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ABSTRACT: All the components of the first row of the hermitian canonical
form of the n-th power of the adjugate matrix of the companion matrix of a monic
polynomial f€Z [x] converge to numbers(#0) in the p-adic sense, as n tends to
infinity, for some prime numbers p under a minor condition on f, cf. Theorem 1.
Using this fact, for any given monic polynomial f€Z [x] of degree s+l (s2l)
satisfying [f(0)|>1, and GCD(f(0),f (0))=1, we can construct a periodic
continued fraction of dinmension s that converges, with respect to the p-adic
topology for all the prime factors p of f(0), to a vector consisting of s

numbers belonging to a field Q (i,), where 1,€Z , is a root of f, cf. Theorem 2.

§0. Introduction. Throughout the paper, s denotes a fixed positive

integer, |#|. the p-adic absolute value for prime p<{w, |#| the ordinal absolute

value |#*|~. For a given monic polynomial

fi=x®*1-Cc.Xx*— - —C1X—Co€EZ [x],
we mean by C the matrix
TQ CO
C=C(f):= , c="(c1,...,Cs),
E. ¢

“T»

~where E, is the sxXs unit matrix, indicates the transpose of a matrix. The
matrix C, the so called companion matrix of f, which is one of the matrices
having f as its characteristic polynomial. Let us suppose

d:=|col>l, GCD(co,cC1)=1. (1)
Then, Hensel's lemma (cf., e.g., [1]) tells us that there exists a unique p-adic
number 1,€Z , satisfying:

f(2:)=0, [1;1.,<1, pEPrime(d),

where Prime(d) denotes the set of the prime factors of d, see any standard text
for p-adic numbers, cf., e.g., [1]. In what follows, we assume (1) unless

otherwise mentioned.
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In Section 1, we give a theorem which disclose a link between the numbers 1,
(p€Prime(d)) and the hermitian canonical forms of the powers of the adjugate
matrix

C:=(det C)C !
of the companion matrix C of f, cf. Theorem 1. We give the proof of Theorem 1 in
.Section 2. In Sections 3-4, we construct a continued fraction of dimension s
that converges in Q, with respect to the p-adic metric, for any p€Prime(d), to
a vector consisting of s components belonging to the field Q (1,)C Q,, cf.
Theorem 2. We give some p—adic results related to a homogeneous form coming from
Theorem 1 in connection with a certain partition of the lattice Z*® in Section
5. In Section 6, we refer to something more about p-adic phenomena taking place
around Theoren 1.

Some of the results can be extended to matrices with entries in Z, by taking
feZ . [x] D Z [x], but we do not extend them, since we are mainly interested in

matrices with integer entries.

§1. Hermitian canonical forms. We denote by M(s; Q) (resp. M(s;Z)) the

set of sXxs matrices with rational entries (resp. integer entries), and by
Mo(s;Q) (resp. Mo(s;Z)) the set of matrices XeM(s;Q) (resp. XeM(s;Z)) such
that det X#0. GL(s;Z) is the set of matrices XeM(s;Z ) with |det X|=1, which
are the units of M(s;Z ). For two matrices A, BEM(s+1;Q), we write
A~B

iff there exists a matrix PEGL(s+1;Z ) such that A=PB. The relation ~ is an
equivalence relation on M(s+1;Q), in particular, so is on Mo(s+1;Z ). For a
given matrix XeMo(s+1;Z ), there exists a unique upper triangular matrix H(X)
satisfying

X ~ H(X)=(hii)osi, is:EMo(s+1;Z),

hoo>0, 0%hi;<h;; (0£i<jss), hi;=0 (0&j<iss).
H(X) is the so called hermitian canonical form of X, which can be obtained by
elementary transformations, i.e., it can be found by multiplying X by elementary

matriceseGL(s+1;Z ) from the left.

We denote by H.(X) the hermitian canonical form of X®

Ho (X):=H(X")=H((det X-X~')®), XeMo(s+1:;Z).
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Theoren 1. Let f:=x®*'-Cc.X®—  -—C1Xx-Co€EZ [x] be a polynomial satisfying

(1), and let C=C(f) be its companion matrix. Let e(p) be numbers determined by

d:=lcol= I pe(p), e(p)21 (pePrime(d)),

pEPrime (d)
and 1,€Z , the number satisfying
f(2,)=0, [1.1.<1 (p€EPrime(d))
Then the following statements (i, i) hold.
(i) The hermitian canonical forms H.(C) are of the shape

1 Tha

H. (C)= EMo (s+1;Z ), ho="(h, ‘", ..., h, ), 0¢h, 244"
0 d"E

for all n21, 1<&j¢s.

(i) |2, —hy ¢3¢ p~°®)» holds for all n21, 1£j¢s, p€EPrime(d).

We denote by ao.a;a: - (p) the p-adic expansion of a number in Z , with
canonical representatives for the residue field of the valuation:

ao.a:1az - (p):= E;% a.p", 2.€{0,1,...,p-1}.

Remark 1.  When |f(0)|=d=p°® (p: prime, e21), then h, ‘"’ coincides with an
integer coming from the truncation of the p-adic expansion of 1,°, i.e.,
Api=80.8182...800-1...(P) implies h."’=as.2182...2..-1(p), and vice versa. Note
that a,=0 since |A,],<1. In particular, if A,7¢Z ., then 2.#0 for infinitely
many n21, so that in the statement (i), the equality holds infinitely often. In

this sense, the approximation (i) is best possible.

Remark 2. Since f€Z [x] is monic, 1,¢Z implies 2,#Q, so that the p-adic
expansion of A, ¢Z can not be periodic, and in particular, the expansion
diverges with respect to the archimedian norm |#*|.. Hence, the sequence
{ha “?}a-1.2. ... is unbounded for all 1£j¢s (with respect to the usual metric)
if there exists a prime p€Prime(d) such that A,¢Z . (Note that the converse is

not valid.) In particular, if f has no linear factors in Z [x], then

{ha ¢ }a=1,2.... is unbounded; if f is irreducible over Q [x], then
{ho 92 }a=1.2,... is unbounded for all 1£{j¢s.
Remark 3. In general, the minimal polynomial f, in Z [x] of 1, depends on
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p. If feZ [x] is irreducible over Q [x], and §Prime(d)>1 then the assertion (i)
with j=1 gives simultaneous diophantine approximations by a rational integer

h, ¢*> for roots i, (p€Prime(d)) having an identical minimal polynomial.

Remark 4. (cf. the Chinese remainder theorem) Let f(0) be an integer having
s+l distinct prime factors, and let

= —ne (p)
T2 peprimeceoy) X770

Then GCD(f(0),f (0))=1, i.e., (1) is valid. In this case, A,=p°‘*’ holds, so
that for any fixed n2l and 1¢{j¢s, Theorem 1 gives a unique solution
0¢h, ¢<|f(0)|* independent of p satisfying the system of congruences

Xa (922pe )i (mod p° *’*) for all peEPrime(f(0)).

Remark 5. In general, the assertion (i) does not hold even for the case where
f is irreducible over Q [x] if the condition (1) does not hold. For instance,
take an irreducible polynomial f=x°-13x*-7x%®+5x%-3x-3 with its companion matrix
C. Then the (2,4)-entry of H.(C)=54#0, and the (1,2)-entry of H.(C) is
identically zero for 1{nf16. Consequently, the assertions (i) is not
valid.

§2. Proof of Theoren 1. Instead of showing Theorem 1, (i), we prove the

following assertion (i)*:

Lemma 1. For C=C(f) satisfying (1),

(|)* Hn(C) = EM(S"'I;Z), hn=T(hn(l),...,hn(s))

with 0<h, ¢924d®, h. “’€d’Z (1¢j$s) holds for all n2l.

It is clear that Lemma 1 implies Theorem 1, (i). Notice that (i) and (i) in

Theorem 1 imply (i)*.

