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ABSTRACT: Our recent theoretical and/or Monte Carlo (MC) studies of dilute solution

properties of semiflexible stars and rings are briefly summarized. The theoretical results for

the intrinsic viscosity [η] of the Kratky–Porod (KP) wormlike three- and four-arm stars are

shown, and effects of chain stiffness on [η] of the stars are examined. A comparison of the

results for [η] with those for the effective hydrodynamic radius and the second virial coefficient

A2 in a good solvent was made for the semiflexible three-arm stars. It was found that [η] is

the most suitable object of study to examine the effects of chain stiffness on average chain

dimensions of the stars. As for the rings, the MC results for A2 of the ideal KP rings, which is

related to the intermolecular topological interactions, are presented and then compared with

the data in the literature for ring atactic polystyrene (a-PS) at Θ for large molecular weight M

(1× 104—6× 105). Even for ring a-PS in such a range of M , the effects of chain stiffness were

still remarkable. The effects of the intramolecular topological constraints on the mean-square

radius of gyration and the scattering function of the KP rings are also discussed.

KEYWORDS: dilute solution properties; ring polymer; star polymer; semiflexible polymer; worm-

like chain
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INTRODUCTION

Dilute solution behavior of polymers is mainly governed by their average chain dimensions in

solutions, and therefore is significantly affected by their primary molecular structure (e.g., lin-

ear, branched, or ring). Numerous experimental, theoretical, and computational studies have

compared the average chain dimensions between linear polymers and star1–7 or ring ones.8–30

However, almost all of those studies were made for flexible polymers, where a comparison was

made of experimental and/or computational results with conventional Gaussian chain theo-

ries; only a few studies were made for semiflexible stars5–7 and rings,13–15,28–30 which may be

considered to be important in the studies of biopolymers, such as the aggregation behavior of

xanthan (a double-helical polysaccharide) in aqueous solutions,31 the supercoiling behavior of

circular DNA,32 and so on.

Semiflexible polymers, i.e., polymers in the range of the crossover from the rigid-rod limit

to the random-coil one cannot be fully described by the Gaussian chain.15 This is also the case

even with typical flexible polymers (e.g., polystyrene), if their molecular weight M is not very

large (≲ 105). The discrepancy between the Gaussian chain theories and the experimental

results becomes more severe with decreasingM .15 To build up a comprehensive understanding

of the dilute solution behavior of the star and ring polymers in this crossover range, it is

necessary to make theoretical and/or computational studies using a polymer chain model

appropriate for semiflexible polymers.

Linear polymers in the crossover range may be well described by the Kratky–Porod (KP)

wormlike chain model.15,33 This model is defined as a continuous limit of the freely rotating

chain or an elastic wire with bending energy immersed in a thermal bath, whose chain stiff-

ness is measured by the stiffness parameter λ−1, which has the dimension of length.15 The

dimensional properties of the KP chain become a function of the reduced contour length λL

(∝ M) defined as the contour length L of the KP chain measured in units of λ−1. The limits

of λL → 0 and λL → ∞ correspond to the rigid-rod and random-coil limits, respectively. Al-

though the KP chain model may in principle be extended to other kinds of non-linear polymer

chains, the only theoretical studies that emerged thus far investigate the mean-square-radius
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of gyration ⟨S2⟩ of the KP stars by Mansfield and Stockmayer5 and ⟨S2⟩, the intrinsic viscosity

[η], and the translational diffusion coefficient D of the KP ring by Yamakawa’s group.13–15

We recently made theoretical and/or Monte Carlo studies of the dilute solution properties

of semiflexible star34–38 and ring39,40 polymers using the KP wormlike chain model. In this

short review, the results of these studies are briefly summarized.

SEMIFLEXIBLE STARS

This section addresses semiflexible (regular) star polymers. Goodson and Novak synthesized

three-arm star poly(n-hexyl isocyanate) (PHIC), which is a typical semiflexible polymer, by

living titanium-catalyzed coordination polymerization.7 The three-arm star PHIC may be

regarded as a typical example of semiflexible stars, we then consider mainly semiflexible three-

arm stars.

