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Coherent population trapping in negatively charged self-assembled quantum dots using
a train of femtosecond pulses
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We demonstrate the coherent population trapping in a single quantum dot and an ensemble of negatively
charged quantum dots using a train of femtosecond pulses. Particularly in an ensemble of quantum dots, we
show that the detrimental effects due to the inhomogeneous distribution of their properties can be minimized
by appropriately choosing the pulse-train parameters and the magnetic-field strength in such a way that the
electron-Zeeman splitting is an integer multiple of the pulse repetition rate.
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I. INTRODUCTION

If a quantum system is coherently driven into the so-called
dark state which does not interact with the radiation, it becomes
transparent to the radiation. Such laser-induced transparency
is termed electromagnetically induced transparency (EIT) [1],
which has been intensively studied in atoms and molecules
for various applications, such as slow light [2,3], quantum
information storage [4], refractive index enhancement [5],
four- and six-wave mixing [6], and quantum repeaters [7]. The
accumulating population in the dark state during the interaction
with coherent radiation cannot be transferred to anywhere
else due to its immunity to the radiation, and coherent
population trapping (CPT) [8] takes place. Namely, EIT is
always accompanied by CPT and vice versa. Although most of
the studies on EIT and CPT employ the continuous-wave lasers
or relatively long single laser pulses, the same phenomena also
occur by the use of a pulse train. Indeed, Kocharovskaya and
Khanin have demonstrated CPT in a three-level �-like system
using a train of ultrafast pulses [9], which is followed by other
related works using a pulse train [10–15].

Recently, substantial attention has been paid towards the
realization of EIT [16–18] and CPT [19–21] in quantum dots
(QDs) instead of atoms and molecules. With a negatively
charged single QD, CPT of an electron spin has been realized
using continuous-wave lasers [19]. In their study, a strong
magnetic field (2.64 T) is required to realize a three-level
�-like system out of a four-level system. For some applications
of EIT and CPT, however, the use of an ensemble of QDs is
more desirable. The essential difference between an ensemble
of atoms and molecules and that of QDs is that for the former
what matters is the inhomogeneity in effective transition
frequencies due to the Doppler broadening, whereas for the
latter what matters is the inhomogeneity in terms of dipole
moments, trion transition frequencies, and electron-spin g

factors. As a consequence the degree of achievable coherence
in an ensemble of QDs can be limited [22], and here we
report on CPT in an ensemble of QDs. We should point out,
however, that a novel scheme has recently been proposed
and demonstrated by Greilich and co-workers [23–25] to
realize a single-mode precession of electron spins in an
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ensemble of singly charged QDs by suppressing the influence
of inhomogeneous broadening of electron-spin g factors by
using a picosecond pulse train under the presence of a magnetic
field. The essence of their idea is to modify the continuous
density of electron-spin precession modes in an ensemble of
QDs into a discrete (comblike) density by the irradiation of
a train of short laser pulses to induce a burst of electron-spin
polarization with the repetition time of pulses, whereas the
QDs which do not satisfy the above mode-locking condition
are eventually driven into the synchronized mode due to the
fluctuation of the electron-spin precession frequencies in the
collective hyperfine field of the dot nuclei.

In this paper, we theoretically demonstrate CPT in a single
QD and an ensemble of negatively charged QDs using a pulse
train. In particular we show that the undesired inhomogeneous
properties in an ensemble of QDs can be minimized if the
pulse-train parameters and the magnetic-field strength are
appropriately chosen. Related to our paper Shabaev et al.
have undertaken a theoretical study to realize slow light in an
ensemble of QDs using a pulse train [26]. In contrast to their
work, the main focus of our paper is to show how maximum
coherence can be prepared using a train of femtosecond pulses.
For this purpose we take into account the inhomogeneous
properties of an ensemble of QDs in terms of dipole moments,
trion transition frequencies, and electron-spin g factors, and
carry out through numerical calculations to demonstrate that
the appropriate choice of the parameters for the pulse train and
the magnetic-field strength leads to the creation of maximum
coherence even in an ensemble of QDs.