Proof of Lemma 1. (Induction on n.) We have
_9 COEs 1 Tg
det C-C~!' = (-1)® ~ ,
1 T0 0 dE.



so that (i)* is valid for n=1. Suppose that (i)* holds for an integer n2l1. Then,

we get
Hat1(C) ~ (det C-C7')" det C-C™' ~ Ha(C) -det C-C!
1 "hs -C  CoEs
= (1)
0 de"E. 1 0
~da Co | Cohn ‘'’ coha‘® -+ coha*7"’
—c,dn
= (-1)® 0 Cod"Es -1 ,
—-csd"
ae 70
L —
where
da := citCzha V4 4Cs-1ha ©*7V-h, ) (2)
Hence, we obtain
dr 0 0 0 -0
~da Co | Coha‘"? coha‘®’ -+ cohn®7 "
Hos1(C) ~ | —c.d® . (3)
0 Cod"Es-:
-c,d"

By the induction hypothesis, we have h,‘’€d!Z CdZ for all 1£{j¢s, so that (2)
implies d.z=c, (mod d). Thus, we get GCD(d®,d.)=1 by (1). Therefore, there

exist integers u., V. satisfying d"u.—-d.v.=1, which together with (3) implies

Un Va O d° 0 0 0 - 0
d. g° -d. Co |_(d?) (d®) --- (d*)
Hos1 (C) ~ (a»)
@) Es-: : 0 Cod"E.-,
(a~)




1 () | @) (@) - (ad*)
0 Codn (dn+l) (dn+l) (dn+l)
~ | (d*) ,
: 0 Cod"Es-»
(d*)

where we mean by (d™) an integer divisible by d™. Note that integers indicated

by the identical symbols (d™) are not necessarily the same numbers. Hence, we

get
1 "Ka
Hn+l(C) ~ ’ lin=T(kn(l)"'-’kn(S)): (4)
Q dn+1p
k. ed'Z (14j¢s), PeM(s;Z). (5)
Since

|[det (Ha+1(C))|=|det((detC-C-t))2*1|=d® "+,
(4) together with (5) yields PeGL(s;Z ), so that we obtain

1 7"ka

Hn+l (C) ~
Q dn+lEs

Thus, noting (5), we get (i)* with n+l in place of n, which completes the proof
of (i)*. N

Theorem 1, (i) follows from Lemma 1 as we have mentioned. We need the
following Lemmas 2-4 for the proof of Theorem (ii). We denote by e; (1£j¢s) the

Jj-th fundamental vector (0,...,0,1,0,...,0)€EZ *.

Lenna 2. For 1&j<s

h“_l(j) (hn+1(j)"hn(”)/d"
d "H. (C) = €EZ =*",
—€i —€i

Proof. The assertion (i) in Theorem 1 implies
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d * " 'H..,(C) = €Z*"!
‘Q; _ga
for all n20, 1{j¢s-1, so that
hn+l (R
C-r-t €Z %!
-e;
follows from d " 'H.+.(C) ~ C " !. Hence we get
hn+l i)
C-n Ec(zs+1)czs+l’
—e;

so that
hasy (9 (hnsq 97 —ha G50) /4"
d_an(C) = Ezs+l. l
-e; —e;
Lemma 3.
1 Tl'_l" -C CoE, hn+ ()
Z*+ 134
Q dnEs 1 TQ _gj
—da Co Cohn(l) Cohn(z) Cohn(s—l) - _
=d | —-cd® B, G
Q COdnEs_l
_Csdn _gj
dn TQ | ]

for all n21, 1£{j¢s, where d. is the integer (2).

Proof. Noting d " 'Ha+1(C) "(hn+s ¢’,-Te;)EZ **!, and

A" 'Has1(C) ~ d"Ha(C)C, we get dH.(C)C "(ha+: ’,-Te;)EZ **', which implies
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the lemma. B
Lemna 4. [As-h|,=|f(h)|, for any h€pZ ,, p€Prime(f(0)).

Proof. Since f=x**!'-c,x*- - —C1X-Co€Z [Xx]C Z ,[x], |col.<1,

|C!|p=1 for

pEPrime(f(0)), since f satisfies (1). Noting |,|»<1, we have |f (1,)],=1. We

can set f(x+i,)=71.x+t - +7,4.1x**'€Z ,[x], so that

F(x)=11(xAp)t - +7aer (Xx=4,) %Y, 1,€Z, (15§8¢s), 1.=f (k,),

We put g(x)=f(x)/(x-1,). Then g(x)=1.+12(x-1,)+ - -+71...(x-1,)*. Hence, for

heépZ ., we get
lg(h)lo=lritr2(h=2p)+  +15ui(h=A5p)% | o=71:],=1,

which implies

Ih=21,=lh-2, 1, |g(h)|.=| (h-2;)g(h)[,=|f(h)|,. N

Proof of Theorem 1, (ii). Lemma 2 yields

hovr ©2zh. 9 (mod d®), n21, 1<j<s.
By Lemma 3, we obtain
dahas1 P2 +c0=0 (mod d®),
doha+1 Y2 +Coha 7120 (mod d®), 2¢j¢s
In view of (6)-(8), we have
daha ¢V +co=0 (mod d),
daha 2 +coha 1720 (mod d®)
for all n21, 2{j¢s. The assertion (i) in Theorem 1 implies
ha 0 /lcol=h, 9’ /AEZ , 1£j¢s.
Therefore, we obtain by (9), (10)
daha “*7hs ¢ /Cothy 220 (mod d*),
daha ¢h, Y0 /coth, V0 h, G120 (mod dr).
Comparing (11) with (12), we obtain
ha 97zh, D h, Y78 (mod d*), 2¢<s,
namely,
ho ©7=(h, V)¢ (mod d™), 2¢j¢s.
Combining (13) and (7) with (2), we get
(ha *7)*—Cs—y(ha *?)* "= -~Cc1ha ¢V’ —Co20 (mod d®),

f(h, ¢)=0 (mod p°®)
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for all n21, p€EPrime(d).
Therefore, from Lemma 4, it follows

Ve ~ha 7] <p7° > (n21, p€Prime(d)) (14)
holds. In view of (13), (14), we get the assertion (ii). U

§3. A continued fraction of dimension s. Let K be any field. By K (x),

we denotes the field of rational functions, over K, of s variables

x:=T(X1,...,X.), and by T(x) the s-tuple of rational functions defined by
T(x):="(1/Xs,X1/Xs, ..., Xa-1/%X:sJEK (X) .
We write

Xo—l

= %o 'T(X)EK (X0, %)°=K (x), x="(Xo,...,Xs).
X

Then, we can consider a continued fraction
é(z_(_o,---,)=(n)=T(§l()=(0’-00150);--')§S(§0)~0°’§n))

(XO(O))-I

= (%0 )7 %o +
(Xl (0) )—l

(xl (0) )—l?sl +

(x2 7)) 1'%, + -
(Xnoq (@)1

+
(xn(o) )-lxn
EK (Xo0,...,%:)%, X (Xn ", 0,X0 ), %= (X2, ..., %a ) (0¢mn).
If the denominators of ¢{; do not vanish at Xo=Co, ..., Xa=C.€K*"', then we

can consider the value Z(Co,...,C.)EK*®. In such a case, we say that the
continued fraction Z(Co,...,Cn) is well-defined. Setting K=Q,, we may

consider an infinite continued fraction Z(Co,...,Cn,...), which is defined to

be the limit of its n-th convergent E(cCo,...,Ca) with respect the p-adic
topology provided that Z(co,...,Ca) is well-defined for all sufficiently large
n, and the limit exists. In particular, if c.‘®’=1 for all m, then the continued
fraction Z(Co,...,Ca,...) turns out to be of the form of a ”simple continued

fraction” of dimension s, which is denoted by

[(_30; Ci, C2, Cas, S
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If we take s=1, then
§(go,...,gn,,,,)

(CO(O))—I

= (0))-1 (1)
(Co ) Co +
(CI(O))-I

(c @) te, (1 +
(cp (@)t

(cp () 1g, (D 4

(Cs © ) 1cy D+

and T(x)=T(x:)=1/x: turns out to be the usual reciprocal of x,. Hence we have

Cl(o)
Co®E(Co,...,Cn,...)=Co ) +
A\ = Cz(0)

Cl(l) +

Ca(o)
Cz(l) +
Ca(l)"’
Theorem 2. Let f:=x®*'-c.x*----Ci1X—Co€Z [x], 1.€Z ., e(p) (pEPrime(d)) be

as in Theorem 1. Let 8.=7(6.¢,...,0.‘"’)EQ*(C Q,*) be the n-th convergent

of the following periodic continued fraction:




where
C_Zm*Z=T(0, .. .O,Com-lCm,Com-ZCm-l, ... ,COCZ,CI)EZ b (1§m§3),
c*i=cCs*.

Let ra:="(r,‘,...,r.‘*’)EZ* be the final column vector of a matrix JoJi: - -Ja,

where
TQ Cos
Jn := (0¢mss), Jn:=J. (m>s),
E. —Cun*
Co*:=7(0,...0)EZ *.
Then

(i) 8. =r, 9 /r,® for all n20, 1%j¢s,
and

(i) 8.9 =co i, [,¢p7° ®> 2% for all n20, 1<j¢s, pEPrime(d).
In particular, the the continued fraction 8.€Q * converges with respect to the
p-adic topology for all pEPrime(d), and its p-adic values are given by

8(p):=T(Cco "As, Co %hp2, ..., Co "Ap®)EQ,* (p€Prime(d)).

