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Abstract. This paper reviews the design of data models for semistruc-
tured data, particularly focusing on their schemaless nature. Uniform
treatment of schema information and data, in other words, uniform treat-
ment of metadata and data, is important in the design of such data mod-
els. This paper discusses what data and metadata are, and argues that
attribute names, which are usually regarded as metadata, and key values,
which are usually regarded as data, play similar roles when we organize
large data sets. The paper revises one of the standard semistructured
data models in accordance with that argument, and eventually reinvents
the deterministic semistructured data model proposed by Peter Bune-
man and his colleagues. The contribution of this paper is an additional
rationale of the design of that data model, a rationale based on the sim-
ilarity between attribute names and key values.
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1 Introduction

In the 1990s, data with nested irregular structure but without predefined schema
became prevalent, and the management of such semistructured data became an
important research topic in the database community [1, 4]. Data models and
query languages for semistructured data were first discussed [14, 8, 15, 6], and
they were soon followed by research on all other aspects of semistructured data
management. After that, the focus of the research shifted to the management of
XML data, which to some extent represents the convergence of semistructured
data management and document management [2]. The XML data format, how-
ever, was not originally designed for semistructured data, and is not necessarily
appropriate for such data. The design of data models for semistructured data,
therefore, remains a technically interesting problem.

This paper reviews the data models for semistructured data that were pro-
posed and studied in the 1990s. It particularly focuses on the schemaless nature
of semistructured data. The term “schemaless” is related to a couple of aspects
of semistructured data, but what is of interest here is the uniform treatment of
schema information and data; in other words, the uniform treatment of metadata
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and data. This paper therefore first discusses what data and metadata are, and
argues that attribute names, which are usually regarded as metadata, and key
values, which are usually regarded as data, play similar roles when we organize
large data sets. Revising one of the standard semistructured data models pro-
posed in the 1990s in accordance with the argument, we see that the result is
the deterministic semistructured data model proposed by Peter Buneman and
his colleagues in [9]. In other words, this paper reinvents that data model.

Much of the discussion in this paper has already been shown in the literature,
such as [1, 4, 2] and, of course, [9]. This paper also includes many things that
were not explicitly written in [9] but must have already been discussed by Peter
Buneman and his colleagues. It may also even include something the author first
heard from Peter Buneman or his colleagues but then forgot. The contribution of
this paper is that it clarifies the similarity between attribute names and key val-
ues, thereby providing an additional rationale for the design of the deterministic
semistructured data model in [9].

The remainder of this paper is organized as follows. The next section reviews
key issues in the design of data models for schemaless semistructured data, and
briefly explains one of the semistructured data models proposed in the 1990s.
Section 3 discusses what data and metadata are, and shows that attribute names
and key values play similar roles in indexing data items in large data sets. Sec-
tion 4 extends the model previously explained in Section 2 in accordance with
the discussion in Section 3, and “reinvents” the deterministic semistructured
data model. Section 5 briefly discusses the relation between that data model
and table-based data models, and Section 6 concludes the paper.

2 Semistructured Data Models

Two major data models for semistructured data were proposed in the 1990s,
one by the Stanford University Database Group (which is now the Stanford
University InfoLab) [3] and the other by Peter Buneman and his colleagues at
the University of Pennsylvania [6].

One of the most important properties of these semistructured data models is
that they are schemaless. That is, in these data models, data are not accompanied
by a separate predefined schema that describes the structure of the data. In
ordinary data models for database systems, e.g., in the relational data model, a
schema mainly plays the following roles:

1. The most important role of a schema is to index and annotate each data item
in the database. For example, attribute definitions in a relational schema
are used by the system for parsing the tuples, and attribute names let users
know the meaning of the attributes. Such data that describes the structure
or meaning of another data is sometimes called metadata.

2. A schema also represents structural constraints on data. For example, at-
tribute specifications in a relational schema work also as constraints on the
structure and contents of tuples.
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3. A schema as a whole also works as a data catalogue (i.e., a concise summary
of the stored data) for users to browse or query the database.

