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On the 3‐divisibility of class numbers of certain

quadratic fields
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Abstract

This is an announcement of the original paper [11]. Let m_{1}, m_{2} and m_{3} be square‐free
integers. First, we obtain that there exist infinitely many fundamental discriminants D with

\mathrm{g}\mathrm{c}\mathrm{d}(m_{1}m_{2}, D)=1 such that the class numbers of \mathbb{Q}(\sqrt{m_{1}D}) and \mathbb{Q}(\sqrt{m_{2}D}) are both divisible

by 3. This is a generalization of the result of T. Komatsu[14]. Secondly, we obtain that there

exist infinitely many positive fundamental discriminants D with \mathrm{g}\mathrm{c}\mathrm{d}(m_{1}m_{2}, D)=1 such that

the class numbers of \mathbb{Q}(\sqrt{m_{1}D}) and \mathbb{Q}(\sqrt{m_{2}D}) are both indivisible by 3. Especially, there exist

infinitely many positive fundamental discriminants D with \mathrm{g}\mathrm{c}\mathrm{d}(m_{1}m_{2}m_{3}, D)=1 such that the

class numbers of real quadratic fields \mathbb{Q}(\sqrt{m_{1}D}) , \mathbb{Q}(\sqrt{m_{2}D}) and \mathbb{Q}(\sqrt{m_{3}D}) are indivisible by
3. These are generalizations of the result of D. Byeon[4]. For the result of the indivisibility
case, we obtain an application to the Iwasawa invariants concerning Greenberg�s Conjecture.

§1. Introduction

For a given positive integer n
,

there are innitely many quadratic fields whose

class numbers are divisible by n . In the imaginary case, such results are obtained by
T. Nagell[18], N. C. Ankeny and S. Chowla[1], R. A. Mollin[17], etc. In the real case,

Y. Yamamoto[23], P. J. Weinberger[22], etc. gave the same results. All the proofs of

them were given by constructing such quadratic fields explicitly. Many results of the

divisibility of class numbers of quadratic fields are known for the case where n=3

particularly. We begin with a result of T. Komatsu.
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Theorem 1.1 (Komatsu, [14, Theorem \mathrm{A} Fix a non‐zero integer t . Then,
there exist innitely many fundamental discriminants D such that the class numbers

of \mathbb{Q}(\sqrt{D}) and \mathbb{Q}(\sqrt{tD}) are both divisible by 3.

Remark. The result for the case where t=-1 is known by [13] earlier. In

Theorem 1.1, we can take both positive and negative integers for D.

When t=-3 ,
Theorem 1.1 follows from Scholz inequality.

Theorem 1.2 (Scholz, [21]). Let r and s be 3‐ranks of the ideal class groups of
a real quadratic field \mathbb{Q}(\sqrt{D}) and an imaginary quadratic field \mathbb{Q}(\sqrt{-3D}) respectively.

Then, we have

r\leq s\leq r+1.

We denote the class number of the quadratic field \mathbb{Q}(\sqrt{D}) by h(D) . From Theorem

1.2, for a positive integer D
,

if 3 |h(D) ,
then 3 |h(-3D) . Since there are innitely

many real quadratic fields whose class numbers are divisible by 3, there exist innitely

many positive fundamental discriminants D such that the class numbers of \mathbb{Q}(\sqrt{D}) and

\mathbb{Q}(\sqrt{-3D}) are both divisible by 3. As a generalization of Theorem 1.1, we obtain the

following.

Theorem 1.3. Let m_{1} and m_{2} be distinct non‐zero square‐free integers. Then,
there exist innitely many fundamental discriminants D with \mathrm{g}\mathrm{c}\mathrm{d}(m_{1}m_{2}, D)=1 such

that the class numbers of \mathbb{Q}(\sqrt{m_{1}D}) and \mathbb{Q}(\sqrt{m_{2}D}) are both divisible by 3.

Remark. We can take both positive and negative integers for D . In Theorem

1.1, the condition \mathrm{g}\mathrm{c}\mathrm{d}(t, D)=1 is not assumed.

