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Abstract

We investigate regions of bistability between different travelling and stationary structures

in a planar singularly‐perturbed three‐component reaction‐diffusion system that arises in the

context of gas discharge systems. In previous work, we delineated the existence and stabil‐

ity regions of stationary localized spots in this system. Here, we complement this analysis
by establishing the stability regions of planar travelling fronts and stationary stripes. Taken

together, these results imply that stable fronts and spots can coexist in three‐component sys‐

tems. Numerical simulations indicate that the stable fronts never move towards stable spots
but instead move away from them.
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§1. Introduction

We are interested in bistability between stable planar front and spot solutions in

the context of the planar three‐component reaction‐diffusion system

u_{t}= $\epsilon$^{2}\triangle u+u-u^{3}- $\epsilon$( $\alpha$ v+ $\beta$ w+ $\gamma$) ,

(1.1)  $\tau$ v_{t}= \triangle v+u-v,

 $\theta$ w_{t}=D^{2}\triangle w+u-w

that was proposed by Purwins [10, 11] as a phenomenological model for gas‐discharge

systems. Here, we will always take x=(x_{1}, x_{2})\in \mathbb{R}^{2} ,
use the notation U=(u, v, w) ,

and assume that D>1,  $\tau$,  $\theta$>0 ,
and  $\alpha$,  $\beta$,  $\gamma$\in \mathbb{R} are fixed independently of the positive

parameter  $\epsilon$.

The dynamics of (1.1) for not necessarily small values of  $\epsilon$>0 has been studied

previously in many papers through formal analyses and numerical simulations, and we

refer to [4, 9, 10, 11, 12, 13] for representative works. Another work we wish to highlight
is [8] in which Nishiura and his coworkers investigated the effect of head‐on collisions of

counterpropagating 1\mathrm{D} pulses and radial 2\mathrm{D} spots of (1.1): their results indicate that

unstable stationary states of saddle type, termed scattors in [8], determine the fate of

localized structures at collision. For general values of  $\epsilon$
,
not much can be said rigorously,

and we therefore focus from now on on the regime  0< $\epsilon$\ll 1 where geometric singular

perturbation theory can be used to analyse (1.1).
We begin by briefly discussing the properties of the homogeneous rest states that

serve as the background states of the planar structures we will consider. The system

(1.1) has precisely three stationary homogeneous solutions U(x, t)=U_{*}^{j}:=u_{*}^{j}(1,1,1)
with j=0, \pm

,
where  u_{*}^{\pm,0} denote the three roots

(1.2) u_{*}^{\pm}=\displaystyle \pm 1\mp\frac{1}{2} $\epsilon$( $\alpha$+ $\beta$\pm $\gamma$)+\mathcal{O}($\epsilon$^{2}) , u_{*}^{0}= $\epsilon \gamma$+\mathcal{O}($\epsilon$^{2})
of the cubic polynomial u^{3}-u+ $\epsilon$(( $\alpha$+ $\beta$)u+ $\gamma$) . The homogeneous rest state U_{*}^{0} is

always unstable with respect to (1.1) and will not be considered further.

Next, we describe the three different kinds of localized solutions U(x, t) of (1.1),
namely stationary spots, planar travelling fronts, and planar stripes, that we are inter‐

ested in. Spots are time‐independent radial solutions U(x, t)=U^{\mathrm{s}\mathrm{p}}(\mathrm{x}) with  U^{\mathrm{s}\mathrm{p}}(|x|)\rightarrow
 U_{*}^{-} as |x|\rightarrow\infty . Planar fronts can be taken to travel in the  x_{1} ‐direction and therefore

correspond to solutions of the form U(x, t)=U^{\mathrm{f}\mathrm{r}}(xct) where U^{\mathrm{f}\mathrm{r}}(\mathrm{X}) converges to U_{*}^{\pm}
as  x_{1}\rightarrow\pm\infty . Similarly, we may consider planar stripes, which are stationary solutions

of the form  U(x, t)=U^{\mathrm{s}\mathrm{t}}(\mathrm{X}) that converge to U_{*}^{-} as  x_{1}\rightarrow\pm\infty . For  0< $\epsilon$\ll 1 ,
fronts

will resemble a sharp interface that connects U_{*}^{-} and U_{*}^{+} ; similarly, stripes will consist

of a plateau with value U_{*}^{+} that is separated by two sharp monotone interfaces from the
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rest state U_{*}^{-} . In particular, we can measure the width of a stripe by the plateau length.
We remark that spots and stripes that converge to U_{*}^{+} can be obtained by multiplying
the solutions U asymptotic to U_{*}^{-} and the associated parameter value  $\gamma$ by -1.

Planar front and stripe profiles depend only on x_{1} and therefore satisfy the one‐

dimensional version of (1.1). Their existence and stability has been studied recently
in [2, 3, 5] in the regime 0< $\epsilon$\ll 1 ,

and we summarize their results in the following
theorem.

Theorem 1.1 ([2,3,5 Fix D>1,  $\tau$,  $\theta$>0 ,
and  $\alpha$,  $\beta$,  $\gamma$\in \mathbb{R} . Equation (1.1)

then has a travelling fr ont U^{\mathrm{f}\mathrm{r}}(x_{1}-ct) with speed c\displaystyle \approx\frac{3}{\sqrt{2}} $\gamma \epsilon$^{2} that is stable with respect

to 1D perturbationsl for each 0< $\epsilon$\ll 1 . Furthermore, if there is an L>0 such that

 $\alpha$ \mathrm{e}^{-2L}+ $\beta$ \mathrm{e}^{-2L/D}= $\gamma$ ,
then (1.1) admits a planar stripe  U^{\mathrm{s}\mathrm{t}}(\mathrm{X}) of width approximately

equal to 2L for each 0< $\epsilon$\ll 1 ,
and this stripe is stable with respect to 1D perturbations

provided  $\alpha$ \displaystyle \mathrm{e}^{-2L}+\frac{ $\beta$}{D}\mathrm{e}^{-2L/D}>0.
One consequence of the preceding result is that planar travelling fronts exist regard‐

less of the values of the fixed parameters and that they are always stable with respect

to small perturbations that depend only on x_{1} . The next theorem, which is the main

result of this paper, gives conditions under which planar fronts are spectrally stable

with respect to 2\mathrm{D} perturbations associated with finite transverse wave numbers.

Theorem 1.2. Fix D>1,  $\tau$,  $\theta$>0 ,
and  $\alpha$,  $\beta$,  $\gamma$\in \mathbb{R} and pick any constant k_{*},

then the planar travelling fr ont U^{\mathrm{f}\mathrm{r}}(x_{1}-ct) of (1.1) given in Theorem 1.1 is spectrally
stable for 0< $\epsilon$\ll 1 with respect to perturbations whose transverse wave number k

satisfies |k|<k_{*} provided  $\alpha$+\displaystyle \frac{ $\beta$}{D}<\frac{2\sqrt{2}}{3}.
Note that we do not state a spectral stability result for perturbations with arbitrary

large transverse wave numbers k . While we believe that Theorem 1.2 is true for each

wave number k
,
a rigorous proof is technical, and we decided not to pursue this direction.

If the planar front is spectrally stable with respect to all transverse wave numbers, then

the results in [7] indicate that it is nonlinearly stable with respect to small perturbations
in H^{2}() : the results in [7] are stated for diffusion matrices that are multiples of the

identity but should carry over to the general case of positive diagonal diffusion matrices

under the assumption of spectral stability.
In Figure 1, we compare the time evolution of a stable planar travelling front that

travels to the left with the predictions of Theorems 1.1 and 1.2 using direct simulations

of (1.1). To illustrate the stability predictions of Theorem 1.2, we plot in Figure 2 the

evolution of stable and unstable planar fronts.

Having discussed our stability results for planar fronts, we now recall the existence

and stability properties of planar spots from [6].
lThat is, with respect to perturbations that depend only on X1.
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Figure 1. Shown are color plots of the u‐profile of the stable planar travelling front

of (1.1) at different times. Black corresponds to u=u_{*}^{-} ,
while white corresponds to

u=u_{*}^{+} . The white diamond indicates the theoretically predicted position of the front

at which the u‐component vanishes. The parameter values are given in Table 1.