In semistructured data models, however, the existence of a schema is not
assumed [1, 4, 2] because

– data may have irregular structure, making it hard to define a compact
schema,

– data may have a schema that changes frequently, and
– the information on the structure of data may not be available in advance

when we start to store partial data.

When we do not assume a schema, we need some substitutes to play the
roles explained above. For the roles of constraints and data catalogs (i.e., Items
2 and 3 above), graph schemas [5] and DataGuide [11] have been proposed.
Graph schemas represent constraints on the structure of graph data in a looser
way than ordinary rigid schemas (e.g., relational schemas in the relational data
model). DataGuide is a summary of a database that is created a posteriori from
the stored data. It can be used as a data catalog for users, and can also be used
as data constraints in query optimization.

For indexing and annotation (i.e., Item 1 above), most existing semistruc-
tured data models take the same approach: they embed such metadata within the
data itself. That is why semistructured data are sometimes called self-describing.
This paper takes the same approach. When this approach is taken, how to embed
metadata in data becomes the key issue in the design of data models.

The two data models proposed by the Stanford group and the UPenn group
also embed metadata in data. Both data models are essentially labeled graphs.
Graphs are used to represent nested irregular data structure, and both basic
data values and metadata are represented by labels on nodes or edges. As a
result of this, the distinction of data and metadata becomes unclear. In a semi-
structured data model, such a uniform representation of data and metadata has
the following advantages [1, 4, 2]:

– Because the structure of semistructured data can be irregular and/or dy-
namic, we often want to query schema information as well as data. If both
data and metadata are represented in a uniform way, we can use the same
querying functions for both of them.

– In some applications, updates to schema information are also as frequent
as updates to data. In such applications, if both data and metadata are
represented in a uniform way, we can use the same updating functions for
both of them.

In the data model proposed in [6], data and metadata are represented in an
extremely uniform way: metadata are represented by edge labels, and atomic
data are also represented by labels of terminating edges (i.e., edges to nodes
without further outgoing edges).

Figure 1 shows an example graph in this data model, which represents a part
of a movie database [6]. The root node at the top of the figure is the entry point of



4

movie actor

actor movie
appear appear appear

title name title name

“Hannibal”
“Anthony
Hopkins”

“The Remains
of the Day”

“Emma
Thompson”

cast
cast

leadingActor leadingActress

Fig. 1. An example data in the data model proposed in [6]

the database, and it has references to all entries of movies and actors/actresses.
Movie entries have two attributes title and cast, and actor/actress entries have
two attributes name and appear. Those attributes are represented by the edges
outgoing from the node representing each entry. Because this is semistructured
data, the structure inside attributes with the same attribute name can be hetero-
geneous. For example, the cast attribute of the movie “Hannibal” directly refers
to an actor/actress entry, while the cast attribute of the movie “The Remains
of the Day” leads to branching edges labeled leadingActress and leadingActor.

While attribute names, such as cast and title, are represented by edge labels,
atomic values, such as the movie titles “The Remain of the Day” and “Hannibal,”
are also represented by edge labels. Because both attribute names and atomic
values are represented by edge labels in this data model, there is no distinction
between them in their query language.

Formally, the type τ of data in this data model is defined as follows [4]:

τ = set(l × τ)
where l = int | string | . . . | symbol .

That is, a node in this data is a set of pairs of a label and another node. Each
pair represents the label and the destination of each edge outgoing from the
node. Labels can be either atomic values or symbols. Symbols are usually used
as attribute names or other metadata. In this way, atomic data and metadata
are modeled in a uniform way in this data model.

This model has already achieved the uniform treatment of data and metadata
to some extent, but if we further pursue the interchangeability and intermingling
of data and metadata, two questions arise:

– Although data and metadata are modeled in a uniform way in the data
model, their usage in the example data is completely distinct. Symbols are
used as metadata on internal edges, and the other atomic values are used
as data on terminating edges. Are there any cases where symbols and other
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atomic values should be used in a more intermingled way? One example
explained in [4] is the encoding of arrays in this data model, where they use
integers as labels on internal edges. Is there any more?