We calculated the intrinsic viscosity [η] 35 and the translational diffusion coefficient D 37 of

the wormlike three-arm stars. The second virial coefficient A2 of the three-arm stars in a good

solvent was evaluated by MC simulations using the freely rotating chain with the Lennard–

Jones 6-12 potential.36 (Recall that the freely rotating chain becomes identical with the KP

chain in the continuous limit.) Furthermore, for comparison, [η] of the wormlike four-arm

stars was also calculated.38 We note that [η], D, and A2 in a good solvent are proportional

to the effective hydrodynamic volume VH of a polymer chain, the reciprocal of the effective

hydrodynamic radius RH of a polymer chain, and the effective volume VE excluded to one chain

by the presence of another, respectively. Based these results, we examined effects of chain

stiffness on the average chain dimensions of semiflexible star polymers in dilute solutions.

In the following two subsections, we first state the results for [η] of the KP three- and four-

arm stars and then make a comparison of the behavior of [η] with that of other properties

RH, A2 in a good solvent, and ⟨S2⟩ for the three-arm stars.

Intrinsic viscosity

Consider a f -arm star chain (f = 3 or 4) composed of n + 1 identical spherical beads of

diameter db whose centers are located on the KP (regular) f -arm star of total contour length
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L and stiffness parameter λ−1, one bead being put on the branch point and m = n/f beads on

each arm. The angle between each pair of the unit vectors tangent to the KP contours at the

branch point is fixed to be 120◦ for f = 3 and the tetrahedral angle [= cos−1(−1/3) ≃ 109◦]

for f = 4. The contour distance between the centers of two adjacent beads is set equal to db,

so that (n + 1)db = L. This is the touched-bead hydrodynamic model15,41 for the KP f -arm

star.

If we use the Kirkwood–Riseman (KR) approximation,1,42 the validity of which has been

examined preliminarily for the semiflexible stars by MC simulations,34 and consider effects

of the beads of finite volume, the intrinsic viscosity [η] of the touched-bead model may be

evaluated as a sum of the solution of the KR equation and the contribution of the Einstein

spheres.15,41

Using of this model and the linear KP touched-bead model, we evaluated [η] of the KP

f -arm star and also that of the linear KP touched bead model, both having the same L,

λ−1, and db. Then, the ratio gη of [η] of the star and linear chain is calculated and then the

theoretical expression for gη was obtained in the form,

gη(λL, λdb) = g0η(L/db)f(λL) , (1)

where g0η is the asymptotic value of gη in the limit of λL → 0 and given by

g0η(L/db) = lim
λL→0

gη(λL, λdb) (2)

The explicit expressions for g0η(L/db) and f(λL) are given by Equations (38) and (39) in ref. 35,

respectively, for the KP three-arm star and by Equations (28) and (29) in ref. 38, respectively,

for the KP four-arm star. Therefore, we examined the behavior of gη as a function of λL and

λdb.

Figure 1

Figure 1 shows plots of gη for the KP three- and four-arm stars, denoted by gη,3 and gη,4,

respectively, against the logarithm of λL. The dashed and solid curves represent the KP
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theoretical values of gη,3 and gη,4, respectively, calculated from Equation (1) using the explicit

expressions for g0η and f(λL) mentioned above with the indicated values of λdb. The upper

dashed and solid horizontal line segments represent the asymptotic values of 0.90 for the three-

arm star and 0.82 for the four-arm star, respectively, in the random-coil limit (λL → ∞).4

The lower dashed and solid horizontal line segments represent the asymptotic values of 4/9 for

the three-arm star and 1/4 for the four-arm star, respectively, in the thin-rod limit (λL → 0

and L/db → ∞). Both gη,3 and gη,4 decrease from the corresponding random-coil-limiting

value and then increase after passing through a minimum with decreasing λL in the range

of λdb investigated. This minimum is due to the fact that the finite volume of the beads

composing the chain (the contribution of the Einstein spheres) is taken into account. The

ratios depend remarkably on λdb, and the minimum value of gη,f decreases, approaching the

corresponding thin-rod-limiting value, with decreasing λdb. These results indicate that [η] of

the star polymers depends largely not only on the chain stiffness but also on the hydrodynamic

chain thickness.