Corollary 1. A periodic continued fraction

[0;a1,82,...,8:.-158:,8:41,...,82.] has the same convergents as that in Theoren

2, so that it converges to 8(p), where a.,a:+1,...,8.. is a period, 0€Z *, and

a; =T( 0 , 0 , 0 s e 0 , o -C1),
a: =7(0 , 0 , 0 s e 0 , ~CoCz, -Ci1),
as =T( 0 , 0 , 0 s eees —Co’Cs, ~CoC2, -Ci1),
a.-2 =7( 0 . 0 ,"Co®* %Ce-2, ..., —Co’Cs, —CoCo:, -C1),
as-1 ="( 0 ,"Co0* ?Cs-1,"Co* " *Cs-2, ..., —CoZCs, ~CoCz, -Ci1),
as  ="(-Co®'Cs, C0° 2Cs-1,"C0° 3Ca-2, ..., —Co’Cs, ~CoCe, -C1),
as+1 =7( ~Co™'Cs, Co* 2Cs-1,7Co* Ca-2z, ..., —Co’Cs, ~CoC2, -C1),
8s+2 ='( —Co 'Ca, ~Co0 2Cs-1,"Co* 3Cs-2, ..., —Co’Cs, —CoC2, -C1),
st—2=r( —Co 'Cs, “Co %?Cs-1, “Co %Cs-2, ...,—Co **Z2cCs, —CoCz2, -C1),
82s-1="( —Co7'Cs, ~Co™2Ca-1, =Co %Cs-2, ...,—Co **2Cs,—Co **!C,, -Ci1),

az. ="( —Co™'Cs, ~Co ™ %Cs-1, ~Co %Cs-2, ...,=Co **2C3,—Co **!Cz,-Co™*Cy1).



Remark 6. Lemma 9, (i) given below implies that r.(®’#0 for all n20, so
that any convergent 8. (n20) of the continued fraction given in Theorem 2 is

well-defined.
Remark 7. In general, the continued fractions in Theorem 2, and Corollary 1

do not converge in R with respect to the metric coming from |#|=|#*|.. These

continued fractions always diverge when f€Z [x] is of totally imaginary.

§4. Proof of Theorem 2. We need some lemmas for the proof of Theorem 2,

and its Corollary.

Let A€(ai;)osiss. 0sissEMo(s+1;K). Then A defines a linear map on K **!,
which will be also denoted by A. For elements v, weK**'\{0}, iff there exists c
€K such that cv=w, we write v » w, which defines an equivalence relation on
K**'\{0}. We denote by & the map

£ K**' — — P*(K):=(K**'\{0})/,
k(v):={weK**'\{0}; w » v} (v#0),
where the broken arrow — — indicates a “map” with some exceptional elements
for which the the map is not defined. Since x(v)=t(w) implies rAv=tAw, so that
the linear map A induces a map Ax: P*(K) —-— P*(K). We define a projection
'z, and an injection : by
1: PP(K) — - K=,
1(e(v)):=(vi/Vo.Va/Vo,...,Vs/Vo), V="(Vo,Vi,...,Vs)EK**!;
i K* —— P*(K),
t(v):=x(l,vi,Ve,...,V.), V=T(Vy,Va, ..., V.)EK®.

We set Ag=1° Ax° 1. Then, Lemma 5 given below can be easily seen.

Lemma 5. The following diagram is commutative:

K T
K=*! —> P(K) ——_— K:*
S
A As Ay
.
K**!' — —s P*(K) ——_—— K-=*
K l

Using Lemma 5, we get the following



Lemma 6. Let X be a matrix with s+l variables Xa="(x=‘®’,... ,Xa*’):

TO xm(0)
Xm := s Xmi =T (Xa P, L, %Xa (%)), 0<mén.
E. Xm

and let p: ‘"’ be polynomials
Pi “0=pi Y (Xo,...,Xa)"€Z [Xo,...,Xa] (-s-1&i¢n, 0&jss)
defined by s+l recurrences
Dm(j)=Xm(°)Pm-s-x(j)+Xm(l)Pm-a(j)+ e +xm(5)pm_l(i) (Ogmgn’ Ogjgs)
with an initial condition
P_1=Ess1y,
where
Po:=(Pmn-s+i ?)osiss, 0siss (0¢mn).
Then the continued fractions Z(Xo0,...,Xn) are written by the following formulae:
(i) Pa=XoX: ' Xu€M(s+1;Z [Xo,...,%X=]) (0¢m¢n).

(i) E(xore. o Xm)=(Pa )7 T(Pa ", . .,Pn ) )EQ (Xo,...,%a)* (0¢mén).

Proof.  The assertion (i) can be easily seen by induction on n. Let
§:=T(&1,...,¢&) be a vector with s indeterminates. Lemma 5 implies
(Xn) e (€)=(x° Xn)so 1) (€)= (xo (Xn)x) (k("(1,&1,...,¢.)))
(T (X O 6, 14X €, V1 +Xe B €, oL, Va1 HXe 20 E4)))

(X2 )7 Xm + (%0 )TH(1/E, 60 /8L 8o /)
(xm ©7) 71
4
Lemma 5 implies (AB)#=A4B4 for any A,BEM(s+1;K) (K€Q (Xo,...,Xa)), since
(AB)«=A«Bx. Hence, taking £:=7(0,...,0,¢°'), we get
T((Pa)x(k(7(€,0,...,0,1))))=(Pu) s (£)=((Xo)s ° (Xi)ao - o (Xa)s)(£)

(XO(O))-I

(xm(O) )-l Em +

=(X0(°))-l§o +
(xl(O))—l
(Xl (0))-1)_(1 +

(X2 )75 + -
(xm_l(o))—l

.

(xm(O))-l
(Xn(o))—l)_(Iz +
§

which can be considered as an element of Q(Xo,...,x%s,¢). Since
T(§)=¢-7(1,0,...,0), we get, by setting €=0, the following identity
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T(Pues)=t (" (Pa®,pa ", ...,Pn*"))=E(Xo, ..., Xn)€Q (X0,...,Xn)",
which is the formula (ii). Since p.‘®’ is a polynomial in Z [Xo,...,X=] which
exactly has X0 (®’x; ‘9 - %, ‘® as one of its terms (i.e., the cefficient equals
one), it is not the zero polynomial, so that the s-tuple of rational functions

E(Xo,...,Xn)€EQ (Xo0,...,Xn,y)* is well-defined. H

Remark 8.  In general, the formula (i) holds for Xo,...,Xs€L**' for any
field L even for the case of char(L)#0 provided that pm‘°’ (Xo,...,Xn) differs

from 0 as an element of L.

In what follows, we mean by H.=H.(C) (n20), and by J. (0¢m¢s) the matrices

in Theorem 2. Recall that we are assuming (1).

We put
d* -Th, 0 ot
Ko := (n20), J :=J. = ’
0 E. E. -c*
C*:zT(Cos_le,Cos_zcs—[,...,CDCZ,CI),

where h,€Z * is the vector in Theorem 1, (i). We define integers q. ‘'’ by

Q" =: (42" " )osiss. 05iss (n20), (15)
where
-C  CoEs
Q :=
1 T0
Note that

Q=coC '=(-1)*C, C=C(f).
We mean by XzY (mod m) that all the entries of X-Y are divisible by m€Z.

Lemma 7. g.‘° h,=zq, %" (mod d*) for all 0<iss, 1<j¢s, n20.

Proof. Since c¢*C "=U.H, (c:=(-1)°co=det C, U.€GL(s+1;Z)),

we have

c*H. '=C"U,. (16)



Theorem 1, (i) implies K.H.,=d"E.+,, i,e., K.=d"H."!, so that
KaFa=c®H.™! (Fa:=|c®| 'c”Ees1 (=2E.41)). (17)
From (16), (17), it follows K.F.=C*U., so that K.=C*V. (V.=U.F. '€GL(s+1;Z)).
Hence we obtain C°K.=CC"V.=c®V., which together with Q=(-1)°C implies
Q°*K.=0 (mod d*), n20,
where 0eM(s+1;Z ) is the zero matix. Considering the (i, j)-component of the
matrices on both sides of the congruence given above for 0{ifs, 1&j&s, we get
_qn(O.i)hn(i).l.qn(i.i )EO (mOd dn),

which implies the lemma. N

Ve set

Q. := (qn-s+j(i'0))OSiSs,OSiSs (nZS)-

Lemma 8. Q.=Q:J** for all n2s.

Proof. In view of (15), we have

(Qn(j'i))OSiSs,OSiﬁs

Q (dn-1"")ogiss. 0sisss

—Ci1qn-1%" O 4Coqa-1 ‘O - —Ciqa-1 (O 4Coqa-, 20 D)
‘CzC[n-l(o'O)"'CoC[n-x(o'Z) _Czqn_l(s.0)+coqn_l(s.2)
—CsQn—1(°’°)+Coq::—1(°") -qun—l(s’o)"'coqn—[(s's)
qn_l(0,0) qn_l(s.O)
L —

Hence, we get
Gn 9 =—C qu-1 Y O 4Coqa-, G )
=_Clqn-1(”°)+Co(‘Czqn—z(j'°)+coqn-z("2))
==Ci1Qn-1 "% -CoC2qa-2 %" Y +Co2qn-2 ¥+ )
==C1qa-1 " 2 =CoC2qu-2 1" 2 +Co?(~Caqn-3 " O +CoGa-3 1 )

=—C1qa-1 i, o)_COCan—Z i, 0)_Cozcsqn_3(5. 0)+COSQn—3 (i, 3)

=—C1 Qa1 9 —CoCaQn-2 "2 —Co2Caqn-5 " O = =Co® " 1Caqn-s (1 O +Co qa_, (i ®)

==C19n-1 G 0)_C0C2qn-2 G 0)_002C3Qn—3 G.o—.. ’_COS_leqn—s G, °)+CosCIn—s-1 (i.0)



‘for each 0£{j¢s, i.e.,

qa Gir 0
=(Qn-s-1 G 0),qn—s-—2 G °’,...,qn-1 G 0)) T(Cos,_Cos-IC;,...,_CoCz,“Cn). (18)
Therefore, we obtain
Qn=Qn-lJ (HZS*'I),

which implies the lemma. N

Lemma 9. (i) qa‘”’=(-c:)"® (mod d),

(i) [ho G2 =qp G- 9 /q, (09| ¢p~° )= for all n20, 1¢j¢s, and p€Prime(d).