Figure 2. Plotted are color plots of the u‐components of the initial condition in panel

(i) and the emerging stable and unstable fronts in panels (ii) and (iii), respectively, for

the two different sets of parameters given in Table 1. The front shown in panel (iii)
is unstable for wave numbers |k|<1.93 with k=1.13 being the most unstable wave

number.



Coexistence 0F spots and fronts 139

Figure Effect

stable front

slows down stable front2 (ii)
2 (iii)

-0.5

-0.5

-0.5

-1.2

-0.5

-0.5 destabilizes front

[-3.0, 0.5] stable front interacts with spot0.5

0.5 -0.5 two fronts move towards unstable spot

stable stationary pulse0.5

0.5

0.5

0.5 stable stationary pulse and spot

Table 1. The table gives a summary of the parameter values used in our simulations

and indicates the effects of parameter changes on the dynamics of spots and planar
fronts. Throughout, we have  $\epsilon$=0.1,  $\tau$=1

,
and  $\theta$=1 . We used a numerical code by

Ueda [9] with a 5‐point discretization of the Laplacian on a square of length 20 with

200 equidistant mesh points in each spatial direction and a semi‐implicit scheme in time

that uses conjugate gradients with incomplete Cholesky.

Theorem 1.3 ([6]). Fix D>1,  $\tau$,  $\theta$>0 ,
and  $\alpha$,  $\beta$,  $\gamma$\in \mathbb{R} . Assume that L>0

is a simple root of the function2

(1.3) R(L; $\alpha$,  $\beta$,  $\gamma$, D) :=\displaystyle \frac{\sqrt{2}}{3L}+ $\alpha$(2LI_{1}(L)K_{0}(L)-1)
+ $\beta$(\displaystyle \frac{2L}{D}I_{1}(\frac{L}{D})K_{0}(\frac{L}{D})-1)+ $\gamma$,

then (1.1) admits a stationary radial spot solution U^{\mathrm{s}\mathrm{p}}(|x|) with width approximately

equal to 2L for each 0< $\epsilon$\ll 1 . If, in addition,

(1.4) $\lambda$_{n}(L)=3\sqrt{2} $\alpha$ L(I_{1}(L)K_{1}(L)-I_{n}(L)K_{n}(L))

+3\displaystyle \sqrt{2} $\beta$\frac{L}{D^{2}}(I_{1}(\frac{L}{D})K_{1}(\frac{L}{D})-I_{n}(\frac{L}{D})K_{n}(\frac{L}{D}))+\frac{1-n^{2}}{L^{2}}
is strictly negative for all integers n with |n|\neq 1 ,

then the planar spot is spectrally, and

therefO re nonlinearly, stable with respect to small radial and non‐radial perturbations.

The quantities $\lambda$_{n}(L) in the preceding theorem correspond to the rightmost eigen‐
values $\epsilon$^{2}($\lambda$_{n}(L)+\mathcal{O} of the linearization about the spot that belong to eigenfunctions
with angular wave number n . Spots can destabilize through Hopf (|n|=0,2,3, \cdots) and

drift (|n|=1) bifurcations upon increasing the parameters  $\tau$ and  $\theta$
,

and we currently

2The functions  I_{j}(z) and K_{j}(z) are the modied Bessel functions of the first and second kind,
respectively, with index j and argument z[1].
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work on identifying parameter regimes where the drift bifurcation is supercritical and

leads to stable travelling planar spots for (1.1).
We are now in a position to study the coexistence of stable spots and spectrally

stable planar fronts by comparing the parameter regimes given in Theorem 1.2 and

Theorem 1.3.

Corollary 1.4. Fix D>1,  $\tau$,  $\theta$>0 ,
and  $\alpha$,  $\beta$,  $\gamma$\in \mathbb{R} such that  $\alpha$+\displaystyle \frac{ $\beta$}{D}<\frac{2\sqrt{2}}{3} . If,

in addition, (1.3) has a simple root L>0 for which $\lambda$_{n}(L)(1.4) is strictly negative for
all integers n with |n|\neq 1 ,

then a planar stable stationary spot and a travelling front
coexist for all 0<| $\epsilon$|\ll 1 . In particular, the point ( $\alpha$,  $\beta$,  $\gamma$, D,  $\tau$,  $\theta$)= (0.5,1,0.5,3,1,1)
is in the coexistence parameter regime.

Thus, stable travelling fronts and stationary spots can coexist in three‐component

systems and may therefore interact. The numerical simulations shown below in Figure 3

suggest, however, that the stable front is always moving away from the stable stationary

spot.

The remainder of this paper is organized as follows. In §2, we present a series of

numerical simulations to illustrate the interaction dynamics of fronts, stripes, and spots.

Section 3 is devoted to a proof of Theorem 1.2 via geometric singular perturbation

theory.

§2. Interaction of fronts, stripes, and spots

We explore the dynamics of stable fronts and spots in the coexistence regime using
numerical simulations. We also investigate the interaction of unstable structures that

involve fronts, stripes, and spots. Finally, we analyse the existence and stability of

planar stripes.

§2.1. Spot‐front interaction

Corollary 1.4 implies that stable planar travelling fronts and stationary spots coex‐

ist in appropriate parameter regimes. It is then possible for these structures to interact

through their tails, and we illustrate their interaction properties in Figure 3 using numer‐

ical simulations of (1.1). The system parameters ( $\alpha$,  $\beta$, D,  $\tau$,  $\theta$,  $\epsilon$)= (0.5,1,3,1,1,0.1) are

fixed during the numerical simulations, while we vary the forcing parameter  $\gamma$ between

-3 and 0.5. For this range of parameter values, we have

 $\alpha$+\displaystyle \frac{ $\beta$}{D}=\frac{5}{6}<\frac{2\sqrt{2}}{3},
and Theorem 1.2 implies that there exists a stable traveling front U^{\mathrm{f}\mathrm{r}}(x_{1}-ct) for these

parameter values. Furthermore, this front moves to the right for  $\gamma$>0 and to the left
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front \mathrm{U}^{\mathrm{f}\mathrm{r}} spot \mathrm{U}^{\mathrm{s}\mathrm{p}}

0 <  $\gamma$ < 0.431

one unstable spot
two unstable spots

0.431 <  $\gamma$ < 0.653 one stable, one unstable spot
0.653 <  $\gamma$

stable: moves to the left

stable: moves to the right
stable: moves to the right
stable: moves to the right no spots

Table 2. The table summarizes the results on existence, stability and velocity for

traveling fronts  U^{\mathrm{f}\mathrm{r}}(x_{1}-ct) and stationary radial spots U^{\mathrm{s}\mathrm{p}}(|x|) for varying  $\gamma$ ,
see

Theorems 1.2 and 1.3. The other parameters are kept fixed: ( $\alpha$,  $\beta$, D,  $\tau$,  $\theta$,  $\epsilon$)=
(0.5,1,3,1,1,0.1).

for  $\gamma$<0 . On the other hand, Theorem 1.3 shows that a single unstable radial spot

U^{\mathrm{s}\mathrm{p}}(|x|) exists for these parameter values provided  $\gamma$<0 . For  $\gamma$>0 ,
the situation is

slightly more complicated. For 0< $\gamma$<0.431 ,
there exist two unstable radial spots

U^{\mathrm{s}\mathrm{p}}(|x|) : the wider spot stabilizes at  $\gamma$=0.431 and merges and disappears with the

second unstable radial spot at  $\gamma$=0.653 in a saddle‐node bifurcation. We summarize

these results in Table 2.

In Figure 3, we present numerical simulations for values of  $\gamma$ in the different regions
shown in Table 2. In the top frame, we have  $\gamma$=0.5 : we see that the front moves

away from the spot, and no genuine interaction leading, for instance, to annihilation,

repulsion, or soliton‐like transmission occurs for this set of systems parameters, as was

expected from the results for the single objects. We believe that stable fronts will always
move away from stable spots (at least for 0< $\epsilon$\ll 1 ) but are not able to prove this:

some analytical evidence is presented below. We remark that the front stops moving
when it approaches the boundary: instead, it forms a stationary stable stripe U^{\mathrm{s}\mathrm{t}}(x_{1}) .