Other properties

For the three-arm stars, we made a comparison of the results for [η] with those for RH and A2

in a good solvent along with the results for ⟨S2⟩ of the KP stars by Mansfield and Stockmayer.5

The quantity RH was calculated using the relation RH = kBT/6πη0D, where kB is the

Boltzmann constant, T is the absolute temperature, and η0 is the solvent viscosity; the values

of D evaluated using the Kirkwood formula1,43 with the same model that was used in the case

of [η]. The quantity A2 was evaluated by MC simulations using the freely rotating chain of

bond angle θ with the Lennard–Jones 6-12 potential under a good solvent condition. We then

evaluated the ratios gH and gA2 of RH and A2, respectively, of the three-arm stars in a similar

manner to that in the case of gη.

Figure 2

Figure 2 shows plots of gη, gH, and gA2 along with the ratio gS of ⟨S2⟩ by Mansfield and

Stockmayer5 against the logarithm of λL for the three-arm stars. The value of λdb used for
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the calculations of gη and gH was set equal to 0.03; this value is nearly equal to that for PHIC.

The solid, chain, and dashed curves represent the KP theoretical values of gη, gH, and gS,

respectively. The symbols represents the MC values of gA2 for the freely rotating three-arm

stars with θ = 109◦ (circles), 165◦ (triangles), and 175◦ (squares). The number of bonds of the

chains was properly converted to λL.36 The ratios of gη and gS decrease remarkably from the

corresponding random-coil-limiting values with decreasing λL, while gH and gA2 are rather

insensitive to changes in λL.

These results indicate that an examination of the behavior of gη and gS as a function of λL

(or M) is required to experimentally clarify the effects of chain stiffness on the dilute solution

properties of star polymers. Further, considering the fact that an accurate experimental

determination of ⟨S2⟩ is not easy in the range of small M , where the effects of chain stiffness

become remarkable, gη seems to be the most suitable object of study for such purpose.

SEMIFLEXIBLE RINGS

Next, we consider semiflexible ring polymers. For ring polymers, inter- and intramolecular

topological constraints arising only from chain connectivity, which inhibits chains crossing each

other, may affect dilute solution properties to some extent. The intermolecular topological

constraint, i.e., the so-called topological interaction (TI) works to conserve a given link type

between a pair of ring polymers. Then, a repulsive force, in the sense of the potential of

mean force, results from the TI between unlinked ring polymers. Consequently, the second

virial coefficient A2 remains positive even for the ideal (unperturbed) rings without excluded

volume, as explicitly shown in the MC study made by Frank-Kamenetskii et al.16,17 Their

pioneering work on A2 of rings was followed by theoretical and MC studies based on the

Gaussian chain model, which is valid for very long, flexible ring polymers.18–22 We note

that the exact expression of A2 for the rigid ring has also been derived.20 Experimentally,

positive values of A2 were observed for ring atactic polystyrene (a-PS) in cyclohexane at Θ for

large M (104—105)23–25 and also for ring amylose tris(alkylcarbamate)s, which are semiflexible

polymers, in Θ solvents by Terao et al.29,30 The intramolecular topological constraint works

to conserve a type of knot of a single ring polymer introduced during synthesis. The presence
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of various types of knots affect equilibrium conformational properties of ring polymers. For

example, in the random-coil limit (λL → ∞), ⟨S2⟩ becomes proportional to λL1.2 for rings of

the trivial knot (unknotted rings)20,26,27 and to λL for the rings without the intramolecular

topological constraints, the latter relation being as is well known.

Although the KP theories of ⟨S2⟩, [η], and D are available for ring polymers,13–15 as

mentioned in the introduction, all of the theories is developed only for rings without the

intramolecular topological constraints. No theoretical study of the distinctive property A2 of

unperturbed semiflexible rings had not been made. We made an MC study39 of the effects of

chain stiffness on A2 of ideal rings using a discrete version of the KP ring.44 We also examined

effects of the intramolecular topological constraints on the conformational properties, ⟨S2⟩ 39

and the scattering function P (k)40 as a function of the magnitude k of the scattering vector, for

semiflexible rings by comparing the MC results for the KP rings of the trivial knot with those

for the KP rings without the intramolecular topological constraints. We note that analytical

treatments of the inter- and intramolecular topological constraints are quite difficult; the MC

method is proper for the present purpose.