II. THEORY

We consider the negatively charged self-assembled InAs
QDs with the growth direction along the z axis. The magnetic
field is applied along the x axis (Voigt geometry). In Fig. 1,
we depict the four-level QD system and the corresponding
selection rules. Here, |X±〉 = 2−1/2(|↓〉 ± |↑〉) represent the
two electron ground states with spins polarized along the x

axis, where |↑〉 and |↓〉 denote the electron spins aligned
along the z axis and |T ±〉 = 2−1(|↑↓〉)(|⇓〉 ± |⇑〉) represent
the trion states polarized along the x axis, where |⇓〉 =
|3/2,−3/2〉 and |⇑〉 = |3/2, 3/2〉 denote heavy-hole states
aligned along the z axis. Under the externally applied magnetic
field in the Voigt geometry, the electron spin and trion states
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FIG. 1. (Color online) Four-level model of a negatively charged
quantum dot.

are split by the Zeeman frequencies; ωe
B = |ge

xμBBx |/h and
ωh

B = |gh
xμBBx |/h, respectively, where ge

x and gh
x are the

electron and heavy-hole spin g factors, μB is the Bohr
magneton, h is the Planck constant, and Bx is the magnitude of
the applied magnetic field. The linearly polarized transitions
|X±〉 ↔ |T ±〉 are labeled as V and H . These transitions are
referred to as vertically (V ) and horizontally (H ) polarized
with respect to the polarization axis (�η) of QDs V ⊥ �η and
H ‖ �η. In the present study, we ignore the effect induced
by the heavy- and light-hole mixings since this only rotates
the polarization axis and has no influence on the polarization
selection rules [27].

The electric field of a circularly polarized pulse train
can be written as [28] E(t) = ∑N−1

n=0
E0√

2
f (t − nTR)

{cos[ωc(t − nTR) + i �φ ]̂x + sin[ωc(t − nTR) + i �φ ]̂y},
where f (t − nTR) = exp{−[(t − nTR)/τp]2} is the pulse
envelope, N is the number of pulses in the pulse train, E0 is
the peak value of the electric-field amplitude, ωc is the central
frequency, TR is the pulse repetition time, τp is related to the
pulse duration through τFWHM = 1.177τp, �φ is the phase
difference between two consecutive pulses, and x̂, ŷ are the
unit vectors.

The interaction between the pulse train and the four-level
QD system is described by the following Hamiltonian written
in the basis of |X+〉, |X−〉, |T −〉, and |T +〉. It reads

H = �

⎛
⎜⎝

ωX+ 0 −�H (t) −�V (t)
0 ωX− −�V (t) −�H (t)

−�∗
H (t) −�∗

V (t) ωT − 0
−�∗

V (t) −�∗
H (t) 0 ωT +

⎞
⎟⎠ (1)

Here,

�H (t) = μxE0√
2�

N−1∑
n=0

f (t − nTR) cos[ωc(t − nTR) + i �φ]

and

�V (t) = iμyE0√
2�

N−1∑
n=0

f (t − nTR) sin[ωc(t − nTR) + i �φ]

are the time-dependent Rabi frequencies with the associated
transition dipole moments μx and μy where μx = μT +X− =
μT −X+ and μ∗

x = μx whereas μy = μT +X+ = μT −X−, μ∗
y =

−μy , and μy = iμx [29]. The area of the individual pulse in
the pulse train is defined as 	 = ∫ ∞

−∞ α(t)dt, with

α(t) = μxE0f (t)/
√

2�.