Proof. By Lemma 7 we get
Qo (7 h, Y =q, -0 ) (mod d*) (1&j¢s, n20). (19)
From (18), it follows
qn " 02-C1qa-1° 201 2qn-2 0 2 2(=C1) g0 P 2(-c1)* (mod d).

Hence, recalling GCD(co,c:)=1, we get

GCD(g. ¢°- 22 ,d)=1 (n20). (20)
Therefore, we obtain by (20), (19)
|hn(i)_qn(i.0)/qn(0.0) |p = an(O, D)hn(i)_qn(i,o)

gp—e(P)n (nggs’ nzO). l

Let Jn, be as in Theorem 2. We denote by 0:.,. the zero matrix of size txu,
by On the matrix Om,:, and by D(ao,a:,...,a.) the diagonal matrix with

40,d2,...,3, as its diagonal components. For m20, we put

Qm* = GJOJI”'Jm, (21)
Gm+l = D(Co—m’CD—m+l’--"Coul’l))
G = Gs+l’
qo(o) q. (o) ... qm(o)
ql(l) N qm(l)
Am+] := £l
O
qm(m)

where
) 1= qe -9 (0<ifs, n20)

with q. ¢+ °’ defined by (15). We put



9a:="(qa ), ...,q. P )EZ > (n20).

Then we can prove the following

Lemma 10.
(i)  go="(1,0,...,0),
go="(-C1qa-1 ®’=C2Qa-1 ‘" -.. . CaQu-1 7V,

(22)
Codn-1 ", C0qn-1 ", ..., CoQa-1 71, 70,-a) (1¢nSs).

0n+l.s—n An+l
(i) Q.* = (0¢n<s), Q.*=Q,.
Ds—n Os—n,n+l

Proof. We prove (i), and (i) by induction on n. We put
€0:=7(1,0,...,0), ..., €:=7(0,0,...,1)€EZ """,
Note that, this time, e: is the (i+1)-th fundamental vector of dimension s+l.
First, we prove (i). Recalling (15), we have
Q" =: (@ “"* ¥ )osiss. 0siss (n20),

where

COEs Qs

It is trivial that go=eo, and g:="(-ci,Co,"0.-1) are valid. Suppose that (22)
holds for an integer satisfying 1{nfs-1. Then

gn+1=TCn+lgo=TC.TCn§°=Tan

=T(-C1qa 0 -C2qa M) - cCav 1@ ™, Codn (0, C0dn P, ..., C0q0 ®), T0s—n1),
so that (22) holds with n+1 in place of n.

Secondly, we prove (i). (i) with n=0 follows from

Suppose (i) holds for an integer 0<n<{s-1. Then

Qn+l*=Qn*Jn+l

__1 17—



Gs-n

0n+1,s—n An+l TO Cos

0n+2,s—n—l

Os—n,n+l Es —gn+l*
‘01Qn(°)_CoCaQn(°)_“'“Co"Cn+1QO(°)
Ao+ —C1qa ‘"’ =CoC2qn M= —Co™ " 'Caq, V)

-C1qa

T +1
9n+1 COn

Gs—n-l

On the other hand,

Os-n-l.n+l gs—n—l

(i) implies ga+1 (®* V) =co™*! (0§H<S—1), and

Qo +1 (m)=CoCIn (m-l)=cozqn_l (m-2) .. “=Co™qn-m+1 (o)

Therefore, we get

which says that (i) holds with n+l in place of n for 0¢n<s-1. In particular,

Hence,

=Com(—Clqn—m(0)-CZQn-m(l)_'"_Cn-m+lqn-m(n-m))
=Co™ (~C1Qn-n ®?=C0C2Qn-m-1® = " =Co® ™Ca-n+190 ‘*))
=“ComC1Qn—m(D)‘Com+lCan-m-1(0)“"_ConCn-m+1QO(°)

==Ci1da ™ =C0C2qu-1 ™ = =Co6” ™Co-m+1Qqm ™.

by (23), (24),

0n+2.a—n—l An+2
Qn+1* = ’

Gs-n—l Os—n—l,n+2

Qs*=Qs-[*Js=

__1 8__

(23)

(24)



—C1Qs-1 %) =CoC2qs-2®' = —Co®*"!Csqo ‘*’
A "01Qs—1(1)_C0CzQs—z(l)-'"’COS_ZCs-IQI(l)
_CICIs—l (s—-1)
TQs CO!
On the other hand, we have

4. = TC'¢o = TC TC*"'eo = TCqa-1

= T(-C1qs-1 ‘P =C2qs-1 V= =Csqs-1 *7 ,C0qs-1 ), ..., Coqs-1 2TV).
Using (i), for 0¢m&s-1, we get
~C1Qs-1 ™ =CoC2qa-2 ™ =+ =Co* ™ !Cacmqm ™
= Co™(-Ciqs-n-1®"-C2eQs-m-1 "= —Cs-uQs-m-1 77 7))

qs ™,
and
-C1qs
= q,
From (26) and (i), it

Comq’_m(O)

219 —CoC2qs-2 "~ - =Co* !Csqo ©
0 = —Ciqe-t (O —Caqa-y (V= —CaQe-, (271,
follows

qs *?=Coqe-1* 7 =Co°qo ‘®’=Co"°.

In view of (25-29), we obtain Q.*=A..,. Since (i) implies

da ™ =0 (0¢n<msés),

we get Q.*=Q., which completes the proof of Lemma 10. &

Proof of Theorem 2.

Then £n=JOJl"°Jngs. we define gn*=T(qn*(0),..-,qn(S))E(l8 by

gn*:T (qn*

Then

Lemmas 8, 10 imply

q

[Xa]

GJOJI"'Jngs (O§n§s—l)

o £ 3 .=
O L, qe*) =

GJoJi- " Js-1Jo ="t

[[¢]

'1C=[..=T(Co°qn*(°),Co’_‘qn*(”,...,CIn*(O)).

n*=T(Qn(°),...,Qn(“),0,...,0) (OgngS),

2¥=Q:J" 7 =ues="(q. O, ..., 9 )=q. (nDs).

Recalling q, ™ =0 (n<mss), we get

gn* ™ =q, ™ (0<m¢s, n20),

—1 9__

s (n2s).

(25)

(26)

(27)

(28)

(29)

We consider the vector r.€Z **' (n20) in Theorem 2.



which together with Lemma 6 implies
Bn(i)=rn(i)/rn(o)=co-iqn(i)/qn(0) (DZO, lﬁjﬁs),
Lemma 9, (i) implies |qa.‘® |,=1, so that Lemma 9, (i), which together with

Theorem 1 implies

|0n(j)-com'ilpj lp = |C0_j|p|CIn“)/CIn(o)_Apilp’
g ’CO_jIp'maX{lqn(j)/qn(o)_hn(j)Ip, |hn(j)_kpjlp}
§ p-e(p)n+j

for all n20, 1¢j¢s, and p€Prime(d). N

Proof of Corollary 1. We denote by |r] (r€R, |w]:=0) the largest integer

not exceeding r. We put
t(n):=ln/(s+1)], r(n):=n-(s+1)t(n) (n€EZ).
It is clear that n=(s+1)t(n)+r(n), 0¢r(n)¢s holds. In view of the following

lemma, we get Corollary 1 from Theorem 2. W

Lemma 11. Let XatM(s+1;Z [Xn]), Xa="(Xa®’,%a‘"’,...,xa "), O¢mén be as in
Lemma 6. Let
Xm#:= XpXm-s-1Xm-2(s+1) " " "Xr (m) (Ogmgn), Xm#:zl (m<0);

T(Xm*(O),Xm*(l),-..,Xm*(S))

(x0#) "' T (Xm-s ¥ Xn 1 , Xmose1® Xn 2, oo, Xmot ¥ X €)),

where xo»=x» ‘°’. Then the following formula holds:

(XO(O))-I

(XO(O))-IXO F
- (x‘(O))—l

(5, ) g, +
(x2 ©®7)7'x2 + -

(Xmoz (@)1

S

(Xm_l(o))-l
(xm—\ (0) )-l)—(n +
(XIII (o) )-lz(.m

= [xo®:x1%, ..., %x0*] €(Q[X0,X1,...,%Xal)®, 0<mén.