We first show the MC results for A2 of the ideal KP rings and then make a comparison

between the MC results and the experimental data for ring a-PS at Θ.23–25 Next, the MC

results for ⟨S2⟩ are shown. Finally, we give the MC results for P (k) along with the analytical

results for the continuous KP ring without the intramolecular topological constraints.

Second virial coefficient

The MCmodel used in this study is essentially the same as that proposed by Frank-Kamenetskii

et al.,44 i.e., the ring composed of n infinitely thin bonds of bond length l with the harmonic

bending energy αθ2/2kBT between two successive bonds, where α is the bending force constant

and θ is the angle between the two successive bond vectors. This model becomes identical

with the continuous KP ring of total contour length L = nl and stiffness parameter λ−1 in

the continuous limit (λ−1 is related to α/kBT ).
14,15,44 Using this model, A2 of the ideal KP

rings without excluded volume and the intramolecular topological constraints was evaluated

from the potential of mean force calculated on the basis of the Gauss linking number.45
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For practical convenience, an interpolation formula for A2 as a function of M with the

KP parameters λ−1 and ML, where ML = M/L is the shift factor as defined as the molecular

weight per unit contour length of the KP chain,15 was constructed based on the MC values

so obtained along with the asymptotic relation (A2 ∝ λL−1/2 or M−1/2) in the random-coil

limit and the exact relation A2 = NAL
3/6π2M2, where NA is the Avogadro constant, in the

rigid-ring limit by des Cloizeaux.20 The interpolation formula is given by

A2 =
4NAλ

−1

M 2
L

f(λL) (3)

with

f(L) =
L

24π2
[e−0.6014L+0.5700L(1+0.9630L1/2−0.7345L+0.4887L3/2+0.07915L2)−1]3/2 . (4)

Figure 3

Figure 3 shows double-logarithmic plots of A2 (in cm3mol/g2) against the weight-average

molecular weight Mw for ring a-PS in cyclohexane at the Θ temperature (34.5 or 35 ◦C). The

circles, triangles, and squares represent the experimental data by Roovers and Toporowski,23

by Takano et al.,25 and by Huang et al.,24 respectively. The solid curve represents the KP

theoretical values (MC results) calculated from Equations (3) and (4) with λ−1 = 16.8 Å and

ML = 35.8 Å−1; the values of λ−1 and ML were determined for the linear a-PS under the

same solvent condition.46 The dotted line segment of slope unity represents the theoretical

values for the rigid ring20 calculated also with ML = 35.8 Å−1. The KP theoretical values

first increase along with the dotted line segment, then deviate downward progressively from

this line with increasing Mw (or λL), and finally decreases after passing through a maximum.

The present results with the values of the KP model parameters determined previously allow

for a qualitative explanation of the behavior of the available literature data for ring a-PS in

cyclohexane at Θ, although the theoretical values are slightly larger (∼ 10−5 cm3mol/g2) than

the experimental values. The most important indication is that even for ring a-PS in the range

of 1 × 104 ≲ Mw ≲ 6 × 105, A2 at Θ never obeys the random-coil-limiting law (A2 ∝ M−1/2

indicated by the thin solid line). The effects of chain stiffness are still quite remarkable.
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We note that Terao et al.30 have shown that the behavior of A2 of ring amylose tris(n-

butylcarbamate) in 2-propanol at 35 ◦C (Θ) as a function of Mw may be fairly well explained

by the present MC results for the ideal KP rings with proper values of λ−1 and ML.

Mean-square radius of gyration

Next, we consider the difference between ⟨S2⟩ of the KP rings of the trivial knot and that of

the rings without the intramolecular topological constraints (i.e., the mixture of the rings of

all kinds of knots with the Boltzmann weight of the total potential energy of the rings). The

former quantity is denoted by ⟨S2⟩t.k. and the latter quantity is denoted by ⟨S2⟩mix. Using

the same model as that used in the case of A2, we calculated ⟨S2⟩t.k. and ⟨S2⟩mix by MC

simulations. We distinguished the rings of the trivial knot from other types of rings using the

Alexander polynomial.47

Figure 4

Figure 4 shows double-logarithmic plots of ⟨S2⟩t.k./⟨S2⟩mix against λL. The open circles

represent the MC values of the KP rings, and the dots represent the MC values of the freely

jointed ring (corresponding to α/kBT → 0) obtained by Moore et al.27 All of the data points

form a single-composite curve, and ⟨S2⟩t.k./⟨S2⟩mix increases monotonically with increasing λL.