On the other hand, concerning the indivisibility of class numbers of quadratic fields,
D. Byeon proved the following.

Theorem 1.4 (Byeon, [4, Theorem 1.1]). Let t be a square‐fr ee integer. Then,
there exist innitely many positive fundamental discriminants D with a positive infe rior

limit density such that the class numbers of quadratic fields \mathbb{Q}(\sqrt{D}) and \mathbb{Q}(\sqrt{tD}) are

both indivisible by 3.

As a generalization of Theorem 1.4, we obtain the following.

Theorem 1.5. Let m_{1}, m_{2} and m_{3} be square‐fr ee positive integers.

(1) There exist innitely many positive fundamental discriminants D with a positive

inferior limit density such that \mathrm{g}\mathrm{c}\mathrm{d}(m_{1}m_{2}m_{3}, D)=1 and the class numbers of real

quadratic fields \mathbb{Q}(\sqrt{m_{1}D}) , \mathbb{Q}(\sqrt{m_{2}D}) and \mathbb{Q}(\sqrt{m_{3}D}) are indivisible by 3.
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(2) There exist innitely many positive fundamental discriminants D with a positive

inferior limit density such that \mathrm{g}\mathrm{c}\mathrm{d}(m_{1}m_{2}, D)=1 and the class numbers of quadratic

fields \mathbb{Q}(\sqrt{m_{1}D}) and \mathbb{Q}(\sqrt{-m_{2}D}) are both indivisible by 3.

In Theorem 1.5, we can obtain an application to the Iwasawa invariants.

This paper is organized as follows. In Section 2, we sketch the outline of the proof
of Theorem 1.3 by constructing an explicit cubic polynomial which gives an unramied

cyclic cubic extension of the quadratic field. In Section 3, we sketch the outline of

the proof of Theorem 1.5 by using the result of J. Nakagawa and K. Horie[19]. Their

detailed proofs are stated in [11]. Finally, in Section 4, we state an application to the

Iwasawa invariants related to Greenberg�s Conjecture.

§2. Outline of the proof of Theorem 1.3

In this section, we sketch the outline of the proof of Theorem 1.3. The method of

the proof is based on the one in [14].
Let m_{1} and m_{2} be distinct non‐zero square‐free integers. We consider only the case

where 4-m_{1}m_{2} . (The case where 4 |m_{1}m_{2} can be shown by a similar way. For detail,
see [11].) We assume that m_{2} is odd. Let l be a prime number which is inert in the

extension \mathbb{Q}(\sqrt[3]{2})/\mathbb{Q} and satises the condition

(\displaystyle \frac{m_{1}}{l})=(\frac{m_{2}}{l})=1.
Note that there exists such prime number l from Chebotarev density theorem. We take

integers n_{i}(i=1,2) satisfying the following conditions:

n_{i}\equiv\left\{\begin{array}{l}
\pm 3^{2}(4m_{i}-3)\mathrm{m}\mathrm{o}\mathrm{d} 3^{6} \mathrm{i}\mathrm{f} m_{i}\equiv 1\mathrm{m}\mathrm{o}\mathrm{d} 3\\
\pm 3^{2}(4m_{i}+12)\mathrm{m}\mathrm{o}\mathrm{d} 3^{6} \mathrm{i}\mathrm{f} m_{i}\equiv 2\mathrm{m}\mathrm{o}\mathrm{d} 3\\
\pm 4m_{i} \mathrm{m}\mathrm{o}\mathrm{d}27 \mathrm{i}\mathrm{f} m_{i}\equiv 3\mathrm{m}\mathrm{o}\mathrm{d} 9\\
\pm m_{i} \mathrm{m}\mathrm{o}\mathrm{d}27 \mathrm{i}\mathrm{f} m_{i}\equiv 6\mathrm{m}\mathrm{o}\mathrm{d} 9
\end{array}\right.
and

m_{i}n_{i}^{2}\equiv 1\mathrm{m}\mathrm{o}\mathrm{d} l.