This is expected as we use Neumann boundary conditions and, as we shall show in §2.2,
the system exhibits stable stationary stripes for the parameter values used.

In the remaining frames of Figure 3, the radial spot is unstable, and the simulations

therefore illustrate the interaction of a stable front (moving to the left or to the right)
with an unstable spot. In all these cases, the unstable spot grows in diameter with a

speed that increases as we decrease  $\gamma$ . The growth in diameter of the unstable spot

continues until the spot comes close to the stable front. For small  $\gamma$ ,
front and spot do

not collide, but they interact strongly and change their shape. For  $\gamma$\gg 1 ,
front and

spot collide, and no patterns remains; see the bottom frame of Figure 3.

Figure 4 explores the situation where an unstable spot is sandwiched between two

stable planar fronts that move towards the spot. Initially, the spots expands radially
but its growth is eventually checked by the inwards moving fronts, who cause the spot

to shrink in size until it disappears. The final pattern that emerges is a stationary
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t=0 t=100 t=40(

 $\gamma$=0.5

 $\gamma$=0.4

 $\gamma$=0.1

 $\gamma$=0

 $\gamma$=-0.1

 $\gamma$=-0.5

t=0 t=20 t=40

 $\gamma$=-3

t=800 t=1200 t=2000

t=80 t=110 t=150

Figure 3. Shown are color plots of the u‐component of solutions of (1.1) at different

times for different values of the forcing parameter  $\gamma$ . The other parameters are fixed

as in Table 1, and the initial condition consists in all cases of a square structure glued

together with a stable front. The top frame illustrates the interaction of stable spots

and stable planar travelling fronts. The spot structure evolves towards the stationary

spot, while the front travels away from the spot and is slowed down when it approaches
the boundary. In the other frames, the spot is unstable and grows in diameter until

it begins to interact with the traveling front. For | $\gamma$| large enough, the spot and front

collide as illustrated in the bottom frame. See also Table 2.
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Figure 4. The time frames presented here illustrate the interaction of an unstable spot

with two stable planar travelling fronts that move towards the spot from either side.

After initially expanding, the spot is pushed back by the fronts until the spot disappears
and the fronts merge to form a stationary stable stripe. We shall show in Lemma 2.1

below that (1.1) admits a stable stripe for the parameters in this simulation, which are

given in Table 1.

stable stripe that consists of the two fronts that are glued together. The existence and

stability of such stripe patterns will be studied in § 2.2 below.

In the remainder of this section, we discuss the conjecture mentioned in the begin‐

ning of this section:

Conjecture: Stable planar travelling fronts always move away from stable station‐

ary radial spots.

We now try to prove the preceding statement. Since the spots in Theorem 1.3

asymptote to U=U_{*}^{-} as |x|\rightarrow\infty ,
and the planar front profiles  U^{\mathrm{f}\mathrm{r}}(x_{1}-ct) we consid‐

ered satisfy U^{\mathrm{f}\mathrm{r}}(x_{1}-ct)\rightarrow U_{*}^{\pm} as  x_{1}\rightarrow\pm\infty ,
we need to place the front to the right of

the spot. Thus, the speed  c of the front U^{\mathrm{f}\mathrm{r}}(x_{1}-ct) needs to be negative if the front

is to move towards the spot. Theorem 1.1 shows that such fronts exist for 0< $\epsilon$\ll 1

if, and only if,  $\gamma$<0 . Theorem 1.2 shows in addition that the resulting planar fronts

are stable provided  $\alpha$+\displaystyle \frac{ $\beta$}{D}<\frac{2\sqrt{2}}{3} . In summary, the desired stable planar front exists if,
and only if,

(2.1)  $\gamma$<0 and  $\alpha$+\displaystyle \frac{ $\beta$}{D}<\frac{2\sqrt{2}}{3}.
From now on, we therefore assume that (2.1) is met. To prove the conjecture, we would

then need to show that spots are unstable whenever (2.1) holds. The existence and

stability properties of spots are given in Theorem 1.3, and we assume that L=L_{*}>0

is a root of the function

 R(L; $\alpha$,  $\beta$,  $\gamma$, D)=\displaystyle \frac{\sqrt{2}}{3L}+ $\alpha$(2LI_{1}(L)K_{0}(L)-1)+ $\beta$(\frac{2L}{D}I_{1}(\frac{L}{D})K_{0}(\frac{L}{D})-1)+ $\gamma$
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Figure 5. Plotted is the graph of  R(L; $\alpha$,  $\beta$,  $\gamma$, D) from (1.3) as a function of L for  $\gamma$<0
in the left panel and for  $\gamma$>0 in the right panel. Note that roots with negative slopes

correspond to unstable spots, while roots with positive slopes give spots that are stable

with respect to radial perturbations.

given in (1.3) that governs the existence of spots. We observe that its derivative

R_{L}(L_{*}; $\alpha$,  $\beta$,  $\gamma$, D) is proportional to the quantity $\lambda$_{0}(L_{*}; $\alpha$,  $\beta$, D) given in (1.4) that

corresponds to the rightmost PDE eigenvalue of the spot belonging to a radial eigen‐
function. More precisely, we have

(2.2) R_{L}(L_{*}; $\alpha$,  $\beta$,  $\gamma$, D)=-\displaystyle \frac{\sqrt{2}}{3}$\lambda$_{0}(L_{*}; $\alpha$,  $\beta$, D) ,

and the spot is unstable with respect to radial perturbations if, and only if, the graph of

R(L; $\alpha$,  $\beta$,  $\gamma$, D) crosses zero with negative slope as L increases through L_{*} . As illustrated

in Figure 5, we have

(2.3) \displaystyle \lim_{L\downarrow 0}R(L; $\alpha$,  $\beta$,  $\gamma$, D)=\infty and \displaystyle \lim_{L\rightarrow\infty}R(L; $\alpha$,  $\beta$,  $\gamma$, D)= $\gamma$.

We can therefore label positive roots of R with increasing magnitude and conclude that

roots of R with odd labels correspond to unstable spots, while spots corresponding to

even‐labelled roots are stable with respect to radial perturbations (though they could

still be unstable with respect to nonradial perturbations). In particular, the conjecture
is true if (2.1) is met and if R(L; $\alpha$,  $\beta$,  $\gamma$, D) has at most one root or, slightly stronger,
if $\lambda$_{0}(L; $\alpha$,  $\beta$, D) has no root. If  $\alpha$ and  $\beta$ are both negative, we can use [6, Lemma 3.3]
to conclude that  $\lambda$_{0}(L; $\alpha$,  $\beta$, D) is positive for all L>0 : this fact, together with (2.1)
and (2.3), implies that R(L; $\alpha$,  $\beta$,  $\gamma$, D) has a unique root, which then corresponds to an

unstable spot. If, on the other hand, at least one of the parameters  $\alpha$ and  $\beta$ is positive,
we cannot explicitly determine the maximum number of crossings of  R(L; $\alpha$,  $\beta$,  $\gamma$, D) ,

and the conjecture remains therefore unproven.
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Figure 6. A defect is transported towards infinity, and a stable stationary planar stripe
is formed. The system parameters are given in Table 1.

§2.2. Stripes

The solution shown in Figure 4 converges to a stationary stripe pattern that can

be thought of as a bound state of two planar fronts. The existence and stability of

1\mathrm{D} stripes has been analysed in [2, 3, 5], and the results obtained in these papers are

summarized in Theorem 1.1. Our next result gives conditions under which planar stripes
are stable with respect to 2\mathrm{D} perturbations.