– In this data model, any atomic values can be used in place of metadata
(i.e., as edge labels). Do we need to extend this “any atomic values” to “any
data”?

To answer these questions, the next section examines what data and metadata
are.

3 Data vs. Metadata

To examine what data and metadata are, this paper reviews the most classic and
the most popular way to organize large amount of data: tables. In this paper,
the term “tables” does not mean tables in relational databases, but it means
tables used in print media or Web pages.

3.1 Simple Tables vs. Multidimensional Tables

We use a variety of types of tables, but the two most popular ones for organizing
large data are simple tables representing some entities and multidimensional
tables. Table 1 shows an example of a simple table representing some entities.
It shows nutrition facts for menu items at some hamburger shop. On the other
hand, Table 2 shows an example of a multidimensional table, which represents
a mileage chart of a trail near Philadelphia.

Both Table 1 and Table 2 organize cells into two-dimensional structure in
order to concisely represent two contexts of each cell by its horizontal and vertical
positions, but their structure is slightly different. In the multidimensional table
in Table 2, rows and columns are symmetric, but in the simple table in Table 1,
rows and columns have asymmetric structure. In Table 1, cells in the same
column store the same type of values. For example, the cells in the column Item
store strings, those in the column Cal store integer values whose unit is “Cal.”,
and the last three columns store boolean values. On the other hand, cells in the
same row store values related to the same menu item, but not necessarily of the
same type.

In computer science, particularly in the relational data model, simple tables
are usually interpreted as a special kind of n-ary relations that have column
names (also called attribute names). If we interpret a table in that way, a table
is a set of rows corresponding to entities, a row is a tuple consisting of n compo-
nents representing n attributes of the entity, and the components are indexed by
column names describing the meaning of the attributes. In that interpretation,
column names are metadata, and values in other cells are data. In Table 1, the
last three columns have hierarchical column names, but they can be expanded
to simple column names, such as “Allergen.Milk”.

On the other hand, in OLAP (OnLine Analytical Processing), multidimen-
sional tables are interpreted as multidimensional arrays (or matrices when they
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Table 1. An example of a simple table

Nutrition Facts

Allergen
Item Cal Sugar Fat · · ·

Milk Wheat Egg

Hamburger 250 5.5 9 · · · -
√ √

Cheeseburger 300 6.5 12 · · ·
√ √ √

Potato(S) 230 0.0 11 · · ·
Potato(M) 380 0.0 19 · · ·

-
√

-

...
...

...
...

...
...

...
...

Gigaburger 540 8.8 29 · · · -
√ √

Table 2. An example of a multidimensional table

Schuylkill River Trail Mileage Chart

Philadelphia Manayunk Conshohocken · · · Tamaqua

Philadelphia — 7 13 · · · 114.5

Manayunk 7 — 6 · · · 107.5

Conshohocken 13 6 — · · · 101.5
...

...
...

...
...

...

Tamaqua 114.5 107.5 101.5 · · · —

are two-dimensional). Arrays are usually indexed by integer values, but multi-
dimensional tables in OLAP (also called DataCube [12]) are a special kind of
arrays that are indexed by arbitrary values. For example, in Table 2, both rows
and columns are indexed by place names. In this interpretation, the place names
in the first row and the first column are regarded as column names and row
names, which are metadata, while values in the other cells are data.

These examples show that simple tables and multidimensional tables have
different structure for metadata. The distinction between them is, however, not
always clear. In Table 2, rows and columns are completely symmetric, and it is
quite unreasonable to interpret it as a simple table, but this is rather an extreme
case. Table 3, which shows car sales data in each month and in each state in
U.S., is a typical multidimensional table in OLAP (except that tables in OLAP
usually have more dimensions), but this table can also be regarded as a simple
table only if we add an attribute name “Month” to the first column, or if we
add an attribute name “State” to the first row and transpose the table.