With the Hamiltonian defined above the equation of motion of
the four-level QD system shown in Fig. 1 can be described by
the following master equation:

dρ

dt
= − i

�
[H,ρ] + L(ρ) (2)

where L(ρ) is the Linbladian operator that describes the
relaxation and decoherence processes. It is given by

L(ρ) =

⎛
⎜⎝

�X+T −ρT −T − +�X+T +ρT +T + −γX+X−ρX+X− −γX+T −ρX+T − −γX+T +ρX+T +
−γX−X+ρX−X+ �X−T −ρT −T − +�X−T +ρT +T + −γX−T −ρX−T − −γX−T +ρX−T +
−γT −X+ρT −X+ −γT −X−ρT −X− −�X+T −ρT −T − −�X−T −ρT −T − −γT −T +ρT −T +
−γT +X+ρT +X+ −γT +X−ρT +X− −γT +T −ρT +T − −�X+T +ρT +T + −�X−T +ρT +T +

⎞
⎟⎠ (3)

in which �nm(n,m = X+, X−, T +, T −) is the decay rate
from state m to state n and γnm = γ ∗

mn gives the damping
rate of the coherence term ρnm. For simplicity we assume
that �X+T + = �X+T − = �X−T − = �X−T + = � and γT −X+ =
γT −X− = γT +T − = γT +X− = γT +X+ = γ . In the case of
a single QD, we use the following typical parameters:
(�)−1 = 0.855 ns [30], (γ )−1 = 0.3 ns [19], (γX−X+)−1 =
10 μs [31], and Bx = 1890 mT, |ge

x | = 0.378 and |gh
x | =

0.202 [30], ωe
B = 10 and ωh

B = 5.348 GHz, τp = 100 fs, ωc =
ωT +X+ = ω0 + (ωe

B + ωh
B)/2, ω0 = 315 THz and μx = 8 D

[30], ωT +X− = ωT +X+ − ωe
B , ωT −X+ = ωT +X+ − ωh

B , and
ωT −X− = ωT +X+ − ωe

B − ωh
B , where ωnm = ωn − ωm and

�φ = 0. In the case of an ensemble of QDs, we choose the
following typical parameters: |ge

x | = 0.57 and |gh
x | = 0.81

[25] are the mean values of electron- and heavy-hole spin

g factors, μ̄x = 8 D is the mean value of the dipole moment,
(γX−X+)−1 = 3 μs [32], Bx = 125.35 mT, ωe

B = 1, and ωh
B =

1.42 GHz with all other parameters remaining to be the same
with those for a single QD.

III. RESULTS AND DISCUSSIONS

We numerically solve Eq. (2) using a standard fourth-order
Runge-Kutta method. Figure 2 depicts the accumulation of
coherence in the single QD for different values of pulse inter-
vals with the constant pulse area 	 = π/20 and the magnetic
field Bx = 1890 mT. The accumulation of coherence for TR =
200 ps is faster compared to those for TR = 500 ps,2,and 4ns.
This is particularly due to the fact that for TR = 200 ps the
QD is excited by nearly four pulses during the decay time
of the trion states, which results in the faster accumulation of
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FIG. 2. (Color online) Accumulation of coherence in the single
QD as a function of the irradiated number of pulses for the different
values of pulse intervals.

coherence. In Fig. 2, for every chosen value of TR , the so-called
two-photon resonance condition ωe

B = pfR is satisfied where
p is an integer. We can see from Fig. 2 that the maximum
and minimum values of coherence are 0.50 and 0.48 for
TR = 200 ps and TR = 4 ns, respectively.

Next we study the feasibility of such pulse trains for the
generation of maximum coherence with the increased values
of pulse area. Figure 3(a) depicts the evolution of coherence
for different values of pulse area at the constant pulse interval
of TR = 4 ns. At 	 = π/5, maximum coherence (≈0.5) is
established after nearly 25 pulses, which means that coherent

FIG. 3. (Color online) (a) Accumulation of coherence in the
single QD for the different values of pulse area and (b) the
corresponding evolution of coherence as a function of pulse repetition
rate. (c) Accumulation of coherence in an ensemble of QDs for the
different values of pulse area and (d) the corresponding evolution
of dark state populations as a function of the irradiated number of
pulses.

electron spin can be generated within a much shorter time scale
(100 ns) compared to the decoherence time (10 μs) of QDs at
the cryotemperature. This implies that the preparation of the
coherent electron spin described in this paper may be applied
for quantum information processing [20].