Proof. Let Du€M(s+l;Z [Xo,X1,...,Xa]) be diagonal matrices
Du:=D(Xm-s¥,...,Xn-1%,xa¥) (-1&m¢n).
and X»* the matrices defined by
Xo*:=Dm-1XaDn 'EM(s+1; Q [Xo, ..., Xa]) (0<mén).
Then

__2(3__



with
Xn*= (Xn*) "1 T (Koo ¥ Xn 1), Xmoasr* Xa (2, L, X1 ¥ Xa *))

holds. Noting XoX:-  -XaDa '=Xo*X:i* - Xa*, we get
((Xo)#o (Xi)ao - o (Xa)s) ((Dn™")4(£))

(XO(O) )—l

= (x0®)71xo +
- (x1‘°’)‘1

(Xl (0) )_l)_(l +

(Xz (0) )—1}—(2 + .
(Xm-l (0) )—l

+
(Xa (@)1
(Xn ) 'xp + —————
Dm_l*(i)
= ((Xo*)eo (Xi*¥)eo - o (Xa*)s) (&)
1
= Xo¥ +
B 1
X * 4
Xz* +
1
+
1
X+
§

We set £:=7(0,...,0,€"') as in the proof of Lemma 6. Taking €=0, we have
T(£)=T((Dn"")«(£))=0€Q (X0, X1,..., Xn)®

as rational functions, and we get Lemma 11. R

§5. A form V¥ (x;f). We denote by Q*'¢*D Q (resp., Q,*'*DQ,) the

algebraic closure of Q (resp., Q.,). Let f€Z [x] be a monic polynomial of
degree s+1, C=C(f)€EMo(s+1;Z ) the companion matrix of f, e(p) (p€Prime(|f(0)])
the number as in Section 0. We denote by & (x;A) the characteristic polynomial
of a matrix AeM(s+1;Q).

We define a form ¥ (x;f) with s+l indeterminates by

V(% 1)=V (Xo, X1, ..., %Xe;f) 1= det( = x:C(£)') €Z [Xo,...,%.].



We remark that

II ( > anj)
£(a)=0 (heqeie) locits

I1 = i,
f(a)=0 (a€Q,2'%) (Os;'ss ¢'x;)

v (x;f)

holds, where the former (resp. the latter) product is taken over all the roots «
of f in the field Q*'® (resp. Q.°*'®) with their multiplicity. For f being
irreducible over Z [x], V¥ (x;f) becomes a norm form in the usual sense.
For a given matrix A€Mo(s+1;Z ), we write A€(Bdd) if A satisfies the
following condition (Bdd):
(Bdd) The set {n20; A"*x€Z **'} is bounded for any X€Z **'\{0}.
We can show that if A€(Bdd), then AEM(s+1;Z ) has no units (€EQ*'®) as its

eigenvalues in Q*®*'¢; and if

A1 >k Al O
A=U" U (or U U), UEGL(s+1;Z)
O A >k A

such that |det A«|>1, and ® (x;A«) is irreducible over Z [x] for all 1<k¢t, then
C(f)e(Bdd). In particular, if f€Z [x] is irreducible over Z [x], and |f(0)|>1,
then C(f)€(Bdd), cf. Theorem 2 in [3], see also [2].
Let us suppose A€(Bdd), and consider a map inda defined by
inda: Z**!' — NU {w}
inda (x) :=max{n20; A""x€Z **'} (x#0), inda(Q):=m,
where N :={0,1,2,...}. We remark that there exists a unique partition

LJ AT =2Z°*'\{0} (disjoint)

0sT<e
of the set Z**'\{0} into ¢ (2{c¢w) parts iff A€(Bdd), and
F={x€Z**'\{0}; inda(x)=0 (mod c)} (c#w),
I ={x€Z **'\{0}; inda(x)=0} (c=w)
holds, cf. Theorem 1 in [3].
We mean by v,=ord, the p-adic valuation, i.e., the additive version of |x*|,.

Then Theorem 1 implies the following

Corollary 2. Let fe€Z [x] be a monic polynomial satisfying (1) such that
C(f)E(Bdd). Let 2,€Z, (pePrime(f(0)) be as in Theorem 1. Then

indc (¢) (é) =

('.Vp( z Apjxj))/Vp(f(O))J)

‘min
PEPrime (| f (0) |) 0sjsSs



holds for all x="(Xo,X1,...,Xs)EZ ",

Proof. For any x€Z **'\{0}, we have the following equivalences:
inde () (x)=m <= C(f) "x€Z ="' & C(f) " 'x¢Z "'
<= d"C(f) ™xE"Z **! & d*!C(f) mx¢d™*'Z **!
<> Ha(C)x€d®Z **' & Ha+.(C)x#d™*'Z**!
<> d""Ha(C)XEZ **' & d™ 'Ha+, (C)X¢Z **!

Thus, in view of Theorem 1, we have
inde (1) (x)=m <+
Xotha (VX i+ +ho )X, €A Z **! & Xothme: (VX - +haey ()X A" Z =41

<= e(p)n év,(oé§%s 1,9x;) for all p€Prime(d), and

vo (=, 4'x;) < e(p)(ntl) for some pePrime(d)

< e(p)n ¢ min vo( = :'%;) < e(p)(m+l)

pEPrime (f (0)) 0sjsSs

so that Corollary 2 follows. B

Recalling

Y (x;f) = (,>=, ¢'x3),

II >
f(a)=0 (e€Q ,='8) O=iss
we see

W ()l $ 1 = Lixsl, (X€Z°*')

0sjsSs

since | = a'x;l, €1 (x€Z**') holds for any root a€Q,*'* of monic polynomial

'feZ [x]. Noting |al|,=1 for any root a#1, (¢€Q,*'®) of f satisfying (1), we see

that Corollary 2 immediately implies the following corollary.

Corollary 3. Let f be as in Corollary 2. Then

(Lve (W (x;£))/vo (£(0))]) € indo ey (x), XEZ**1.

min
PEPrime (| f(0) |)

In particular, the equality holds if x;#0 (mod p) for exactly one 0<j¢s.

Corollary 3 is of somewhat trivial, but it may be of interest by two reasons:
first, the assertion is stated within the set Z; secondly, the form ¥ (x;f) is
not so simple when s is large. We give some examples, using a, b, ¢, d (resp. x,
¥y, z, W) instead of co, Ci, Cz, Cs (resp. Xo, Xi, Xz, X3):

(i) s=1, f=x%-bx-a,

V¥ (x,y;f)=x2+bxy-ay2.

(i) s=2, f=x%-cx2?-bx-a,



WV (x,y,z;f)=x3+cx2y+(2b+c?)x2z-bxy 2-(3a+bc) xyz+ (b?-2ac)xz?+ay’+acy?z-abyz?

+azza

(ii) s=3, f=x*-dx®-cx?-bx-a,
Y (x,5,2z,w; F)=x*+dx3y+(2c+d?)x3z+(3b+3cd+d® ) x*w-cx?y 2~ (3b+cd ) x*yz
- (4a+bd+2c?+cd?)x?yw-(2a+2bd-c?)x?z2-(5ad-bc+2bd?-c?d)x*zw
- (3ac+3ad?-3b%-3bcd+c? ) x2w?+bxy 3+ (4a+bd)xy 2z+ (ad+bd 2+2bc) xy 2w+ (3ad-bc) xyz?
+(4ac+3ad2-3b2-bcd)xyzw- (5ab+acd+2b2d-bc? )xyw? - (2ac-b?)xz*+(ab-2acd+b?d)xz*w
+(4a2+2ac?+abd-b?c)xzw?+(3a%d-3abc+b? )xw® -ay*-ady *z- (2ac+ad?)y*w+acy *z?
+(3ab+acd)y2zw+(2a2+2abd-ac? )y w?-abyz>-(4a?+abd)yz*w-(3a*d-abc)yzw?

- +(2a%c-ab?)ywi+a’z*+a?dz’w-a®cz?wi+albzwi-a3w*

In general, V¥ (Xo,Xi,...,Xs;f) consists of (2s+1)!/((s+1)!s!) terms as a

polynomial in Xo, Xi, ...,Xs.