Similarly, Table 1 is usually interpreted as a simple table, but it can also be
interpreted as a multidimensional table. In the previous interpretation, this table
only has column names and does not have row names. The first column of this
table, however, obviously plays a different role from those played by the other
columns. The values in the first column are unique to each row, and they specify
the meaning of each row, while no other column can play such a role. Therefore,
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Table 3. An example of a multidimensional table in OLAP

Car Sales by Month and State

NY NJ PA · · · CA

Jan 2012 233 149 183 · · · 258

Feb 2012 358 187 170 · · · 286

Mar 2012 285 174 191 · · · 225
...

...
...

...
...

...

Dec 2012 169 89 115 · · · 188

only if we regard the names of menu items in the first column, e.g., “Hamburger”,
as the row names, we can interpret this table as a multidimensional table.

In the relational data model, columns like the first column of this table are
called “keys”. Therefore, more generally speaking, we can interpret a simple
table also as a multidimensional table only if we interpret its key values as its
row names. Sometimes, we need more than one column to define keys. In such
a case, we can produce composite row names from values of those columns, just
as we did for hierarchical column names in Table 1.

Notice that we cannot clearly distinguish simple tables and multidimensional
tables simply by whether all cells store the same type of values of which we
can compute aggregation. Aggregation is required only for OLAP, and is not
necessarily required for multidimensional tables in general. For example, it is
unlikely that we want to compute any aggregation for Table 2, but this table is
usually regarded as a multidimensional table. If aggregation is not required, the
definition of “the same type of values” becomes ambiguous, because any value
can be regarded as an instance of the type Object or the type Value.

As shown above, many tables can be interpreted either as a simple table or as
a multidimensional table, and whether a given cell is data or metadata depends
on how we interpret the table. If we interpret Table 1 as a simple table, the
values in the first row are metadata, and the others are data. If we interpret
it as a multidimensional table, the values in the first row and the first column
are metadata, and the others are data. Similarly, if we interpret Table 3 as
a multidimensional table, the values in the first row and the first column are
metadata, while if we interpret it as a simple table, only the values in the first
row or only the values in the first column are metadata.

In addition, when we have some data set, there are more than one way to
organize it into a table. For example, the data in Table 3 can also be organized
into a table shown in Table 4, as we actually do in ROLAP (Relational OLAP). In
this representation, if we interpret this table as a simple table, “Date”, “State”,
and “Sales” in the first row are metadata, and the other values are data.

The discussion above shows that we cannot uniquely determine which part of
a given data set should be regarded as metadata. It depends on how we organize
data. The examples above, however, demonstrate that two types of data are most
likely to play a role of metadata: attribute names and key values. In addition,
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Table 4. Relational encoding of a multidimensional table in ROLAP

Car Sales by Month and State

Date State Sales

Jan 2010 NY 233

Jan 2010 NJ 149

Jan 2010 PA 183
...

...
...

Jan 2010 CA 258

Feb 2010 NY 358

Feb 2010 NJ 187

Feb 2010 PA 170
...

...
...

there are advantages of organizing data as multidimensional tables, in other
words, advantages of interpreting key values as metadata, as explained in the
next subsection.

3.2 Advantages of Multidimensional Tables

We first compare the expressive power of simple tables and multidimensional
tables. Both can represent information on some entities as shown in Table 1,
which can be interpreted either as a simple table or as a multidimensional table.

Multidimensional data can also be represented either by a multidimensional
table or by relational encoding as shown in Table 3 and Table 4. One differ-
ence between these two representations of multidimensional data is their space
efficiency. For dense data, relational encoding is space-inefficient because the
number of the repetition of the same values grows exponentially when the data
has many dimensions. On the other hand, for sparse data, relational encoding
can be more space-efficient if we omit rows corresponding to cases where we do
not have data.

Exactly the same discussion also holds for information on many-to-many rela-
tionships. It can be represented either by multidimensional tables or by relational
encoding, and their space efficiency depends on the data.