Lemma 2.1. Fix D>1,  $\tau$,  $\theta$>0,  $\alpha$,  $\beta$,  $\gamma$\in \mathbb{R} , and k_{*}>0 ,
and assume that

there is a constant L>0 such that  $\alpha$ \mathrm{e}^{-2L}+ $\beta$ \mathrm{e}^{-2L/D}= $\gamma$ . Theorem 1.1 implies that

(1.1) has a stationary stripe  U^{\mathrm{s}\mathrm{t}}(\mathrm{x}) of width 2L for each 0< $\epsilon$\ll 1 ,
and these stripes

are stable with respect to perturbations whose transverse wave number k satisfies |k|<k_{*}
provided

$\lambda$_{k}^{\pm}(L)=-k^{2}-\displaystyle \frac{3 $\alpha$}{\sqrt{2}}(\frac{1}{\sqrt{1+k^{2}}}-1+\mathrm{e}^{-2L}\mp\frac{1}{\sqrt{1+k^{2}}}\mathrm{e}^{-2\sqrt{1+k^{2}}L})
-\displaystyle \frac{3 $\beta$}{\sqrt{2}D}(\frac{1}{\sqrt{1+k^{2}}}-1+\mathrm{e}^{-\frac{2L}{D}}\mp\frac{1}{\sqrt{1+k^{2}}}\mathrm{e}^{-2\sqrt{1+k^{2}}\frac{L}{D}})

is strictly negative for all |k|<k_{*}.

We omit the proof as it is similar to the proof of Theorem 1.2 given in §3. We

remark that results analogous to Lemma 2.1 hold for the existence and stability of

planar N‐fronts and N‐stripes.
Stable stripes appeared in Figure 4 as the result of the interaction or two counter‐

propagating fronts. Figure 6 illustrates a different mechanism that leads to stripes: The

initial condition consists of a defect between a stripe and a 2‐stripe. As time increases,
the defect moves towards infinity, thus leaving only the stable stationary stripe behind.

Figure 7 indicates that stable stationary planar spots and stripes can coexist.
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Figure 7. The coexistence of a stable stationary planar spot and stripe. The system

parameters are given in Table 1.

§3. Planar travelling fronts

Our goal is to prove Theorem 1.2 which gives conditions under which the planar

travelling front U^{\mathrm{f}\mathrm{r}}(x_{1}-ct) of (1.1) guaranteed by Theorem 1.1 is spectrally stable with

respect to perturbations that depend on (x_{1}, x_{2}) . In fact, we will establish the following,

slightly stronger result.

Theorem 3.1. Fix D>1,  $\tau$,  $\theta$>0 ,
and  $\alpha$,  $\beta$,  $\gamma$\in \mathbb{R} and pick any constant k_{*},

then the planar travelling fr ont U^{\mathrm{f}\mathrm{r}}(x_{1}-ct) of system (1.1) given in Theorem 1.1 is

spectrally stable for all sufficiently small values of  $\epsilon$ with respect to perturbations whose

transverse wave number  k satisfies |k|<k_{*} provided

(3.1) \displaystyle \tilde{ $\lambda$}(k)=\frac{3}{\sqrt{2}}( $\alpha$+\frac{ $\beta$}{D})(1-\frac{1}{\sqrt{1+k^{2}}})-k^{2}\leq 0
for all |k|<k_{*} ,

and equality holds only fork=0.

Theorem 1.2 is a consequence of Theorem 3.1, since

(3.2)  $\alpha$+\displaystyle \frac{ $\beta$}{D}<\frac{2\sqrt{2}}{3}
implies (3.1). To see this, we first observe that \tilde{ $\lambda$}(0) ,

which corresponds to the eigenvalue
induced by translation of the front in the x_{1} ‐direction, vanishes. Moreover, it is obvious

that for  $\alpha$+\displaystyle \frac{ $\beta$}{D}<0 the eigenvalue \tilde{ $\lambda$}(k) is negative, and thus yield a stable travelling
front. If  $\alpha$+\displaystyle \frac{ $\beta$}{D}>0 ,

we consider the second derivative

\displaystyle \tilde{ $\lambda$}''(k)=-2+\frac{3}{\sqrt{2}}( $\alpha$+\frac{ $\beta$}{D})(\frac{1}{(1+k^{2})\sqrt{1+k^{2}}}-\frac{3k^{2}}{(1+k^{2})^{2}\sqrt{1+k^{2}}})
of \tilde{ $\lambda$}(k) : a calculation shows that \tilde{ $\lambda$}''(k)\leq 0 and \tilde{ $\lambda$}(0)<0 whenever (3.2) holds, and the

claim follows.
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To prove Theorem 3.1, we need more detailed information about the profiles of the

U^{\mathrm{f}\mathrm{r}} than provided by the existence results in [2, 3, 5], and we therefore focus first on

the derivation of the relevant expansions.

Assuming that the front moves in the x_{1} ‐direction, we introduce the travelling
coordinate  $\eta$=x_{1}-$\epsilon$^{2}ct and write U^{\mathrm{f}\mathrm{r}}(x_{1}-$\epsilon$^{2}ct)=U^{\mathrm{f}\mathrm{r}}( $\eta$) ,

where we also anticipate,
with a slight abuse of notation, the scaling of the wave speed $\epsilon$^{2}c . Recall also the rest

states u_{*}^{-} and u_{*}^{+} from (1.2). We now closely follow the analysis in [2, 3, 5] introduce

the following slow regions I_{\mathrm{s}}^{\pm} and the fast region I_{\mathrm{f}} of the spatial variable  $\eta$ given by

 I_{\mathrm{s}}^{-}=\{ $\eta$| $\eta$\in (-\infty, -\sqrt{ $\epsilon$}]\}, I_{\mathrm{f}}=\{ $\eta$| $\eta$\in(-\sqrt{ $\epsilon$}, \sqrt{ $\epsilon$})\}, I_{\mathrm{s}}^{+}=\{ $\eta$| $\eta$\in[\sqrt{ $\epsilon$}, \infty)\}.

The idea is now that, in the fast field I_{\mathrm{f}} ,
the u‐component of the front profile will

jump from u_{*}^{-} to u_{*}^{+} ,
see (1.2), while the slow (v, w) ‐components of the profile are, to

leading order, constant: due to the specific scaling of the diffusion coefficients in (1.1),
the region I_{\mathrm{f}} is too small for the slow components to change significantly. In contrast,

the slow (v, w) ‐components are gradually changing in the slow regions I_{\mathrm{s}}^{\pm} ,
while the

fast u‐component will already have attained its asymptotic state and will therefore not

change much. To capture the fast jump in the u‐component, it is convenient to use the

fast variable  $\xi$=\displaystyle \frac{ $\eta$}{ $\epsilon$} . In the following lemma, we state the desired expansion of the front

profiles that we shall then exploit in the stability proof.

Lemma 3.2. Writing

u^{\mathrm{f}\mathrm{r}}( $\xi$)=u_{0}^{\mathrm{f}\mathrm{r}}( $\xi$)+ $\epsilon$ u_{1}^{\mathrm{f}\mathrm{r}}( $\xi$)+ $\epsilon$ u_{2}^{\mathrm{f}\mathrm{r}}( $\xi$)+\mathcal{O}($\epsilon$^{3}) ,

(3.3) v^{\mathrm{f}\mathrm{r}}( $\eta$)=v_{0}^{\mathrm{f}\mathrm{r}}( $\eta$)+\mathcal{O}( $\epsilon$) ,

w^{\mathrm{f}\mathrm{r}}( $\eta$)=w_{0}^{\mathrm{f}\mathrm{r}}( $\eta$)+\mathcal{O}( $\epsilon$)

foor the profile U^{\mathrm{f}\mathrm{r}}=(u^{\mathrm{f}\mathrm{r}}, v^{\mathrm{f}\mathrm{r}}, w^{\mathrm{f}\mathrm{r}}) of the planar fr ont, we have