§6. Something more about p—-adic phenomena. We can get something more

related to Theorem 1. For simplicity, we take a matrix A=[2,2//2,3]eM(2;Z),

and consider hermitian canonical forms H.(A)=H(B") for B=A=(det A)-A~', where we
mean by [a,b//c,d] the matrix having (a,b) (resp. (c,d)) as its firt (resp.
second) row. We can find a matrix UEGL(2;Z ) satisfying A=U"'CU, where C is a
companion matrix of the characteristic polynomial f of A. In fact, we have
U=[-1,0//1,1], C=UAU-'=[0,-2//1,5], f=x?-5x+2,
so that
H.(C) ~ 2*UA-"U"' ~ 2"A""U"".
Since GCD(f(0),f (0))=1, we can set
Ha(C)=[1,%a//0,2"], 0¢xa<2"
by virtue of Theorem 1, and so, we get
Ha(A) ~ 2°A™" ~ Ha (C)U=[xa-1,%.//2",2"].
Since x.=0 (mod 2) follows from Xa.+:3x. (mod 2°), so that GCD(x.-1,2")=1. Hence
(Xa=1)uat2°v,=1 (30)
holds for some integers u., v., we obtain
2°A7" ~ [un,Va//-2",%a-1] [Xa-1,%a//2",2"]
= [1,uaxXa*2"va//0,-2"] ~ [1,ua*+1//0,2"].
Setting y.:=u.+l, we get by (30)
(x2-1)(y2-1)=1 (mod 2). (31)

Since {Xn}a-1,2,...1s a coherent sequence, it becomes a Cauchy sequence with



respect to the ultrametric in Z,. Therefore, from (31) x. (resp. y.) converges
to an 2-adic integer 1 (resp. r), and we get (i1-1)(p-1)=1, which yields
g(#)=0, g=2x2-5x+2€Z [x].
Thus, one can show that
lg(ya) 28277, |p-yal2827", n2l,
as well as
[f(xa)2827", |A-Xal2827", n21,
where A, p€2Z ,. In addition, there occurs an additional phenomenon. Noting
g(1)=0 <= (2p+2)2-5(2p+2)+2=0 <= f(21+2)=0,
we see that the 2-adic expansion of p coincides with that of 1 except for the
head of the expansions:
1=0.1110001001101100110100001100110011000001. .. (2),
#=0.110001001101100110100001100110011000001. .. (2),

where we mean by didi+: - -do.didz---(p) the p-adic expansion ;;% d.p® of a

number belonging to Z, with respect to the canonical representatives.
Such a phenomenon is an accidental one, but we can find such examples, applying

a conjecture/observation (i ) given below.

Obsevation (f): In the example given above, we can find a relation

p=2/(A-1)=("0) s (A)=(x o TUx > 1) (1). (32)

Such a relation does not always hold, but we can show (32) under some
conditions on f€Z [x], and UEGL(s+1;Z ). For instance, let
f=x**'-c.x*- ' -C1X-Co€EZ [x] such that

Icol=p is a prime, and v, (c:)=0. (33)
Then, we can show (32) in a general situation, if U=(ui;)osiss.o0s<is<EGL(s+1;Z)
satisfies a condition

GCD(uio,uzo0,... ,Us0)=D°, e20,

34
UoofPZ, uo;€pZ (18Vjss). (34)
Namely, under the hypotheses (33), (34), can show that
1 h,t
H, (U-'C(f)U) = for all n2l, (35)
0 pE.

and



%lgz l;ln* = (TU)#(AP)’ AP:'_-T(AP’APZ’--',APS) (36)

holds, where the limit is taken with respect to the p-adic metric, cf.
Proposition 1 given below.

The condition (33) on f may be too special, and (34) on U does not seem to be
beautiful. As we shall see in Lemma 12, the behavior of the sequence

{Ha (UT'C(£)U) }u=1. 2.8, ...

turns out to be simple under a condition (37) given below, which is slightly
weaker (33). We remark that, in general, the behavior of the sequence is
somewhat chaotic. For instance, some of the entries "e:H.(UT'C(f)U)e; (0i{j¢s)
are not monotone increasing. Even for the diagonal entries, the behavior seems
to be somewhat complicated.

Nevertheless, it seems very likely that, under a suitable normalization, the
identity (36) can be generalized for any UEGL(s+1;Z ) even for f€Z [x] not
satisfying (1), cf. Observation () given below.

For convenience’ sake, we introduce the following:

Definition: Let feZ [x] be a monic polynomial, and p be a prime number. We
say that f is singular at p iff there exists a root A,*€Z , of f satisfing
[2:*]:.<1, and |A,¥].<|ksls,

for all the roots 1,#A,* of f in Z ,. The number 1,* will be referred to as the

singular root of f in Z ,.

Notice that f is singular at p if it has a unique root ¢€pZ ., so that any
monic f€Z [x] satisfying (1) is singular at p€Prime(f(0)). We put

Prime*(f):={p; f is singular at p}.

Obsevation (1 ): Let AEMo(s+1;Z ) be any matrix given by
A=U-'CU with UEGL(s+1;Z)

for the companion matrix C=C(f)EMo(s+1;Z ) of a monic polynomial f€Z [x], which

possibly does not satisfy (1). Let
Ho (UT'CU)=(hs “** 97 )osiss. 0ss5s, N20.

Then the limits
Lig hy 92 /h, -0 (1¢j¢s) in Z,

exist for all p€Prime*(f). Furthermore, a formula



Lin (ha® )" ha (=lim £(ha)) = CO4(1,*),
hn:=T(hn(o'1),...,hn(o'=)), hn:zT(hn(o'O),...,hn(o’3)),
AP#:=T(AP#’R:# )0~-’A:* )’

pEPrime* (f)

holds, where A,*¥€pZ , is the singular root of f.

Warning At the moment, (I ) is an observation in exact sense; so,
it has not proved yet. While, it seems very likely to work well as far as a few

experiments by computers tell us.

The following proposition is a special case of ({).

Proposition 1. Let f€Z [x] be a polynomial as in Lemma 1 satisfying (33),
and C=C(f) its companion matrix. Let U=(uij)osiss. 05iss€GL(s+1;Z ) satisfying
(34). Then

(i) H.(U-'CU) = EM(st1;Z),

(i) h. converges in Q, as n tends to infinity.
(i) lim ha* = ("U)4(25), 2,="(ks,...,1,*), where A,€Z, is the number

determined by f(i,)=0, A,€pZ ,.

We mean by <S> (SCZ-0:={1,2,3,...}) the multiplicative monoid generated by
S. We need three lemmas:

Lemma 12.
Let C=C(f), and

Let f=x**!'-c.x*-' --C1X-Co€Z [x] be a polynomial satisfying (1).

Hn(c) = EM(S+1;Z): l_ln=T(hn(l),00°)hn(8))’ d=lCOI

1o
[=}
)
eo]
")



as in Theorem 1. Let U=(ui;)osiss.o0sis2s€GL(s*t1;Z ) be a matrix satisfying
GCD(U10.Uzo,...,uso)E<Prime(d)>
GCD(uoo,d)=1, uo;EAZ (1£Yjss).

Then
1 Th,*
(i)* Ho* := Ho(U'CU) = H(H.(C)U) = EM(s+1;Z)
0 d°E.
with
The*=T(h,* ", ..., h.*(*?)€EZ )",

0¢ha* ¢92<d™ (14j¢s, n2l).

Lemma 12, (i)* corresponds to Lemma 1, (i)¥*.

Proof of Lemma 12. We prove (i)*¥ by induction on n. Using Lemma 1,

H. (U"'CU) ~ det C-U~'C'U ~ H.(C)U,

1 Th, Uoo 'Uox UootThiuxo "Uox+Th,U,
0 dE, Uxo U, dg*o du,
where

g*o:=T(uxo,U2o,...,Uso), go*I=T(U01,Uoz,...,u0s),

Ui:=(uisi)isiss, 1siss-

(37)

Recalling "h,€(dZ )®, we get uoo+"hiuxo=uoo#0 (mod d); and by (37), we see that

any common prime factor of du,o, duze, ..., duso should be a prime factor of d.

Hence, we get
GCD(uoo+"hiuxo,duso,duzo,...,duso)=1.
On the other hand, we have
T("uox+"h,U,)€E(AZ )®
by (37) and Lemma 1. Hence, we get

H,(U"'CU) = H(H.(C)U) ~ ~

I %
(=}
[oms)



~ EM(s+1;Z ), k.€(dZ )¢,

cf. Proposition 2, in Supplement (b), Section 7. Here, |det(dU.)|=|detC-C!|=d®,
so that U,;€GL(s;Z ). Hence (i)* is valid for n=1.
Assume that (i)* holds for some integer n21. It is clear that
Havt (UTICU) ~ d**'UIC7 27U ~ H(Ha+1 (C)U).
By the induction hypothesis, we get

Howt (UTICU) ~ d°C™"-dC™'U ~ Ho*-dC™'U

1 Th,* -Cc  CoE,
~ U
0 d°E. 1 0
_dn# Co Cohn#(l) Cohn#(Z) . Cohn#(n-l)
-Cc.d”
~ Q CodnEs—l U,
_Csd.‘l
dn TQ
where
dn# = Cl+02hn#(l)+’”+Cs—lhn#(s-l)_hn#(')- (38)
Hence, we obtain
de 0 0 0 0
—dn Co Cohn#(l) Cohn#(z) . Cohn#(s-l)
Hort (UTICU) ~ | —cod® U (39)
Q Cod"E.-,
_Csdn

By the induction hypothesis, we have h,* ¢’edZ for all 1¢{j¢s, so that (38)
implies d.=c, (mod d). Thus, we get GCD(d®,d.*)=1 by (1). Therefore, there

exist integers u., V. satisfying d"u.-d.v.=1. Hence, (39) implies



Un Va O d= 0 0 o --- 0
d, d® ~-d, Co (@) (@ --- (d)
How: (UTCU) ~ (d»)
O | D 0 Cod®E.-,
(d»)
L I I _
1 (d) (d) (d) (d)
O Codn (dn+l) (dn+l) . (dn+l)
~ | (@) U,
Q CodnEs—Z
(d»)
Hence, we get
1 K
How (UTICU) ~ U, lgnE(dZ)‘, PEM(s;Z ).
Q dn+lP

(40)

Since |det(H.+:(C))|=|det((detC-C *)"|=d® **'’  which together with (40) yields

PEGL(s;Z ), so that we obtain

1 Tkn
Hn+l(U-1CU) ~
0 d"*'E,
UO0+TKng*o Tgo*+TEnU1
dn+1g*o dn+lUl

Here, (40), respectively (37), implies GCD(uoo*"Kauxo,d)=GCD(uoo,d)=1, and
GCD(d**'uio, ..., d"*'u.0)€<Prime(d)>, so that

GCD(uoo+"Kalxo,d™* 'uio,.