As shown above, the two types of tables have similar expressive power. Next,
we compare their intuitiveness and easiness to understand. One advantage of re-
lations is that they can always represent data in a flat two-dimensional structure.
On the other hand, one advantage of multidimensional tables is that they are
more intuitive when the data really have multidimensional nature. For example,
Table 3 is easier to read for human readers than Table 4 is. More importantly,
the interpretation of tables as multidimensional arrays is more intuitive than
the interpretation as a relation even when tables represent information on some
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entities. For example, suppose we read out Table 1. If we interpret this table as
a relation, we must read it out as:

“there is a row where the item is Hamburger, the calorie is 250,
the sugar is 5.5, . . . , and the egg is true,
...

and,
there is a row where the item is Gigaburger, the calorie is 540,

the sugar is 8.8, . . . , and the egg is true.

On the other hand, if we interpret this table as a matrix with column names
and row names, we must read this table out as:

“the calorie of Hamburger is 250, the sugar of Hamburger is 5.5,
. . . , and the egg of Hamburger is true,
...

and,
the calorie of Gigaburger is 540, the sugar of Gigaburger is 8.8,

. . . , and the egg of Gigaburger is true.

For ordinary users who are not familiar with (and not biased toward) the rela-
tional data model, the latter description must be more natural.

Another advantage of multidimensional tables is their symmetricity. When
we interpret Table 1 as a matrix indexed by column names (attribute names) and
row names (key values), rows and columns have symmetric structure, and we do
not need to distinguish attribute names and key values in the query languages.
It means multidimensional tables treat data and metadata more interchangeably
than relations. Such symmetricity of rows and columns is also useful when we
interactively manipulate tables through some graphical user interface [16].

We should review why the relational data model adopted relations to repre-
sent data. In database systems, the set of attributes to be stored is usually static,
while the set of entities in a database is usually changed frequently. Therefore,
when we consider data models for ordinary database systems, it is reasonable to
interpret tables as relations with static set of columns and dynamic set of rows.
When we consider semistructured data, however, we do not assume that the set
of attributes for entities is static, as explained before. Another asymmetricity of
columns and rows in the relational data model is that cells in the same column
store the same type of values, while cells in the same row may not. In semi-
structured data, however, we do not assume such regularity, either. Yet another,
actually the most important, reason of the proposal of the relational data model
is data independence [10]. This issue will be discussed later in the next section.

The discussion above is summarized as follows: where semistructured data is
concerned, interpreting key values as metadata achieves more uniform treatment
of data and metadata, and also achieves more intuitive representation of data.
This conclusion leads to the design of the data model in the next section.
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row . . . row

Item
Cal . . .

Egg

“Hamburger” 250 true

Item
Cal . . .

Egg

“Megaburger” 540 true

Fig. 2. Ordinary graph representation of a simple table

“Hamuburger” . . . “Megaburger”

Cal

. . .
Egg

250 true

Cal

. . .
Egg

540 true

Fig. 3. Graph representation of a simple table using key values as labels

4 Deterministic Semistructured Data Model

This section gets back to the following two questions explained before:

– In edge-labeled graph models for semistructured data, are there cases where
it is useful to use symbols and other atomic values in more intermingled
way?

– Do we need to extend the edge-labeled graph models so that we allow any
values including non-atomic values to be used as edge labels?

4.1 Symbols vs. Atomic Values

The answer to the first question is obvious from the discussion in the previous
section. We should use key values as edge labels as well as attribute names.
For example, the data in Table 1 is usually represented in a edge-labeled graph
model as shown in Fig. 2. If we use key values as edge labels, however, this data
can also be represented as shown in Fig. 3. Because we can use attribute names
and key values interchangeably, this data can also be represented as shown in
Fig. 4. As demonstrated in these examples, both key values and attribute names
are useful to index data items in a data set, and therefore, we should use both
of them for indexing, i.e., as edge labels, in semistructured data.