The ⟨S2⟩t.k./⟨S2⟩mix values are almost equal to unity for λL ≲ 10. This is natural consequence

from the fact that the fraction of the number of rings of the trivial knot in an ensemble of

rings without the intramolecular topological constraints is equal to unity for λL ≲ 10,39

in other words, the rings of non-trivial knots are rarely generated for stiff rings. Although

⟨S2⟩t.k./⟨S2⟩mix is considered to become proportional to λL0.2 in the random-coil limit,20,26,27

it is difficult to derive a definite conclusion from only the present data for λL ≤ 103.

Scattering function

Finally, we give the results for P (k). We evaluate P (k) as a function of k for the KP rings with-

out the intramolecular topological constraints and those of the trivial knot by MC simulations

using with the same model as that used in the cases of A2 and ⟨S2⟩.
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Figure 5

Figure 5 shows plots of ⟨S2⟩1/2F (k) against ⟨S2⟩1/2k (the reduced Kratky plot) for the

KP rings. The function F (k) is the so-called Kratky function defined by F (k) = Lk2P (k).15

The solid and dotted curves represent the MC values of the rings without the intramolecular

topological interactions and those of the trivial knot, respectively, with n = 200 (= L/l) and

with the indicated values of λ−1/l. The corresponding values of α/kBT are 0, 0.3, 1, 3, 10, and

30 (from top to bottom), and the corresponding values of λL are estimated to be 200, 142.0,

77.67, 31.15, 9.823, and 3.315 (from top to bottom). The upper chain curve represents the

theoretical values of the Gaussian ring12 (without the intramolecular topological interactions)

of n = 200, which corresponds to the MC chain of λ−1/l = 1 (α/kBT = 0). The lower chain

curve represents the theoretical values of the rigid ring48,49 of L = 200l.

The MC values for the rings without the intramolecular topological constraints with

λ−1/l = 1 (α/kBT = 0) agree well with the theoretical values for the Gaussian ring in the

range of ⟨S2⟩1/2k ≲ 3 including the peak location (≃ 2). The difference for ⟨S2⟩1/2k ≳ 3 is

due to that in local chain conformation between the freely jointed (α/kBT = 0) and Gaussian

rings. With increasing λ−1/l (decreasing λL), the peak in the plot of the MC data slightly

shifts to the low ⟨S2⟩1/2k side and becomes lower. The plot of the MC data for λ−1/l = 60.34

exhibits a second peak, although not sharp, at ⟨S2⟩1/2k ≃ 4.5 as seen in the plot for the rigid

ring.

For λ−1/l ≤ 6.421, the MC values for the rings of the trivial knot are somewhat smaller

than those for the corresponding rings without the intramolecular topological constraints in

the range of ⟨S2⟩1/2k ≲ 6 as in the case of the Gaussian rings.50 The difference in the height of

the peak between the two cases becomes smaller with increasing λ−1/l and becomes negligibly

small for λ−1 = 20.36 and 60.34 (λL = 9.823 and 3.315). The reason for this is the same as

that in the case of ⟨S2⟩t.k./⟨S2⟩mix for λL ≲ 10, as shown in Fig. 4.