Furthermore, we assume that n_{1} is even if m_{1} is odd and that n_{2} is odd. By using
the Chinese remainder theorem, it is seen that there exists such integer n_{i} . Now, put

r_{1} :=m_{1}n_{1}^{2}, r_{2} :=m_{2}n_{2}^{2} and r :=r_{1}r_{2} . Let P be the set of prime numbers that is

dened by

P:=\{p : prime |p\neq 3 and p|r(r-1)(r_{1}-r_{2}
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We denote by T the set of integers t which satisfy the conditions:

\left\{\begin{array}{l}
t\equiv\pm 3\mathrm{m}\mathrm{o}\mathrm{d} 81\\
t\equiv-1\mathrm{m}\mathrm{o}\mathrm{d} l\\
t\not\equiv r, r_{1}\mathrm{m}\mathrm{o}\mathrm{d} p \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{a}\mathrm{n}\mathrm{y} p\in P\\
2t\not\equiv 3(r_{1}+r_{2})\mathrm{m}\mathrm{o}\mathrm{d} q \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{e}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{y} \mathrm{p}\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{e} \mathrm{f}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{s} q\neq 3 \mathrm{o}\mathrm{f} m_{1}m_{2}.
\end{array}\right.
By using the Chinese remainder theorem, we obtain that T is an innite set. We dene

three subsets of T as follows. For r>0 ,
let T_{1}:=\{t\in T|t\geq 2r\} and T_{2}:=\{t\in T|

t\leq{\rm Max}\{r_{1}, r_{2} For r<0 ,
let T_{3} :=\{t\in T|t\geq{\rm Max}\{t_{0}, \sqrt{-r}/3\}\} ,

where t_{0} is a

real number such that t_{0}>{\rm Max}\{r_{1}, r_{2}\} and 2t_{0}^{3}-3(r_{1}+r_{2})t_{0}^{2}+6rt_{0}-r(r_{1}+r_{2})=0.
Note that t_{0} is uniquely determined. Dene

D_{r_{1},r_{2}}(X) :=\displaystyle \frac{1}{27}(3X^{2}+r)\{2X^{3}-3(r_{1}+r_{2})X^{2}+6rX-r(r_{1}+r_{2}
From the congruence relation of r_{1}, r_{2} and t

,
it follows that D_{r_{1},r_{2}}(t) is an integer. Let

\mathcal{F}(S) denote the family \{\mathbb{Q}(\sqrt{m_{1}D_{r_{1},r_{2}}(t)})|t\in S\} for a subset S of \mathbb{Z} . For a prime
number p and an integer a

,
the symbol v_{p}(a) denotes the greatest exponent n such that

p^{n}|a . Then, we have the following.

Theorem 2.1. Let m_{1} and m_{2} be distinct non‐zero square‐free integers with

4-m_{1}m_{2} . For every t\in T ,
the class numbers of the quadratic fields \mathbb{Q}(\sqrt{m_{1}D_{r_{1},r_{2}}(t)})

and \mathbb{Q}(\sqrt{m_{2}D_{r_{1},r_{2}}(t)}) are both divisible by 3 and \mathrm{g}\mathrm{c}\mathrm{d}(m_{1}m_{2}/3^{v_{3}(m_{1}m_{2})}, D_{r_{1},r_{2}}(t))=1.
Moreover, the families \mathcal{F}(T_{1}) , \mathcal{F}(T) and \mathcal{F}(T) each include innitely many quadratic

fields. In particular, if m_{1}>0, m_{2}>0 and t\in T_{1}(resp_{:}t\in T_{2}) ,
the quadratic

fields \mathbb{Q}(\sqrt{m_{1}D_{r_{1},r_{2}}(t)}) and \mathbb{Q}(\sqrt{m_{2}D_{r_{1},r_{2}}(t)}) are both real (resp: both imaginary).
Furthermore, if m_{1}m_{2}<0 and t\in T_{3} ,

one of the quadratic fields \mathbb{Q}(\sqrt{m_{1}D_{r_{1},r_{2}}(t)}) and

\mathbb{Q}(\sqrt{m_{2}D_{r_{1},r_{2}}(t)}) is real and the other one is imaginary.