(3.4) u_{0}^{\mathrm{f}\mathrm{r}}( $\xi$)=\displaystyle \tanh(\frac{ $\xi$}{\sqrt{2}}) ,

and

(3.5) v^{\mathrm{f}\mathrm{r}}( $\eta$)=\left\{\begin{array}{l}
\mathrm{e}^{ $\eta$}-1 \mathrm{i}\mathrm{n} I_{\mathrm{s}}^{-},\\
0 \mathrm{i}\mathrm{n} I_{\mathrm{f}},\\
-\mathrm{e}^{- $\eta$}+1 \mathrm{i}\mathrm{n} I_{\mathrm{s}}^{+},
\end{array}\right. w^{\mathrm{f}\mathrm{r}}( $\eta$)=\left\{\begin{array}{l}
\mathrm{e}^{\frac{ $\eta$}{D}}-1 \mathrm{i}\mathrm{n} I_{\mathrm{s}}^{-},\\
0 \mathrm{i}\mathrm{n} I_{\mathrm{f}},\\
-\mathrm{e}^{-\frac{ $\eta$}{D}}+1 \mathrm{i}\mathrm{n} I_{\mathrm{s}}^{+}.
\end{array}\right.
Furthermore, the first‐order correction u_{1}^{\mathrm{f}\mathrm{r}}( $\xi$) is an even function in I_{\mathrm{f}} , and its derivative

obeys the relation

(3.6) \displaystyle \mathcal{L}(u_{1}^{\mathrm{f}\mathrm{r}})_{ $\xi$}:=((u_{1}^{\mathrm{f}\mathrm{r}})_{ $\xi$})_{ $\xi \xi$}+(u_{1}^{\mathrm{f}\mathrm{r}})_{ $\xi$}-3(u_{0}^{\mathrm{f}\mathrm{r}})^{2}(u_{1}^{\mathrm{f}\mathrm{r}})_{ $\xi$}=-\frac{c}{\sqrt{2}}$\psi$_{ $\xi$}+3\sqrt{2}u_{0}^{\mathrm{f}\mathrm{r}}u_{1}^{\mathrm{f}\mathrm{r}} $\psi$,
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where  $\psi$ is defined as

(3.7)  $\psi$:=\displaystyle \mathrm{s}\mathrm{e}\mathrm{c}\mathrm{h}^{2}(\frac{ $\xi$}{\sqrt{2}})=\sqrt{2}(u_{0}^{\mathrm{f}\mathrm{r}})_{ $\xi$}.
Finally, the second‐order correction u_{2}^{\mathrm{f}\mathrm{r}}( $\xi$) in I_{\mathrm{f}} satisfies the integral relation

(3.8)  0=2\displaystyle \sqrt{2}( $\alpha$+\frac{ $\beta$}{D})-c\int(u_{1}^{\mathrm{f}\mathrm{r}})_{ $\xi \xi$} $\psi$ d $\xi$+3\sqrt{2}\int u_{0}^{\mathrm{f}\mathrm{r}}u_{2}^{\mathrm{f}\mathrm{r}}$\psi$^{2}d $\xi$
+\displaystyle \frac{3}{\sqrt{2}}\int(u_{1}^{\mathrm{f}\mathrm{r}})^{2}$\psi$^{2}d $\xi$+6\int u_{0}^{\mathrm{f}\mathrm{r}}u_{1}^{\mathrm{f}\mathrm{r}}(u_{1}^{\mathrm{f}\mathrm{r}})_{ $\xi$} $\psi$ d $\xi$.

Proof. Equations (3.4) and (3.5) follow from an analysis similar to the one in

[2] and will be omitted. To prove the second part of the lemma, we look at the fast

u‐equation in the fast variable  $\xi$ :

(3.9)  0=u_{ $\xi \xi$}+u-u^{3}- $\epsilon$( $\alpha$ v+ $\beta$ w+ $\gamma$-cu_{ $\xi$}) .

Substituting the expansions for U^{\mathrm{f}\mathrm{r}} and using that

0=(u_{0}^{\mathrm{f}\mathrm{r}})_{ $\xi \xi$}+u_{0}^{\mathrm{f}\mathrm{r}}-(u_{0}^{\mathrm{f}\mathrm{r}})^{3},

and that the slow components vanish to leading order in the fast field I_{\mathrm{f}} due to (3.5),
we get

(3.10) 0= $\epsilon$((u_{1}^{\mathrm{f}\mathrm{r}})_{ $\xi \xi$}+u_{1}^{\mathrm{f}\mathrm{r}}-3(u_{0}^{\mathrm{f}\mathrm{r}})^{2}u_{1}^{\mathrm{f}\mathrm{r}}- $\gamma$+c(u_{0}^{\mathrm{f}\mathrm{r}})_{ $\xi$})+\mathcal{O}($\epsilon$^{2})

= $\epsilon$(\displaystyle \mathcal{L}u_{1}^{\mathrm{f}\mathrm{r}}- $\gamma$+\frac{c}{\sqrt{2}} $\psi$)+\mathcal{O}($\epsilon$^{2}) ,

where \mathcal{L} and  $\psi$ are defined in (3.6) and (3.7), respectively. Theorem 1.1 shows that

 $\gamma$=\displaystyle \frac{\sqrt{2}}{3}c (recall that we rescaled the wave speed by $\epsilon$^{2} in this section), and we see that

u_{1}^{\mathrm{f}\mathrm{r}}( $\xi$) is determined by the equation

(3.11) \displaystyle \mathcal{L}u_{1}^{\mathrm{f}\mathrm{r}}=\sqrt{2}c(\frac{1}{3}-\frac{1}{2} $\psi$)
The right‐hand side of (3.11) is even. Since the operator \mathcal{L} respects the parity of a

function, we split u_{1}^{\mathrm{f}\mathrm{r}} into its even and odd parts, given by u_{1}^{\mathrm{f}\mathrm{r},\mathrm{e}} and u_{1}^{\mathrm{f}\mathrm{r},0} , respectively,
and find that

\displaystyle \mathcal{L}u_{1}^{\mathrm{f}\mathrm{r},\mathrm{e}}=\sqrt{2}c(\frac{1}{3}-\frac{1}{2} $\psi$) , \mathcal{L}u_{1}^{\mathrm{f}\mathrm{r},0}=0.
In particular, the odd part u_{1}^{\mathrm{f}\mathrm{r},0} lies in the kernel of \mathcal{L} , which is, however, spanned by
the even function (ur). Thus, u_{1}^{\mathrm{f}\mathrm{r},0}=0 ,

and u_{1}^{\mathrm{f}\mathrm{r}} is even in I_{\mathrm{f}} as claimed.
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To obtain the relations (3.6) and (3.8), we substitute the front profile U^{\mathrm{f}\mathrm{r}} into (3.9)
and differentiate the resulting equation once with respect to the fast variable  $\xi$ and

obtain

 0=u_{ $\xi \xi \xi$}^{\mathrm{f}\mathrm{r}}+u_{ $\xi$}^{\mathrm{f}\mathrm{r}}-3(u^{\mathrm{f}\mathrm{r}})^{2}u_{ $\xi$}^{\mathrm{f}\mathrm{r}}- $\epsilon$( $\alpha$ v_{ $\xi$}^{\mathrm{f}\mathrm{r}}+ $\beta$ w_{ $\xi$}^{\mathrm{f}\mathrm{r}}-cu_{ $\xi \xi$}^{\mathrm{f}\mathrm{r}}) .

Substituting the leading order expressions (3.5) for the slow components (v^{\mathrm{f}\mathrm{r}}, w^{\mathrm{f}\mathrm{r}}) and

using the regular expansion (3.3), we arrive at

(3.12) 0=\mathcal{L}(u_{0}^{\mathrm{f}\mathrm{r}})_{ $\xi$}+ $\epsilon$(\mathcal{L}(u_{1}^{\mathrm{f}\mathrm{r}})_{ $\xi$}+c(u_{0}^{\mathrm{f}\mathrm{r}})_{ $\xi \xi$}-6u_{0}^{\mathrm{f}\mathrm{r}}u_{1}^{\mathrm{f}\mathrm{r}}(u_{0}^{\mathrm{f}\mathrm{r}})_{ $\xi$})

+$\epsilon$^{2}(\displaystyle \mathcal{L}(u_{2}^{\mathrm{f}\mathrm{r}})_{ $\xi$}- $\alpha$-\frac{ $\beta$}{D}+c(u_{1}^{\mathrm{f}\mathrm{r}})_{ $\xi \xi$}-6u_{0}^{\mathrm{f}\mathrm{r}}u_{2}^{\mathrm{f}\mathrm{r}}(u_{0}^{\mathrm{f}\mathrm{r}})_{ $\xi$}
-3(u_{1}^{\mathrm{f}\mathrm{r}})^{2}(u_{0}^{\mathrm{f}\mathrm{r}})_{ $\xi$}-6u_{0}^{\mathrm{f}\mathrm{r}}u_{1}^{\mathrm{f}\mathrm{r}}(u_{1}^{\mathrm{f}\mathrm{r}})_{ $\xi$}) .