Next, in Fig. 3(b), we depict the final value of coherence
for N = 50 as a function of pulse repetition rate at the
constant value of pulse area 	 = π/5 and magnetic field
Bx = 1890 mT. We notice that coherence is maximum at
fR = 200 MHz owing to the exact two-photon resonance
condition. The occurrence of other peaks arises due to
the two-photon near resonance. For the central peak in
Fig. 3(b), the width of two-photon resonance (full width at half
maximum) is 0.7 MHz. Therefore the width of two-photon
resonance is very small compared to the electron-Zeeman
frequency ωe

B = 10 GHz. Hence this scheme can be used
for high-resolution spectroscopy of a single quantum dot.
In Fig. 3(c), we show the accumulation of coherence in an
ensemble of negatively charged QDs for Bx = 125.35 mT
while keeping the pulse interval (TR = 5 ns) larger than the
ensemble dephasing time of a few nanoseconds [25]. To
calculate the dynamics of the ensemble of QDs we assume,
for a moment, the identical values of dipole moments, trion
transition frequencies, and electron-spin g factor for all QDs.
It can be seen that the maximum coherence (≈0.5) can
also be achieved in an ensemble of QDs by appropriately
choosing the pulse-train parameters. In Fig. 3(d), we depict
the dynamics of the dark state populations in a single QD and
an ensemble of QDs at Bx = 1890 mT and Bx = 125.35 mT,
respectively. Bright and dark states in our four-level QD system
can be written as [13,33,34] |B〉 = (|X+〉 + |X−〉)/√2 and
|D〉 = (|X+〉 − |X−〉)/√2, respectively. Populations in these
states are given by ρB = (ρX+X+ + ρX−X−)/2 + Re(ρX−X+)
and ρD = (ρX+X+ + ρX−X−)/2 − Re(ρX−X+). Initially, both
states are equally populated, i.e., ρB = 0.5 and ρD = 0.5.
Due to the accumulation of maximum coherence after the
interaction with many pulses, nearly complete population is
pumped to the dark state, and simultaneously the population in
the bright state becomes zero (not shown). After the creation
of the fully populated dark state, the pulses are no longer
absorbed, and eventually EIT of the pulse train can take place.

Of course the assumptions we have made in Figs. 3(c)
and 3(d) for the ensemble of QDs is too stringent, and in
practice the ensemble of QDs suffers from the inhomogeneous
distribution of dipole moments, trion transition frequencies,
and electron-spin g factors. To understand the effect of
inhomogeneous distribution on the dark state population,
we include them one by one. First, we study the effect of
the inhomogeneous distribution of dipole moments among
QDs. Assuming that the distribution function for the prop-
erties of an ensemble of QDs obeys the normal distribution
the distribution function of dipole moments reads f (μ) =

1√
πα

exp{−[(μ − μ̄x)/α]2}. Following Ref. [35] the full width
at half maximum (FWHM) of the distribution of dipole
moments αFWHM is assumed to be 1.88. In Fig. 4, we depict
the variation in the dark state population in the single QD as
a function of the value of dipole moments with μ̄x = 8 D. We
can see that the dark state population after irradiating the QD by
N = 50 is quite smaller than unity and significantly depends
on the particular value of the dipole moment, especially for
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FIG. 4. (Color online) Variation in the dark state population in
the single QD as a function of the value of dipole moments with
μ̄x = 8 D, TR = 5 ns, and E0 = 1.62 × 105 V/cm. The number of
irradiated pulses are N = 50 (dot-dashed line), 100 (solid line), and
200 (dashed line), respectively. The solid line at the center represents
the distribution function f (μ).

the lower values of the dipole moments. However, after the
excitation of the QD by 200 pulses, the dark state is fully
populated (≈98%) over the entire range of dipole moments.