This theorem is essential for the proof of the case 4-m_{1}m_{2} of Theorem 1.3. In

fact, the case 12-m_{1}m_{2} of Theorem 1.3 follows from Theorem 2.1 immediately. In the

case 3 | mm, we can show Theorem 1.3 by using Theorem 2.1 as follows. From the

congruence relation r_{1}, r_{2} and t
,

it is seen that v_{3}(D_{r_{1},r_{2}}(t))=3 . Then, we have

\mathbb{Q}(\sqrt{m_{i}D_{r_{1},r_{2}}(t)})=\mathbb{Q}(\sqrt{\frac{m_{i}}{3}\frac{D_{r_{1},r_{2}}(t)}{3^{3}}})
if 3 |m_{i} and

\mathbb{Q}(\sqrt{m_{i}D_{r_{1},r_{2}}(t)})=\mathbb{Q}(\sqrt{3m_{i}\frac{D_{r_{1},r_{2}}(t)}{3^{3}}})
if 3-m_{i} . Putting m_{i}':=m_{i}/3 (resp. m_{i}':=3m_{i} ) if 3 |m_{i} (resp. 3-m_{i} ),
we have gcd(mí m_{2;}' D_{r_{1},r_{2}}(t)/3^{3} ) =1 . Moreover, we see that the class numbers of
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\mathbb{Q}(\sqrt{m_{1}'D_{r_{1},r_{2}}(t)}/3^{3}) and \mathbb{Q}(\sqrt{m_{2}'D_{r_{1},r_{2}}(t)}/3^{3}) are both divisible by 3. To prove The‐

orem 2.1, we need the following.

Proposition 2.2. For any t\in T and i=1
, 2, we have 3 |h(m_{i}D_{r_{1},r_{2}}(t)) .

Proposition 2.3. (1) Assume m_{1}>0 and m_{2}>0 . If t\in T_{1} ,
the quadratic

fields \mathbb{Q}(\sqrt{m_{1}D_{r_{1},r_{2}}(t)}) and \mathbb{Q}(\sqrt{m_{2}D_{r_{1},r_{2}}(t)}) are both real. If t\in T_{2} ,
the quadratic

fields \mathbb{Q}(\sqrt{m_{1}D_{r_{1},r_{2}}(t)}) and \mathbb{Q}(\sqrt{m_{2}D_{r_{1},r_{2}}(t)}) are both imaginary.

(2) Assume m_{1}m_{2}<0 . If t\in T_{3} ,
one of \mathbb{Q}(\sqrt{m_{1}D_{r_{1},r_{2}}(t)}) and \mathbb{Q}(\sqrt{m_{2}D_{r_{1},r_{2}}(t)}) is

real and the other one is imaginary.

Proposition 2.4. We have ] \mathcal{F}(T)=\infty . In particular, we have ] \mathcal{F}(T_{1})=\infty,
] \mathcal{F}(T_{2})=\infty and ] \mathcal{F}(T_{3})=\infty.

Proposition 2.2 is obtained as follows. For a fixed t\in T ,
we put u:=t^{3}+3rt,

w:=3t^{2}+r, a:=u-r_{1}w, b:=u-r_{2}w and c:=t^{2}-r . Dene f_{1}(Z) :=Z^{3}-3cZ-2a

and f_{2}(Z) :=Z^{3}-3cZ-2b . Then we can show that the polynomials f_{i}(Z)(i=1,2)
are both irreducible over \mathbb{Q} . Let K_{f}i denote the minimal splitting field of f(Z) over

\mathbb{Q} . Then \mathbb{Q}(\sqrt{m_{i}D_{r_{1},r_{2}}(t)}) is contained in K_{f}i . By using the result of P. Llorente and

E. Nart[16], we see that the cyclic cubic extensions K_{f}i/\mathbb{Q}(\sqrt{m_{i}D_{r_{1},r_{2}}(t)})(i=1,2)
are both unramied. From this and class field theory, we have 3 |h(m_{i}D_{r_{1},r_{2}}(t)) .