Since (u_{0}^{\mathrm{f}\mathrm{r}})_{ $\xi$} is in the kernel of \mathcal{L} , the \mathcal{O}(1) ‐terms in (3.12) vanish, while the equations at

order \mathcal{O}( $\epsilon$) give (3.6) upon using (3.7). To derive the integral relation (3.8), we consider

the \mathcal{O}($\epsilon$^{2}) ‐terms in (3.12). Since  $\psi$ is in the kernel of \mathcal{L} , the Fredholm property gives

(3.13)  0=\langle $\psi$, \mathcal{L}(u_{2}^{\mathrm{f}\mathrm{r}})_{ $\xi$}\rangle

=\displaystyle \langle $\psi$,  $\alpha$+\frac{ $\beta$}{D}-c(u_{1}^{\mathrm{f}\mathrm{r}})_{ $\xi \xi$}+6u_{0}^{\mathrm{f}\mathrm{r}}u_{2}^{\mathrm{f}\mathrm{r}}(u_{0}^{\mathrm{f}\mathrm{r}})_{ $\xi$}+3(u_{1}^{\mathrm{f}\mathrm{r}})^{2}(u_{0}^{\mathrm{f}\mathrm{r}})_{ $\xi$}+6u_{0}^{\mathrm{f}\mathrm{r}}u_{1}^{\mathrm{f}\mathrm{r}}(u_{1}^{\mathrm{f}\mathrm{r}})_{ $\xi$}\rangle
=( $\alpha$+\displaystyle \frac{ $\beta$}{D})\int $\psi$ d $\xi$-c\int(u_{1}^{\mathrm{f}\mathrm{r}})_{ $\xi \xi$} $\psi$ d $\xi$+3\sqrt{2}\int u_{0}^{\mathrm{f}\mathrm{r}}u_{2}^{\mathrm{f}\mathrm{r}}$\psi$^{2}d $\xi$

+\displaystyle \frac{3}{\sqrt{2}}\int(u_{1}^{\mathrm{f}\mathrm{r}})^{2}$\psi$^{2}d $\xi$+6\int u_{0}^{\mathrm{f}\mathrm{r}}u_{1}^{\mathrm{f}\mathrm{r}}(u_{1}^{\mathrm{f}\mathrm{r}})_{ $\xi$} $\psi$ d $\xi$
=2\displaystyle \sqrt{2}( $\alpha$+\frac{ $\beta$}{D})-c\int(u_{1}^{\mathrm{f}\mathrm{r}})_{ $\xi \xi$} $\psi$ d $\xi$+3\sqrt{2}\int u_{0}^{\mathrm{f}\mathrm{r}}u_{2}^{\mathrm{f}\mathrm{r}}$\psi$^{2}d $\xi$

+\displaystyle \frac{3}{\sqrt{2}}\int(u_{1}^{\mathrm{f}\mathrm{r}})^{2}$\psi$^{2}d $\xi$+6\int u_{0}^{\mathrm{f}\mathrm{r}}u_{1}^{\mathrm{f}\mathrm{r}}(u_{1}^{\mathrm{f}\mathrm{r}})_{ $\xi$} $\psi$ d $\xi$,
which completes the proof. \square 

With this lemma in hand, we can complete the proof of Theorem 3.1. We linearize

(1.1) in the travelling coordinates around the planar front U^{\mathrm{f}\mathrm{r}}( $\eta$) and determine the

spectrum of the resulting planar PDE operator whose coefficients depend only on  $\eta$.

The spectrum consists entirely of essential spectrum: specifically, it consists of the

essential spectrum of the background states and contributions from the front interface.

We focus first on the background states.

Lemma 3.3. Fix any  $\chi$ with max2, ‐ \displaystyle \frac{1}{ $\tau$}, -\displaystyle \frac{1}{ $\theta$} } < $\chi$<0 , then, for all suffi‐

ciently small  $\epsilon$
,

the essential spectrum of the background states of the travelling planar

front lies in the half plane \{ $\lambda$ : {\rm Re} $\lambda$< $\chi$\}.



150 Peter van Heijster and BjöRN Sandstede

Proof. Using the Fourier transform with spatial wave numbers (k, n) in the ( $\eta$, x_{2}) ‐

directions, the eigenvalue problem for the PDE operator linearized around the back‐

ground states becomes

( $\lambda-\epsilon$^{2}cik)u=-$\epsilon$^{2}(k^{2}+n^{2})u+u(1-3(u_{*}^{\pm})^{2})- $\epsilon$( $\alpha$ v+ $\beta$ w) ,

(3.14)  $\tau$( $\lambda-\epsilon$^{2}cik)v= (k^{2}+n^{2})v+u-v,

 $\theta$( $\lambda-\epsilon$^{2}cik)w=D^{2}(k^{2}+n^{2})w+u-w,

where u_{*}^{\pm} are the background states as defined in (1.2). Replacing  $\lambda$ by  $\lambda$+$\epsilon$^{2}cik does

not change the real part of  $\lambda$
,

and it therefore suffices to analyse the reduced eigenvalue

problem

(3.15) \left(\begin{array}{l}
0\\
0\\
0
\end{array}\right)=\left(\begin{array}{lllllllll}
-$\epsilon$^{2}\ell^{2} & -2+ & \mathcal{O}( $\epsilon$)- &  $\lambda$ &  & - $\epsilon \alpha$ &  & - $\epsilon \beta$ & \\
 & 1 &  &  & -\ell^{2} & -1- &  $\tau \lambda$ & 0 & \\
 & 1 &  &  &  & 0 &  & -D^{2}\ell^{2}-1- &  $\theta \lambda$
\end{array}\right)\left(\begin{array}{l}
u\\
v\\
w
\end{array}\right),
where \ell^{2}:=k^{2}+n^{2} . The real part of the eigenvalues  $\lambda$ is determined by the zeros of

 0=(-$\epsilon$^{2}\ell^{2}-2+\mathcal{O}( $\epsilon$)- $\lambda$)(-\ell^{2}-1- $\tau \lambda$)(-D^{2}\ell^{2}-1- $\theta \lambda$)

+ $\epsilon \alpha$(-D^{2}\ell^{2}-1- $\theta \lambda$)+( $\epsilon \beta$(-\ell^{2}-1- $\tau \lambda$))

=(-$\epsilon$^{2}\ell^{2}-2- $\lambda$)(-\ell^{2}-1- $\tau \lambda$)(-D^{2}\ell^{2}-1- $\theta \lambda$)+\mathcal{O}( $\epsilon$) ,

and a closer inspection shows that the rightmost part of the essential spectrum occurs

for (k, n)=0 ,
which proves the claim. \square 

To analyse the contributions from the front interface, we consider the eigenvalue

problem

 $\lambda$ u= $\epsilon$^{2}\triangle u+u(1-3(u^{\mathrm{f}\mathrm{r}}( $\eta$,  $\epsilon$))^{2})- $\epsilon$( $\alpha$ v+ $\beta$ w)+$\epsilon$^{2}cu_{ $\eta$},
(3.16)  $\tau \lambda$ v= \triangle v+u-v+$\epsilon$^{2} $\tau$ cv_{ $\eta$},

 $\theta \lambda$ w=D^{2}\triangle w+u-w+$\epsilon$^{2} $\theta$ cw_{ $\eta$}.

