and Philipp [42].

We simply denote f; by g. We put ny, = 0¥ and note |ngr1/nx| > |0]. We divide N
into consecutive blocks Af, A1, AL, Ag, ... satisfying # A/ = [1+9logg ] and PN =i
By putting i~ = min A; and i* = max A;, we have

- /ng—1y+| > [0]°1°81017 = i°,
We denote pu(i) = [logy i*|n;+|] + 1 and introduce a o-field F; on [ A, A + 1) defined by
Fi=o{[A+27"D A+ (+ 127Dy | j=0,...,2¢0 — 1},
We here note i4|n;+ | < 24 < 2i%|n;+|. Set

Ti(x) = Z g(nkz), Ti(z) = Z glng), Yi=E(T; | F;) — E(T; | Fi-1).
ke, ke
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We see that {Y;, F;} forms a martingale difference sequence. We prove

(2.5) 1Y; = Tilloo < ([lg'lloc + 2gllo) /°.
(2.6) 1V = TP lloo < 3llglloo(llg'lloo + 2lglle) /37,
(2.7) 1V = T oo < 15119012119 l0 + 2llglls0).

For k€ Ajandz € I =[A+727*0 A+ (5 +1)27#9) ¢ F;, we have

lg(nix) — E(g(n, - ) | Fi)| = ‘III_1 /I(g(nkfv) — 9(nky)) dy’ < max|g(ngz) — g(nky))|
< 19 lloolre 27 < llg" ool /i |i* < [lg" oo /7",

and hence we have |T; — E(T; | F)| < [|9]lcc™ Ai/i* = ||¢'|| 00 /3.
OnJ=[A+; 270D A4 (j+1)27#0~D) ¢ F;_1, by Lemma 2.3 we have

Elg(n ) | Fis)| = \url /J o(rey) dy] < l1gl002"=D g
< Nglloo2(i = ¥l 1ys /i | < 2lglooi®

and hence we have |E(T; | Fi—1)| < 2||g/lec™ A /3% = 2||g||00/i*, which shows (2.5).

By [Tillso < illglloo, we have [|[E(T; | Fi)lloos IE(Ti | Fi-1)lloo < illglloo, which
imply [|Yilleo < 2illglloc and [|Y; + Tifloo < 3illglloc. Similarly we have [[Y? + T3 o <
512 g]%,. By applying these to V2~ T2 < [|Y; — Tyllcl|Yi+ Tillo and [V~ T2 <
V2 — TA||loo|| Y + Tl 0o, we have (2.6) and (2.7).

Put C = min{(logjg v —logjg; )" | v,/ = 1,...,d,logjg v —logjg V' ¢ Z} € (0,1),
where (z)* = min,cz |z — n|. By denoting D = || — 1 > 0, we prove

(2.8) 0%y 40| > D|0|)" if k0> L, |v],|V] <d, 0Fv+ 6% #0.

Since the assertion is true if #¥v and 82/ are both positive or negative, we assume that
one is positive and the other is negative. By 0¥v + 0'v/ # 0, we have |#¥v| # |6'2/|. In
case when logg [v| — logg [V'| ¢ Z, we have

|10g|9| |9kV| - 10g|(9| |9l’/|| = |(k —1)+ (10g|9| | — 10g|(9| |V/|)|
> (logg V| —logg [V'[)* > C.

If logg| |v| —log)g| || € Z, by |0%v| # |0'V'| we see that log g |0Fv| —log)g| |6'2/] is a non-
zero integer and |log|9| |0k1/|—log|9| 0'2'|| > 1 > C. Therefore we have [6¥v/6'V/| > |0|¢
when [0%v| > |0'2/|, and |0'v'/0%v| > |0|¢ when |0*v] < |6%/|. From |0Fv/0%'| > |9]¢
we can derive |0Fv+0'V'| = |0Fv|—|0''| > (10|€ —1)|6%'| > DOE, and from |0' /6Fv| >
10| we can derive |0%v + 01| = |0''| — |0Fv| > (10|C — 1)|0Fv| > DI|O|*.
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If we expand T7? into trigonometric polynomial, the constant term equals to v; =
Jr T2 (x)pr(dx). The trigonometric polynomial expansion of 77 — v; has at most 8(d +
1)2i2 terms, and the absolute value of frequency of each term is greater than D|n;—|.
Hence by Lemma 2.3, we have |E(T? — v; | Fi_1)| < 8(d + 1)%*(1/D|n;-])2#0~1D =
O(1/i3). By putting B = Zf\il v;, we have

¥
SCB(T? | i) - ﬁMHOO _ o).

i=1

(2.9)

Denote Vi = Zf\il E(Y? | Fi_1). By (2.6), we see

M
Z(E(Yiz | Fic1) — E(T? | Fi-1)) ” =0(1)

and

(2.10) |Var — Bur]|, = O(1).