Uoo Uox
Uxo U,
, say =K..

..,dn+lUs0)=1.

Hence, we can find a matrix VEGL(s+1;Z ) such that

—30—



Voo Vox Uoot Kalxo  "UoxtTKaU:

VKn
Y*O Vl dn+ll_1*o dn+lUl

Voo'(uoo+TEng*o)+d"+l'TXo*g*o Voo‘(TQO*+TEnU1)+ dn+l‘TYo*U1
= (41)
(Woot"Knlxo) Vxo + d**' Viuxo Vxo (TUoxt"kaUy ) +d>* ! -V, U,
1
= >K s
0
cf. Propositions 2, 3 in Supplement (b), Section 7. Therefore we obtain
(Woo+TKallxo) " Vxo + d™*! Viuso=0,
so that
(Uoo+"Knlxo) Vx0o=0 (mod d**'). (42)
On the other hand, it follws from (37) and the induction hypothesis that
GCD(uoo+ Kalxo,d)=GCD(uoo,d)=1,
which together with (42) implies
Vx0=0 (mod d°*'). (43)

Hence, in view of (41), (43), and
T(Voo‘(Tgo*+TEnU1)+ d"+l‘TYoxUl)€ﬁiZ)°,

we get

1 Tkn+l

Hn+x(U'1CU) = H(Hn+1(C)U) ~ , En+1EQjZ )s.
Q dn+lw

Since |det(H..,(U™'CU))|=d®* **", we have WEGL(s+1;Z ), which implies (i)* with

ntl in place of n, which completes the proof of (i)*. B

Lemma 13. Let f=x**'-c.x*-----c1Xx-Co€Z [x] be a polynomial satisfying (33).
Then



ind (x)=v, (Tha*x)=v, (T1,Ux)
U-'CU = = = = =

holds for all x:="(Xo,X1,...,X:)€Z*"", where
hn=T(hn(o),hn (l),---,hn(S) ):=Hne0,
ip:=(l)lpn~--’lps)

with A, as in Theorem 1.

Proof. Note that (33) implies (1). For any x€Z **', we have the following

equivalences:

ind (x)=m <= U 'C"UXEZ**' § U"'C ™ 'Ux¢Z**!*
U-'Cu = = =

pram—y me-IC-mU§Eme s+1 & pm+lU-IC-m-lU§$pm+lz s+1
— HngepZ s+1 & Hm+1U)=($pm+lZ s+l.

In view of Theorem 1, and Lemma 12, we get

1 Th.* Uoo+ hallxo  "Uox*+ThaU:
Ho* = ~ H,U =
0 p°E, P uxo p"U,
.A_P
E U (mod p®),
Os.s+1

where, for a,f€EZ ,, we mean by a=f (mod p®) that v,(e-8)2n. Thus, we get

ind (x)=n <= v, ("h.*x)=n <= v, ("1, Ux)=n. §
U-'CU = = =) ( = =)

Lemma 14. Let ¢="(1,a1,...,0.), $="(Bo,..., 8.)€EZ ,**'. Suppose that
v, (Ta-x)=v,(Tf-x) holds for all XxEZ **'. Then
(er, .. 00)=2("(Bo, ..., B))=Bo - T(By,....8.).
Proof. Setting x=e; in v, (Ta-x)=v,("-x), we get
a;=t;B; (e€Z,*:={¢€Z,; |el,=1}, 0&jss, ao:=1).
Hence, setting Xo:=-aw, x«:=1 (k#0), x;:=0 (j#0,k), we obtain
0=-Boax+fr=(-Botu*1)Bx,

so that ¢«=8o"'. We can choose any 1<k¢s, we get the lemma. §

Proof of Proposition 1. The statements (i-ii) in Proposition 1 are clear




from Lemmas 12-14. 1

§7. Supplements and an Appendix. We give two supplements (a), (b), and

and an appendix (c). The supplement (a) gives a structure to the set Z**!' not
only as a Z-module, but also a ring with respect to a given polynomial f€Z [x]
satisfying (1), and a given prime factor p of f(0). We give an algorithm of a
kind of multidimensional continued fraction expansion, and a Proposition 2 in

the supplement (b).

(a) Let feZ [x] be a monic polynomial satisfying (1), and 1, (p€Prime(f(0))
be as in Section 0. We put
F:=Q(1,)CQ,.
Let » be a map defined by
p: Z2°*t' — F,

.= . j -T s+1
p(x)i= 2 Xk, x=T(Xo, ..., Xs)EZ"!,

It is clear that Im g=Z [k,], which is a subring of the valuation ring
O(F ):={a€F ; |al,¢1} of F. Notice that O(F )3,/p¢Im ¢, and Im § is not a

ideal of O(F ). We have the following exact sequence:

I
{0} — Ker pt — Z**' —s Im 3 — {0}.

If f€Z [x] is irreducible, then Ker p={0}. Hence, we can identify Z **' with
Z [1,] not only as a Z -module, but also as a commutative ring with a unit.
Namely, the lattice Z**' becomes a commutative ring, with respect to the
multiplication

xy:=pt(e(x)e(y))eEZ ="t (x, yEZ **1),

with eo as its unit.

In the proof of Lemma 12, we used the fact that for any given vector
a="(ao,21,...,2.)EZ**" with GCD(ao,a1,...,a.)=1, there exists a vector beZ **!
satisfying "a-b=1. This fact is a direct conclusion of that Z is a principal
ideal ring. We can find b by applying the Euclidean algorithm among integers
@0, a1, ..., a.. The problem is that the bigger is the number s, the harder is
the practical calculation to find b. The following continued fraction algorithm

can resolve such a problem.



(b) Let 2:=[0,1)* be the unit cube of dimension s, and Q: (0{i&s-1) be its
subsets defined by
Qi:={"(X1,...,Xs)€Q; x;=-=X;-:=0, x;#0}, 1&igs.
Then
o\fo} = LJ 0

1sTSs
is a disjoint union, so that we can define a map
t: 0\{0} — R,
t(x):=T:(x) iff x€Q; (1£i¢s)
where

Ti: & — R=*, Ti(x):=(R")s(x),

R := EGL(s+1;Z).
1 0

Recalling the definition of T in Section 3, we see that T=(R™')s, and
T ' (x)=T.(x) (x€00). Hence, we have

T-1(x)=T: (x) (x€0Q:, 1&igs).
We write

1

X

T'(x) =:

(i

as far as T'(x) is well-defined. Then, for any x€Q\{0}, we may assume that x€Q;

for a number 1£i¢s, and then, we can write

1
x =TT ' (x)) = T (Ti(x)) = —;:zg;-(l.
We set
lx]==T(lx.],..., [x.1)EZ *,
<x>:=x-1x]€quU {0},
0 (x):=1(<x>).
for x="(x1,...,xs)ER*. Now, we can define an algorithm of a continued fraction

expansion for x€R *°.

(Algorithm) For a given vector xER *, we define a.€Z * by the following

procedure:
*¥) a.:=le*(x)] (n20) if <e™(x)>#0 for all 0¢m<n,

namely,



0) ao:=lx], xo:=<x>(=6(x)>),

1) if x0#0, then choose 1<¢:¢s such that x.€Q; ,
and set a::=[T; (xo)], x:1:=<T, (x0)> (=<0 (x)>),

2) if x:#0, then choose 1<¢.¢s such that x.€Q.,,

and set az:=[T;, (x:1)], X2:=<T;, (x:)>(=<0%(x)>),

n) if x.-:#0, then choose 1{t.<¢s such that x.-.€Q; ,

and set a.:=|T; (Xa-1)], Xa:=<Tg, (Xa-1)> (=" (x)>),

We denote by ¢.(x) the number determined above by the algorithm for a given
xER *. We say that the algorithm terminates iff there exists a number n20 such

that <¢”(x)>=0. We can show the following

Proposition 2. (i) The algorithm terminates if and only if x€Q®.