This is particularly due to the pulse-to-pulse accumulation
of coherence, which significantly nullifies the effect of varia-
tion in the dipole moments. The ensemble-averaged dark state
population, ρ̄D = ∑

μ
ρD(μ)f (μ)

f (μ) for N = 50, 100, and 200 is
found to be 99.09, 99.29, and 99.30%, respectively. Therefore,
by irradiating the QDs by 200 or more pulses, the effect of
inhomogeneous distribution of the values of dipole moments
can be minimized to the negligible level. Next, we study
the effect of inhomogeneous distribution of trion transition
frequencies. The FWHM of the inhomogeneous distribution
in the trion transition frequencies is found to be 169 GHz [36].
After repeating the same procedure with TR = 5 ns, Bx =
125.35 mT, N = 200, and 	 = π/5, the obtained value of the
dark state population after the ensemble average is 99.52%.
Therefore the effect of inhomogeneous trion transition fre-
quencies can also be minimized by appropriately choosing
the pulse-train parameters and the magnetic-field strength.
Finally we study the effect of the inhomogeneous distribution
of electron-spin g factors among QDs. We again assume that
its distribution function obeys the normal distribution, i.e.,
f (g) = 1√

πβ
exp{−[(g − ge

x)/β]
2}. Following Ref. [24] we

assume βFWHM = 0.004.
Figure 5 depicts the variation in the dark state population

in the single QD as a function of electron-spin g factors after
the irradiation of N = 200 pulses with ge

x = 0.57 under the
different magnetic-field strengths. Here, we choose the values
of magnetic field and pulse interval such that the condition
ωe

B = pfR is satisfied ωe
B = |ge

xμBBx |/h. We can see that the
effect of electron-spin g factors becomes less pronounced for
the smaller magnetic-field strength. This is particularly due
to the fact that the broadening �ω = |βFWHMμBBx |/h of the
mode-locked Zeeman frequency ωe

B becomes smaller at the
smaller values of magnetic fields [24]. The ensemble-averaged

FIG. 5. (Color online) Variation in the dark state population in the
single QD as a function of electron-spin g factors with ge

x = 0.57,
TR = 5 ns, and 	 = π/5. The employed magnetic-field strengths are
Bx = 250.70 (dot-dashed line), 125.35 (solid line), and 25.07 mT
(dashed line), respectively. The solid line at the center represents
the distribution function f (g). The number of irradiated pulses is
N = 200.

dark state population for Bx = 250.70, 125.35, and 25.07 mT
is found to be 76.04%, 87.41%, and 98.63%, respectively.
This also shows that the effect of inhomogeneous distribution
of electron-spin g factors can be minimized by appropriately
choosing the pulse interval and the magnetic-field strength.
Hence by appropriately choosing the pulse-train parameters
and the magnetic-field strength, the effect of inhomogeneous
distribution of QD properties, such as dipole moments, trion
transition frequencies, and electron-spin g factors can be
minimized, which in turn lead to the creation of nearly
maximum coherence. Maximum coherence prepared in this
way can be exploited to transfer the information carried in the
phase and amplitude of the input field to those of the output
field through coherent Raman scattering via a light-hole trion
state [37].

IV. CONCLUSIONS

In conclusion we have demonstrated the coherent popu-
lation trapping in a single QD as well as an ensemble of
negatively charged QDs using a train of femtosecond pulses.
In a single QD, we have shown that the appropriate choice
of pulse-train parameters enables us to achieve the maximum
coherence in the two excitation regimes in which the pulse
interval is shorter or longer than the decay time of the trion
states. In particular nearly complete population transfer to
the dark state or nearly complete population trapping can
be realized if the electron-Zeeman frequency is chosen to be
an integer multiple of the pulse repetition rate. Moreover, in
the case of an ensemble of QDs, we have demonstrated that
the effects of inhomogeneous distribution of QD properties
can be minimized by appropriately choosing the pulse-train
parameters and the magnetic-field strength. The coherence
generated in an ensemble of QDs can be exploited to transfer
information in the input field to that in the output field via
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coherent Raman scattering. This scheme can also be applied to
realize the coherent population trapping in positively charged
quantum dots.
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