Proposition 2.3 is proved by checking the sign of the factor 2t^{3}-3(r_{1}+r_{2})t^{2}+6rt-
r(r_{1}+r_{2}) of D_{r_{1},r_{2}}(t) . We can see this from the sign of the derivative of the one.

Proposition 2.4 is shown as follows. Assume  S\neq $\phi$ is a subset of  T (resp. T_{1}, T_{2} and

T_{3}) such that F(S) is finite. We can choose a_{0} from T (resp. T_{1}, T_{2} and T_{3} ) so that

F(S)\subsetneq \mathcal{F}(S\cup\{a_{0}\}) .

§3. Outline of the proof of Theorem 1.5

In this section, we sketch the outline of the proof of Theorem 1.5.

For a given prime number p ,
there are innitely many quadratic fields whose class

numbers are indivisible by p . In the imaginary case, such results are obtained by P.

Hartung[7], K. Horie[8, 9], K. Horie and Y. Onishi[10], W. Kohnen and K. Ono[15], etc.

In the real case, K. Ono[20], D. Byeon[2, 3], etc. gave the same results. For the case

where p=3 ,
the results of H. Davenport and H. Heilbronn[5] and J. Nakagawa and K.

Horie[19] are known. We begin with the result of Nakagawa and Horie[19].
Suppose 0<X\in \mathbb{R} . We denote by S(X) the set of positive fundamental dis‐

criminants 0<D<X of quadratic fields. Similarly, we denote by S(X) the set of

negative fundamental discriminants -X<D<0 of quadratic fields. Let m and N be

positive integers satisfying the following conditions;
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() If p is an odd prime divisor of \mathrm{g}\mathrm{c}\mathrm{d}(m, N) ,
then p^{2}|N and p^{2}-m.

() If N is even, then (i) 4 |N and m\equiv 1\mathrm{m}\mathrm{o}\mathrm{d} 4 or (ii) 16 |N and m\equiv 8, 12\mathrm{m}\mathrm{o}\mathrm{d} 16.

We dene two sets with these m and N.

S_{+}(X, m, N) :=\{D\in S_{+}(X)|D\equiv m\mathrm{m}\mathrm{o}\mathrm{d} N\},

S_{-}(X, m, N) :=\{D\in S_{-}(X)|D\equiv m\mathrm{m}\mathrm{o}\mathrm{d} N\}.

As a renement of the result of [5], Nakagawa and Horie proved as follows.

Theorem 3.1 (Nakagawa and Horie, [19]).

(1) \displaystyle \lim_{X\rightarrow}\inf_{\infty}\frac{\#\{D\in S_{+}(X,m,N)|3-h(D)\}}{]S_{+}(X,m,N)}\geq\frac{5}{6},
(2) \displaystyle \lim_{X\rightarrow}\inf_{\infty}\frac{\#\{D\in S_{-}(X,m,N)|3-h(D)\}}{]S_{-}(X,m,N)}\geq\frac{1}{2},
(3) ] S_{+}(X, m, N)\displaystyle \sim]S_{-}(X, m, N)\sim\frac{3X}{$\pi$^{2} $\varphi$(N)} \displaystyle \prod \displaystyle \frac{q}{p+1},

p|N:prime

where  $\varphi$(N) is the Euler function, q=4 if p=2 and q=p otherwise.

By using this, we obtain the following.

Theorem 3.2. Let m_{1}, m_{2} and m_{3} be square‐fr ee positive integers. Assume that

positive integers m and N satisfy 16 |N, m\equiv 1\mathrm{m}\mathrm{o}\mathrm{d} 4 and \mathrm{g}\mathrm{c}\mathrm{d} (mN
, mmm) |2^{3}.