Applying the Fourier transform in the x_{2} ‐direction, that is, setting

(u, v, w)( $\eta$, x_{2})=(u, v, w)( $\eta$)\mathrm{e}^{ikx_{2}}, k\in \mathbb{R},

in (3.16), we arrive at the system

0= $\epsilon$^{2}u_{ $\eta \eta$}+u(1-3(u^{\mathrm{f}\mathrm{r}}( $\eta$,  $\epsilon$))^{2}- $\lambda-\epsilon$^{2}k^{2})- $\epsilon$( $\alpha$ v+ $\beta$ w)+$\epsilon$^{2}cu_{ $\eta$},
(3.17) 0= v_{ $\eta \eta$}+u-v(1+ $\tau \lambda$+k^{2})+$\epsilon$^{2} $\tau$ cv_{ $\eta$},

0=D^{2}w_{ $\eta \eta$}+u-w(1+ $\theta \lambda$+k^{2})+$\epsilon$^{2} $\theta$ cw_{ $\eta$}.
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In the fast scaling  $\xi$=\displaystyle \frac{ $\eta$}{ $\epsilon$} ,
the u‐equation in (3.17) becomes

0=u_{ $\xi \xi$}+u(1-3(u^{\mathrm{f}\mathrm{r}}( $\xi$,  $\epsilon$))^{2}- $\lambda-\epsilon$^{2}k^{2})- $\epsilon$( $\alpha$ v+ $\beta$ w-cu_{ $\xi$}) ,

and therefore, since we assumed that k is bounded independently of  $\epsilon$ by some constant

 k_{*} ,
we obtain

(3.18) 0=u_{ $\xi \xi$}+u(1-3(u_{0}^{\mathrm{f}\mathrm{r}})^{2}- $\lambda$) ,

where u_{0}^{\mathrm{f}\mathrm{r}} is the leading order term of the u^{\mathrm{f}\mathrm{r}} ‐profile given in (3.4). It was shown in [3]
that the eigenvalues of (3.18) are given by

$\lambda$_{1}=0, $\lambda$_{2}=-\displaystyle \frac{3}{2}.
Thus, the only possible unstable contributions for 0< $\epsilon$\ll 1 arise from $\lambda$_{1} . We therefore

expand $\lambda$_{1} as

 $\lambda$= $\epsilon$\hat{ $\lambda$}

in the following. We also need to rescale the slow components (v, w) ,
since solving the

leading parts of the slow equations of (3.17) in the regions I_{\mathrm{s}}^{\pm} ,
and matching them over

the fast region I_{\mathrm{f}} gives, to leading order, (v, w)=0 . Therefore, we write

(v, w)= $\epsilon$(\hat{v},\hat{w}) ,

and substitution into (3.17) gives

0= $\epsilon$^{2}u_{ $\eta \eta$}+u(1-3(u^{\mathrm{f}\mathrm{r}}( $\eta$,  $\epsilon$))^{2})- $\epsilon$ u\hat{ $\lambda$}-$\epsilon$^{2}( $\alpha$\hat{v}+ $\beta$\hat{w}-cu_{ $\eta$}-k^{2}u) ,

(3.19) 0= \displaystyle \hat{v}_{ $\eta \eta$}+\frac{u}{ $\epsilon$}-\hat{v}(1+k^{2})- $\epsilon \tau$\hat{ $\lambda$}\hat{v}+$\epsilon$^{2} $\tau$ c\hat{v}_{ $\eta$},
0=D^{2}\displaystyle \mathrm{W}_{ $\eta \eta$}+\frac{u}{ $\epsilon$}-\hat{w}(1+k^{2})- $\epsilon \theta$\hat{ $\lambda$}\mathrm{W}+$\epsilon$^{2} $\theta$ c\hat{w}_{ $\eta$}.

To analyse this equation, we rewrite the u‐equation in the fast variable  $\xi$ in the fast

region  I_{\mathrm{f}} and obtain

(3.20) 0=u_{ $\xi \xi$}+u(1-3(u^{\mathrm{f}\mathrm{r}})^{2})- $\epsilon$(\hat{ $\lambda$}u-cu_{ $\xi$})-$\epsilon$^{2}( $\alpha$\hat{v}+ $\beta$ \mathrm{W}+k^{2}u) .

Substituting regular expansions for u^{\mathrm{f}\mathrm{r}} and u
,

this equation becomes

\mathcal{O}($\epsilon$^{2})=(u_{0})_{ $\xi \xi$}+u_{0}(1-3(u_{0}^{\mathrm{f}\mathrm{r}})^{2})

+ $\epsilon$((u_{1})_{ $\xi \xi$}+u_{1}(1-3(u_{0}^{\mathrm{f}\mathrm{r}})^{2})-u_{0}(\hat{ $\lambda$}+6u_{0}^{\mathrm{f}\mathrm{r}}u_{1}^{\mathrm{f}\mathrm{r}})+c(u_{0})_{ $\xi$})
=:\mathcal{L}u_{0}+ $\epsilon$(\mathcal{L}u_{1}-u_{0}(\hat{ $\lambda$}+6u_{0}^{\mathrm{f}\mathrm{r}}u_{1}^{\mathrm{f}\mathrm{r}})+c(u_{0})_{ $\xi$}) .

To leading order, we therefore conclude that \mathcal{L}u_{0}=0 ,
which implies that u_{0} is given by

u_{0}=\displaystyle \tilde{C}\frac{d}{d $\xi$}u_{0}^{\mathrm{f}\mathrm{r}}=\frac{\tilde{C}}{\sqrt{2}} sech2 (\displaystyle \frac{ $\xi$}{\sqrt{2}})=:C $\psi$
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due to (3.3), (3.7), and the results in [3]. At order \mathcal{O}( $\epsilon$) ,
the equation above becomes

\mathcal{L}u_{1}=C(\hat{ $\lambda$} $\psi$+6u_{0}^{\mathrm{f}\mathrm{r}}u_{1}^{\mathrm{f}\mathrm{r}} $\psi$-c$\psi$_{ $\xi$}) .

Using that u_{0}^{\mathrm{f}\mathrm{r}}u_{1}^{\mathrm{f}\mathrm{r}} and  $\psi \psi$_{ $\xi$} are odd functions in the fast region I_{\mathrm{f}} by Lemma 3.2, and

that  $\psi$ is in the kernel of \mathcal{L} , the Fredholm property gives

0=\displaystyle \langle $\psi$, \mathcal{L}u_{1}\rangle=C(\hat{ $\lambda$}\int$\psi$^{2}d $\xi$-c\int $\psi \psi$_{ $\xi$}d $\xi$+6\int u_{0}^{\mathrm{f}\mathrm{r}}u_{1}^{\mathrm{f}\mathrm{r}}$\psi$^{2}d $\xi$)=\frac{4\sqrt{2}}{3}C\hat{ $\lambda$}
and we conclude that, to leading order, \hat{ $\lambda$}=0.

Thus, we need to rescale once more and set

\hat{ $\lambda$}= $\epsilon$\tilde{ $\lambda$},

which transforms (3.19) into

0= $\epsilon$^{2}u_{ $\eta \eta$}+u(1-3(u^{\mathrm{f}\mathrm{r}})^{2})-$\epsilon$^{2}( $\alpha$\hat{v}+ $\beta$\hat{w}-cu_{ $\eta$}+u(\tilde{ $\lambda$}+k^{2})) ,

(3.21) 0= \displaystyle \hat{v}_{ $\eta \eta$}+\frac{u}{ $\epsilon$}-\hat{v}(1+k^{2})-$\epsilon$^{2} $\tau$(\tilde{ $\lambda$}\hat{v}+c\hat{v}_{ $\eta$}) ,

0=D^{2}\displaystyle \hat{w}_{ $\eta \eta$}+\frac{u}{ $\epsilon$}-\hat{w}(1+k^{2})-$\epsilon$^{2} $\theta$(\tilde{ $\lambda$}\mathrm{W}+c\hat{w}_{ $\eta$}) .

In the slow regions I_{\mathrm{s}}^{\pm} ,
the fast component u is small, and the slow equations therefore

decouple to leading order in the slow regions where they are given by

\mathcal{O}($\epsilon$^{2})= \hat{v}_{ $\eta \eta$}-\hat{v}(1+k^{2}) ,

(3.22)
\mathcal{O}($\epsilon$^{2})=D^{2}\hat{w}_{ $\eta \eta$}-\hat{w}(1+k^{2}) .