Denote Iy = M (M +1)/2. By (2.3) we have v; ~ ioc?(g,0) and

(2.11) B ~ (g, 0).

Here we use the following theorem by Monrad-Philipp [40], which is a variation of
Strassen’s theorem [46].

Theorem 2.5.  Suppose that a square integrable martingale difference sequence
{Y;, Fi} satisfies

M oo
Vi = ZE(YzQ | Fic1) > o0 a.s. and ZE(Yfl{WZM@)}/w(%)) < 00
i=1 =1
for some non-decreasing function ¢ with (z) — oo (¥ — o) such that 1 (z)(log z)*/x
is non-increasing for some o > 50. If there exists a uniformly distributed random

variable U which is independent of {?n}, there exists a standard normal i.i.d. {Z;}
such that

Y Vilipoy =D Zi+ ot /1)/), (t—>00) as.

i>1 i<t

We prepare another probability space on which a uniform distributed random vari-
able U and an i.i.d {{} with P(§ = 1) = P(§ = —1) = 1/2 which is independent of
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U. Let G; be a o-field over this probability space which is generated by {&x}r<;+. Put

E = Zke A, gk
We make a product of [ A, A+ 1) on which {Y}} is defined and this new probability
space, and regard Yz, U, and = as random variables on this product probability space.

Take € > 0 arbitrarily and put
Vi=Yi+eS, Fi=F®G, Bu=pu+lu

Clearly {1//\;, f;} is a martingale difference sequence.

By Lemma 2.4 and (2.7), we have ||1§||4 < |Yilla +lIZilla = 1 Tilla + |1Eilla +0(1) =
O(i'/?) or EY* = O(i?). We have E(Y? | F;_1) = E(Y? | Fi_1) + €2i and hence
‘7M = Vs + €2ly > €2ly. We owe Aistleitner [5] this idea to prepare an independent
rademacher i.i.d. to assure the growth of ?M. By (2.10), we have

(2.12) 1Var = Bur|| . = O(1).

Hence by putting 1(z) = x/(log )%, we have

2 > EY} i?(log ;)02
ZE Y {Y2>¢(V)}/¢(V)) Z V2(e21;) O(; %) =0(1).

By (2.12) and VM — XA/M_l > ¢?M — 0o, we have XA/M_l < //S\M < ‘7M+1 for large M.
Hence V; < Ba is equivalent to i < M — 1 or i < M. By ||Y;]lec = O(i) we have

ZYl{V<ﬁM}—ZYk+O ZYH

>1 k=1

where ¢(x) = /2zloglogz. By (2.11) we have Bar = O(lpr). By applying Theorem 2.5
and putting ¢t = By, we have

ZYI@ = ZY]‘{V <Bum} +o (lM)) - Z Zi + 0(¢(ZM))7 a.s.
izl i<Bum
By noting B ~ (0%(g,0) + €2)lpr, we have
M A
IRE
k=1

T -1
i O e

— T 41
B

By noting

T -1
670
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dividing |Z£4=1 ?’f| - |Z£4=1 gE’~€| < |Zl]c\/il Yk| < |Z£4=1 ?’f| + |Z£4=1 5Ek| by ¢(lnr) and
taking limsup, we have

(0%(9.0) +€)'/? —e < Tim ¢~ (lnr) < (0%(g.0) +)! 2 +e, as.

M
S
k=1

By letting e — 0 and by noting noting (2.5), we have

(213)  Tm o ()

— Tim A1 —
- ]\}gnooqs (lM) - 0(979)7 a.s.

M M
> T > Vi
k=1 k=1

Since this conclusion is valid over the product probability space with probability 1,

by applying Fubini’s theorem we see that it is valid over the original space a.e.

By applying (1.4) and Koksma’s inequality and by noting Zf\il[ 1+ 9logpg i] =

O(M log M) we have |21]€V‘;1 T;| = O(v/Mlog M loglog(Mlog M)) = o(\/Ipr). There-
fore, by limas oo ¢_1(lM)|Z£/I:1 Ty| =0, M™ = Iy + Zij\il[l + 9loggi] ~ In, and
(2.13), we have limp;_, o0 ¢_1(M+)|Zf\i1 D kEATUA, g(0*z)| = o(g,6), a.e. Moreover we
have ZkeA’MuAM 19(0% )|l oo = o(d(M™T)), and hence we have (2.1).
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