Then, we have

(1) \displaystyle \lim_{X\rightarrow}\inf_{\infty}\frac{\#\{D\in S_{+}(X,m,m_{1}m_{2}m_{3}N)|h(m_{i}D)\not\equiv 0\mathrm{m}\mathrm{o}\mathrm{d} 3(i=1,2,3)\}}{]S_{+}(X,m,m_{1}m_{2}m_{3}N)}\geq\frac{1}{3},
(2) \displaystyle \lim_{X\rightarrow}\inf_{\infty}\frac{\#\{D\in S_{+}(X,m,m_{1}m_{2}N)|h(m_{1}D),h(-m_{2}D)\not\equiv 0\mathrm{m}\mathrm{o}\mathrm{d} 3\}}{]S_{+}(X,m,m_{1}m_{2}N)}\geq\frac{1}{3}.
The method of the proof of this theorem is based on the one in [4]. Theorem 1.5

follows from Theorem 3.2.

§4. Application of Theorem 1.5

In this section, we state an application of Theorem 1.5 to the Iwasawa invariants of

the cyclotomic \mathbb{Z}_{3} ‐extension of a quadratic field. We begin with a result of K. Iwasawa.

Theorem 4.1 (Iwasawa, [12]). Let p be a prime number, k be an algebraic num‐

ber field of finite degree and K/k be an arbitrary \mathbb{Z}_{p} ‐extension. If p does not split in k

and the class number of k is indivisible by p ,
then $\lambda$_{p}(K/k)=$\mu$_{p}(K/k)=v_{p}(K/k)=0,

where $\lambda$_{p}(K/k) , $\mu$_{p}(K/k) and v_{p}(K/k) are the Iwasawa invariants of K/k.
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For a non‐zero integer D
,
the symbols $\lambda$_{p}(D) , $\mu$_{p}(D) and v_{p}(D) denote the Iwasawa

invariants of the cyclotomic \mathbb{Z}_{p} ‐extension of the quadratic field \mathbb{Q}(\sqrt{D}) . From Theorems

3.2 and 4.1, we obtain the following two corollaries.

Corollary 4.2. Let m_{1} and m_{2} be square‐fr ee positive integers.

(1) There exist innitely many positive fundamental discriminants D with a positive in‐

ferior limit density such that \mathrm{g}\mathrm{c}\mathrm{d}(m_{1}m_{2}, D)=1 and $\lambda$_{3}(m_{i}D)=$\mu$_{3}(m_{i}D)=v_{3}(m_{i}D)=
0(i=1,2) .

(2) There exist innitely many positive fundamental discriminants D with a positive in‐

fe rior limit density such that \mathrm{g}\mathrm{c}\mathrm{d}(m_{1}m_{2}, D)=1, $\lambda$_{3}(m_{1}D)=$\mu$_{3}(m_{1}D)=v_{3}(m_{1}D)=0
and $\lambda$_{3}(-m_{2}D)=$\mu$_{3}(-m_{2}D)=v_{3}(-m_{2}D)=0.

Corollary 4.3. Let m_{1}, m_{2} and m_{3} be distinct square‐fr ee positive integers with

3 |(m_{1}-m_{2})(m_{2}-m_{3})(m_{3}-m_{1}) . Then, there exist innitely many positive fundamental
discriminants D with a positive inferior limit density such that \mathrm{g}\mathrm{c}\mathrm{d}(m_{1}m_{2}m_{3}, D)=1
and $\lambda$_{3}(m_{i}D)=$\mu$_{3}(m_{i}D)=v_{3}(m_{i}D)=0(i=1,2,3) .

If k is a totally real field, it is conjectured that the Iwasawa $\lambda$_{p} and $\mu$_{p} ‐invariants of

the cyclotomic \mathbb{Z}_{p} ‐extension of k are equal to 0 (Greenberg�s Conjecture, [6]). Corollaries

4.2 (1) and 4.3 imply that there are innitely many pairs or triples of real quadratic
fields satisfying Greenberg�s Conjecture for p=3 with a positive inferior limit density
for a given proportion of discriminants. Corollaries 4.2 and 4.3 are proved by taking
numbers N and m which are dened in Theorem 3.2.
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