For practical convenience, we derive the theoretical expression of P (k) for the continuous

KP ring without the intramolecular topological constraints in the first Daniels approxima-
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tion.15,51 The expression is given by

P (k) = 2L−2

∫ L

0

(L− t) exp

[
−t(L− t)k2

6L

]
×

[
1 +

k2

12
− 11t(L− t)k2

36L2
− 11t4(L− t)k4

1080L4
− 11t(L− t)4k4

1080L4
+ · · ·

]
dt . (5)

[Note that k2 = O(L−1).] In Fig. 5, the dashed curves represent the corresponding theoretical

values calculated from Equation (5) with λ2⟨S2⟩ = (λL/12)(1 − λL/7) in the first Daniels

approximation. The theoretical values agree well with the corresponding MC values in the

range of ⟨S2⟩1/2k ≲ 3, where the peak characteristic of the ring appears, for λL ≳ 10. We

note that in the ranges of ⟨S2⟩1/2k ≲ 3 and λL ≳ 10, effects of chain thickness on P (k) are

negligibly small.40

CONCLUDING REMARKS

We have briefly summarized our recent theoretical and/or MC studies of the dilute solution

properties of the semiflexible star and ring polymers based the KP wormlike chain model.

The effects of chain stiffness on [η], RH, and A2 in a good solvent of the three-arm star and

also [η] of the four-arm star have been examined. For the rings, the behavior of A2 arising

only from the TI in the range of the crossover from the rigid-ring limit to the random-coil one

was clarified. Furthermore, the effects of the intramolecular topological constraints on ⟨S2⟩

and P (k) of the KP rings were also discussed. It must be emphasized that the effects of chain

stiffness affect largely the dilute solution behavior not only of linear polymers but also of star

and ring polymers and are still remarkable even for typical flexible polymers with large M

(∼ 105).

Finally, some remarks are made on the current situation of the studies of the dilute solution

properties of star and ring polymers. Few experimental data of semiflexible stars are available

at the present time. Synthesis of semiflexible stars having various chain stiffness over a wide

range of M and experimental examinations of their dilute solution behavior are desired. For

semiflexible rings, a further progress in the theoretical or computational studies of [η] and D

is required since the existent KP theories of [η] and D are valid only for large λL13,15 and are

developed for the rings without the intramolecular topological constraints.
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Figure Legends

Figure 1 Plots of gη,3 and gη,4 against log λL. The dashed and solid curves represent

the KP theoretical values of gη,3 and gη,4, respectively, with indicated values of

λdb. The upper dashed and solid line segments indicate the asymptotic values

of 0.90 for the three-arm star and 0.82 for the four-arm star, respectively, in the

random-coil limit.4 The lower dashed and solid horizontal line segments indicate

the asymptotic values of 4/9 for the three-arm star and 1/4 for the four-arm star,

respectively, in the thin rod limit.

Figure 2 Plots of gη, gH, gA2 , and gS against log λL for the three-arm stars. The solid and

chain curves represent the KP theoretical values of gη and gH with λdb = 0.03.

The symbols represents the MC values of gA2 for the three-arm star freely rotating

chains with θ = 109◦ (circles), 165◦ (triangles), and 175◦ (squares), the number

of bonds of the chains being properly converted to λL.36 The dashed curve

represents the KP theoretical values of gS by Mansfield and Stockmayer.5

Figure 3 Double-logarithmic plots of A2 (in cm3mol/g2) against Mw for ring a-PS in cy-

clohexane at Θ. The circles, triangles, and squares represent the experimental

data by Roovers and Toporowski,23 by Takano et al.,25 and by Huang et al.,24

respectively. The solid curve represents the KP theoretical values (MC results)

calculated with λ−1 = 16.8 Å and ML = 35.8 Å−1. The dotted line segment of

slope unity represents the theoretical values for the rigid ring20 calculated with

ML = 35.8 Å−1.

Figure 4 Double-logarithmic plots of ⟨S2⟩t.k./⟨S2⟩mix against λL. The open circles repre-

sent the MC results for the KP rings. The dots represent the values of the freely

jointed ring obtained by Moore et al.27

Figure 5 Plots of ⟨S2⟩1/2F (k) against ⟨S2⟩1/2k for the KP rings. The solid and dotted

curves represent the MC results for the KP ring without the intramolecular

topological constraints and those for the KP ring of the trivial knot, respec-

tively, with n = 200 (= L/l) and with the indicated values of λ−1/l. The upper
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and lower chain curves represent the theoretical values for the Gaussian12 and

rigid rings,48,49 respectively. The dashed curves represent the corresponding the-

oretical values of the KP rings in the first Daniels approximation.
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