Since the components should be bounded at infinity, we obtain the leading order ex‐

pressions

(3.23) \hat{v}( $\eta$)=\{ A_{v}\mathrm{e}^{\sqrt{1+k^{2}} $\eta$} in I_{\mathrm{s}}^{-},
B_{v}\mathrm{e}^{-\sqrt{1+k^{2}} $\eta$} in I_{\mathrm{s}}^{+}, \mathrm{W}( $\eta$)=\left\{\begin{array}{l}
A_{w}\mathrm{e}^{\sqrt{1+k^{2}}\frac{ $\eta$}{D}} \mathrm{i}\mathrm{n} I_{\mathrm{s}}^{-},\\
B_{w}\mathrm{e}^{-\sqrt{1+k^{2}}\frac{ $\eta$}{D}} \mathrm{i}\mathrm{n} I_{\mathrm{s}}^{+}
\end{array}\right.

of the slow components \hat{v} and W. In the new scaling, the slow components taken across

I_{\mathrm{f}} agree, but their derivatives do not. This can be seen best by working in the fast

variable  $\xi$ for which | $\xi$|\displaystyle \leq\frac{1}{\sqrt{ $\epsilon$}} in I_{\mathrm{f}} . In this region, the \hat{v}‐equation, for instance, becomes

\hat{v}_{ $\xi \xi$}=- $\epsilon$ u+$\epsilon$^{2}\hat{v}(1+k^{2})+$\epsilon$^{3} $\tau$ c\hat{v}_{ $\xi$}+$\epsilon$^{4} $\tau$\tilde{ $\lambda$}\hat{v},

or, equivalently,

\hat{v}_{ $\xi$}= $\epsilon$\hat{q}, \hat{q}_{ $\xi$}=-u+ $\epsilon$\hat{v}(1+k^{2})+\mathcal{O}($\epsilon$^{3}) .
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Therefore, the change of \hat{v} and \hat{q}=v_{ $\eta$} across I_{\mathrm{f}} is, to leading order, given by

\displaystyle \triangle_{f}\hat{v}:=\int_{I_{f}}\hat{v}_{ $\xi$}d $\xi$= $\epsilon$\int_{-\infty}^{\infty}\hat{q}d $\xi$=\mathcal{O}(\sqrt{ $\epsilon$}) ,

\displaystyle \triangle_{f}\hat{q}:=\int_{I_{f}}\hat{q}_{ $\xi$}d $\xi$=-\int_{-\infty}^{\infty}u_{0}d $\xi$=-C\int_{-\infty}^{\infty} $\psi$ d $\xi$=-2\sqrt{2}C+\mathcal{O}(\sqrt{ $\epsilon$}) .

Substituting (3.23), we find that the coefficients A_{v} and B_{v} need to satisfy the system

A_{v}=B_{v} and \sqrt{1+K^{2}}A_{v}-2\sqrt{2}C=-\sqrt{1+K^{2}}B_{v},

so that

A_{v}=B_{v}=\sqrt{\frac{2}{1+k^{2}}}c.
Similarly, we obtain

A_{w}=B_{w}=\displaystyle \sqrt{\frac{2}{1+k^{2}}}\frac{C}{D}.
We substitute the resulting expressions (3.23) into the u‐equation to get

u_{ $\xi \xi$}+u(1-3(u^{\mathrm{f}\mathrm{r}})^{2})=- $\epsilon$ cu_{ $\xi$}+$\epsilon$^{2}( $\alpha$ A_{v}+ $\beta$ B_{w}+u(\tilde{ $\lambda$}+k^{2})) .

Expanding u^{\mathrm{f}\mathrm{r}} and u in  $\epsilon$
,

we obtain the equation

(3.24) \mathcal{L}u_{1}=-C(c$\psi$_{ $\xi$}-6u_{0}^{\mathrm{f}\mathrm{r}}u_{1}^{\mathrm{f}\mathrm{r}} $\psi$)

at \mathcal{O}( $\epsilon$) . Note that the right‐hand side of (3.24) is \sqrt{2}C times the right‐hand side of

(3.6), and since the null space of \mathcal{L} is spanned by  $\psi$ ,
we can conclude that

(3.25)  u_{1}=\sqrt{2}C(u_{1}^{\mathrm{f}\mathrm{r}})_{ $\xi$}+K $\psi$

for some undetermined constant  K . At \mathcal{O}($\epsilon$^{2}) ,
we then have

\mathcal{L}u_{2}=( $\alpha$ A_{v}+ $\beta$ A_{w}+u_{0}(\tilde{ $\lambda$}+k^{2}))-c(u_{1})_{ $\xi$}+6u_{0}u_{0}^{\mathrm{f}\mathrm{r}}u_{2}^{\mathrm{f}\mathrm{r}}+6u_{1}u_{0}^{\mathrm{f}\mathrm{r}}u_{1}^{\mathrm{f}\mathrm{r}}+3u_{0}(u_{1}^{\mathrm{f}\mathrm{r}})^{2}
=( $\alpha$ A_{v}+ $\beta$ A_{w}+C $\psi$(\tilde{ $\lambda$}+k^{2}))-c(u_{1})_{ $\xi$}+6C $\psi$ u_{0}^{\mathrm{f}\mathrm{r}}u_{2}^{\mathrm{f}\mathrm{r}}+6u_{1}u_{0}^{\mathrm{f}\mathrm{r}}u_{1}^{\mathrm{f}\mathrm{r}}+3C $\psi$(u_{1}^{\mathrm{f}\mathrm{r}})^{2}
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Using again the Fredholm property, we get

 0=( $\alpha$ A_{v}+ $\beta$ A_{w})\displaystyle \int $\psi$ d $\xi$+C(\tilde{ $\lambda$}+k^{2})\int$\psi$^{2}d $\xi$-c\int(u_{1})_{ $\xi$} $\psi$ d $\xi$+6C\int u_{0}^{\mathrm{f}\mathrm{r}}u_{2}^{\mathrm{f}\mathrm{r}}$\psi$^{2}d $\xi$
+6\displaystyle \int u_{1}u_{0}^{\mathrm{f}\mathrm{r}}u_{1}^{\mathrm{f}\mathrm{r}} $\psi$ d $\xi$+3C\int(u_{1}^{\mathrm{f}\mathrm{r}})^{2}$\psi$^{2}d $\xi$

=\displaystyle \frac{4}{\sqrt{1+k^{2}}}C( $\alpha$+\frac{ $\beta$}{D})+\frac{4\sqrt{2}}{3}C(\tilde{ $\lambda$}+k^{2})-c\int(\sqrt{2}C(u_{1}^{\mathrm{f}\mathrm{r}})_{ $\xi$}+K $\psi$)_{ $\xi$} $\psi$ d $\xi$
+6C\displaystyle \int u_{0}^{\mathrm{f}\mathrm{r}}u_{2}^{\mathrm{f}\mathrm{r}}$\psi$^{2}d $\xi$+6\int(\sqrt{2}C(u_{1}^{\mathrm{f}\mathrm{r}})_{ $\xi$}+K $\psi$)u_{0}^{\mathrm{f}\mathrm{r}}u_{1}^{\mathrm{f}\mathrm{r}} $\psi$ d $\xi$+3C\int(u_{1}^{\mathrm{f}\mathrm{r}})^{2}$\psi$^{2}d $\xi$

=\displaystyle \frac{4}{\sqrt{1+k^{2}}}C( $\alpha$+\frac{ $\beta$}{D})+\frac{4\sqrt{2}}{3}C(\tilde{ $\lambda$}+k^{2})-\sqrt{2}cC\int(u_{1}^{\mathrm{f}\mathrm{r}})_{ $\xi \xi$} $\psi$ d $\xi$+6C\int u_{0}^{\mathrm{f}\mathrm{r}}u_{2}^{\mathrm{f}\mathrm{r}}$\psi$^{2}d $\xi$
+6\displaystyle \sqrt{2}C\int(u_{1}^{\mathrm{f}\mathrm{r}})_{ $\xi$}u_{0}^{\mathrm{f}\mathrm{r}}u_{1}^{\mathrm{f}\mathrm{r}} $\psi$ d $\xi$+3C\int(u_{1}^{\mathrm{f}\mathrm{r}})^{2}$\psi$^{2}d $\xi$

=4C(\displaystyle \frac{1}{\sqrt{1+k^{2}}}( $\alpha$+\frac{ $\beta$}{D})+\frac{\sqrt{2}}{3}(\tilde{ $\lambda$}+k^{2})-( $\alpha$+\frac{ $\beta$}{D})) ,

and we find that the scaled eigenvalue \tilde{ $\lambda$} igven by

(3.26) \displaystyle \tilde{ $\lambda$}(k)=\frac{3}{\sqrt{2}}( $\alpha$+\frac{ $\beta$}{D})(1-\frac{1}{\sqrt{1+k^{2}}})-k^{2}
as claimed. This completes the proof of Theorem 3.1. \blacksquare
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