(i) Let x€EQ*®, and suppose
<6™(x)>#0 for all 0¢m<n, and <o¢"(x)>=0.
Then

X:=1(Pags)=(Pa )7 T(Pa V), P ),
where
Po=(Po-s+;i ‘"’ )osiss. 0sis:EGL(s+1;2Z),

Pa:=hoSt 1At 2 A, st A, = (x), Si=RE,

An := . am:=lo™(x)] (0<mén, Po:=A,).

Proof. It is clear that x€Q*®, if the algorithm terminates. We prove that
the algorithm terminates for any x€Q *. Since the assertion is clear when <x>=0,
we suppose Xo=<x>€Q *\{0}. Then we can set

Xo=(ro (@) 1-T(ro 1, .. ,ro),
ro ®€Zso, T(ro',...,1r0)EN"\{0},
GCM(ro ¢ ,ro ‘"), ..., ro®)=1,

0<ro 2<ro ¢ (1¢Viss),



where N :={0,1,2,...}, Zs0:=N\{0}. The number r,‘®’ is referred to as the

denominator of xo,=<{x», and denoted by den(x,). We may suppose <x>€Q; (1%¢.¢s).

Then
6 (x)=1(x>)=T; , (Kx>)=T;  (x0)

=(r0(51))_1,T(ro(51+1)’r0(51+2)’.. .,ro(el-l)).

.’ro(s)’ro(o)’ro(l)’..
Hence, we get
den(xi) = den(<T;, (x0)>) € ro'*') < den(xo).
Repeating the argument, we have
den(xo) > den(x:) > -+ > den(xa) 2 1,

as far as <¢™(x)>#0 for all 0¢m<n. Hence, den(x.)=1 for a number n, i.e., x.=0,
which implies (i).

We prove (ii). We suppose <¢”(x)>#0 for all 0¢m<n, and <¢”(x)>=0. Then, by the

algorithm, we have

|
X = a0 + (e1 . (44)
1
a; + (52
az + ‘
1 .
.+ (8
an
On the other hand, for an s-tuple variables &é=T(¢,,...,£¢.), we have
8m_1
(Am)#(s )#(5) = 8m + (5m,
which is an s-tuple of rational functions€Q (¢)®. Taking ¢:=7(0,...,0,¢°!) as in

the proof of Lemma 6, we get by Lemma 5
1((Pa)e (k(T(E,0,...,0,1))))=(x(Pa)xx) (1,0,...,0,¢°)
=(Pa)e ()= (AS* 1A 2 Dy (A8 Dy g (A0) 4 (8).

Hence, we get

1 ((Pa)x(k(7(£,0,...,0,1))))

1
= Qo + (81 (45)
1
a: + (52
a; +
1 .
+ (¢
1
a, +
§

__3(3__



Since 1/€=T(¢)=feo, setting £=0, we get by (44), (45) the identity
x=1(P.e.),

which implies the formula (i). N

Proposition 2 gives an alogorithm to find a vector b€Z * for any given vector
a="(ao,a1,...,8.)€Z**" with GCD(ao,a:,...,a,)=1. In fact, suppose such a
vector a is given. Then, since a#0, we may suppose a,#0, changing the order of
ao, ai, ..., a, if necessary. We put x:=(a0) ' "(a:,...,a.). Apply the algorithm
of our continued fraction expansion for x. Then it terminates. So, let P. be as
in Proposition 2. Then we have

(Pa @) 1 T(pa ‘P, ., Pa )= (Pags)=x=(a0) "' - T(a1,...,2s).
Since P.EGL(s+1;Z ), GCD(pa ‘®’,pa‘"’,...,Px‘*’)=1, so that
TP P,pa e ) = ¢ T(a0,a1,...,84), e=El.

Hence, setting b= ¢3 T(Pos,Pis,...,Pss) (§:=det(P.)=%1), we get Ta-b=1, where we

mean by p:; the (i, j)-cofactor of the matrix P..
Using the fact mentioned above, we can show the following

Proposition 3. For any matrix A=(ai;)osiss.osissEM(s+1l;Z ) such that

GCD(ao0i,...,a:;)=1, we can construct a matrix U=U(i)€GL(s+1;Z ) such that
UAe;=e;

for any 0¢i¢s. In particular, we can construct a matrix UEGL(s+1;Z ) such that 1

is an eigenvalue of UA, and the vector e; becomes an eigenvector with respect to

the eigenvalue 1.

Proof. If necessary, we can exchange some of the row vectors of A, and we
may assume that ao;#0. To be precise, we rewrite the vector MPe; (MeGL(s+1;Z)
to be "(aoi,...,a:;) so that ao;#0, and GCD(2o;,...,a.:;)=1. We can construct a
matrix P=P,€GL(s+1;Z ) such that

Pe.="(a0;,...,8s3)

by applying the continued fraction algorithm for (aos)~'(ais,...,a.;). We put
§.=T(g0’-.o’gs):=8'T(BOS).-'!533)’ 8:=det P’

where P=(pi;)osiss. 0siss, and pi; is the (i, j)-cofactor of P. Then "g-a=1. Now,

we can construct a matrix WEGL(s+1;Z ) such that



wgsza'T(BOS,-..,Sss);

by applying the continued fraction algorithm for (Pos) ' "(Pis,...,Pss). Let L
be the matrix obtained from "W by exchanging the final row (i.e., the s-th row)
with the i-th row. Then "e:LMAe;=1. Hence, by sweeping out the j-th column of
LMA with the (i, j)-component as a pivot, we get

KLMAe;=e:, KEGL(s+1;Z),

which implies Proposition 2. 1

We remark that, in the proof given above, all the matrices K, L, and

MEGL(s+1;Z ) are effectively constructive for any given AeM(s+1;Z ).

(c) For a, BEQ,, we write
a =8 (p°)
iff |a-B|.$p~° (e€Z). We denote by M(v,w;S) the set of matrices of size vxw
with entries€S, by 0*(F ):={¢€0(F ); |¢|,=1}, the set of units in O(F ). We
write
AzB (p°) for A=(a:;), B=(B:;)eM(v,w;0(F))
iff
a¢i; = Bis (p°) for all 1£isv, 05jsw.

We note that, for a, fEQ,**!,

¢ =p (p°) == Ug = U (p°) for a matrix UEGL(s+1;0(F))

T8V (p°) for a matrix VEGL(s+1;0(F ));

> Tgy

and for A, BEM(s+1:Q,),
A =B (p°) «— UA

UB (p°) for a matrix UEGL(s+1;0(F)),
BV (p°) for a matrix VEGL(s+1;0(F)),
where GL(s+1;0(F ))={UeM(s+1;0(F )); det UEO*(F )}. We set

<> AV

As
hy := EM(s+1;Z [1,]),
Os,s+1

where
Lo=T(1,Ae, 002, .00, 050)
with 1, as in Section 0. Then, we can write by Theorem 1
H(d*C ®)=zA, (p*‘®’®) for n20, pePrime(f(0)),

so that



d*V.C "=h, (p° "),
where V. is a matrix determined by
d*V.C "=H(d*C"*), V.€GL(s+1;0(F)).
Hence,
d*V.C *U=A,U (p°™’*)
for any UEGL(s+1;0(F )), namely
d"Wa (UT'C1U)=A,U (p*®’ "), Wa:=V.UEGL(s+1;0(F)). (48)
Let H.*EMo(s+1;Z ) be the hermitian canonical form of the n-th power of the
adjugate matrix of U !CU for C=C(f)EMo(s+1;Z ). Then
Ho*=d*V.*(U"'CU) ~"=d*V.*(U~'C'U)", (47)
where V,.*€GL(s+1;0(F )) is a matrix determined by n. In view of (48), (47), we
get
Vo*=d " "H,* (U 'CU)"=d "H.*(d"U~'A, " 'Wa)=H. *U~'A, " 'Wa,
Ho*=Vo*Wa " 'A,U (p° 20 7).

Can we show (i) by using (a), (c), and some of the arguments in the proofs

of Lemmas 12-14?

Related to the continued fractions given in Theorem 2, and in Corollary 1,
we have seen that they converge to
8(P)=T(Co™"hp,Co %hp%,..,Co %" )EQ " (48)
with respect to p-adic topology for all p€Prime(f(0)); but, in general, they do
not converge in R, as we have mentioned in Remark 7. The convergence in R
depends on the distribution of the zeros of the polynomial f on the complex
plane C. We can show that the continued fractions converge to
8(w)="(co 'a,Co %a?,..,Co "a*)ER *,
which is obtained by taking A-:=e€R instead of 1, in 8(p) given by (48), for f
possibly not satisfying (1) but satisfying the following condition (1 ):

(1) f is irreducible, has a real root «, and |al<|8| for all the

roots BeC of f different from a.

Such a result may be given in a forthcoming paper. Notice that if ¢ ! is a

Perron number and if f is its minimal polynomial then (9 ) follows. Probably the



irreducibility in (1) is not essential, but the primitivity of C(f) may be
essential. Recall that the irreducibility of f in Z [x] is independent of the

convergence of the p-adic values of our continued fractions.
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