These examples raise another question: if we use key values and attribute
names as edge labels, do we need to allow multiple edges with the same label
outgoing from the same node? In semistructured data models, it is preferable
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Cal . . . Egg

“Hamuburger”

. . .
“Megaburger”

250 540

“Hamuburger”

. . .
“Megaburger”

true true

Fig. 4. Another graph representation of a simple table using key values as labels

name email email

“Tom” “t@a.org” “t@b.net”

(a)

name email

“Tom” “t@a.org” “t@b.net”

(b)

Fig. 5. Merging multiple edges representing a set value

not to distinguish set values and non-set values [1]. In that perspective, if we
have a data shown in Fig. 5 (a), it is better represented by the graph shown
in Fig. 5 (b). The advantage of the latter representation is that the value of
some attribute can be extracted simply by extracting the subtree beneath the
edge representing the attribute, no matter whether it is set-valued (e.g., email
attribute in this example) or single-valued (e.g., name attribute in this example).
In the existing data models that use the representation in Fig. 5 (a), similar
uniformity is achieved by their carefully designed query languages [3, 6].

Such merging of multiple edges, however, is not always possible. For example,
suppose we have data shown in Fig. 6 (a). If we merge the car edges in this data
and transform it into the graph shown in Fig. 6 (b), the correspondence between
IDs and colors of the cars will be lost. However, if we use key values as labels,
we can represent this data by the graph shown in Fig. 6 (c).

As demonstrated in these examples, if we use key values as edge labels, we
do not need to allow multiple edges with the same label outgoing from the same
node, as long as we have keys everywhere [9].

4.2 Atomic Values vs. Composite Values

Next, the second question is discussed: do we need to use not only atomic values
but also composite values as edge labels? One possible answer is: “Yes, because
we often have composite keys”. However, do we really need to use composite key
values as edge labels?
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name car car

“Tom” ID color ID color

“938” “red” “475” “blue”

(a)

name car

“Tom”

ID color ID color

“938” “red” “475” “blue”

(b)

name car

“Tom”
“938” “475”

color color

“red” “blue”

(c)

Fig. 6. Inappropriate (b) and appropriate (c) merging of edges with the same label (a)

For example, Table 5 shows information on a many-to-many relationship be-
tween students and courses, and it has a composite key consisting of StudentID
and CourseID. Information in this table can be represented by a graph with
hierarchical indexing structure, as shown in Fig. 7. Of course, we may also use
the opposite order of StudentID and CourseID.

Such an interpretation of composite keys as hierarchical indices, however, is
not always appropriate. For example, suppose there is a table that has a compos-
ite key consisting of GivenName and Surname. In this case, it does not make
much sense to organize rows of this table hierarchically by first grouping them
based on their GivenName and then grouping them based on their Surname
(or in the opposite order), as shown in Fig. 8, because rows sharing the same
GivenName (or the same Surname) are not necessarily related to each other,
and a group of such rows has no useful meaning.

In addition, even in the former example of StudentID and CourseID,
choosing and enforcing one specific order among these attributes causes the
problem of data independence. That is, it enforces a specific access path on
accessing programs, and if the order among the attributes is changed for some
reason, we need to rewrite the programs.

The main motivation of the adoption of flat relations in the proposal of the
relational data model was to achieve data independence [10]. Since one purpose
of semistructured data model is to deal with data with irregular nested structure,
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Table 5. Relation representing many-to-many relationship

Course Enrollment of Students

Student ID Course ID Grades

20091853 I295 80

20091853 E108 65

20091875 I117 75

20091875 E108 50

20101725 I295 70
...

...
...

20091853 . . . 20101725

I295 E108

80 65

I295

70

Fig. 7. Hierarchical representation of composite keys

it is difficult to fully eliminate hierarchical structure from the data model, but
when hierarchical structure has no useful meaning, we should avoid it as much
as possible.

There is yet another reason why we should use composite key values as
edge labels: key values can be set values. When key values for some entities
are set values, and each key value may have different number of elements, if we
decompose these key values into hierarchical indexing structure with only atomic
values on edges, each entity would have a different depth in the hierarchy, which
introduces unnecessary irregularity. In addition, we need to define some canonical
order among elements of a key value.

Table 6 is an example of a table whose key values are set values with different
number of elements [13]. This table lists polygons, e.g., those in a CAD system,
and here we assume that a polygon can be uniquely identified by specifying its
set of vertices. If two polygons have the same set of vertices, they are regarded
as the same polygon.

Because of these three reasons, the answer to the second question is: “Yes,
we should allow composite values as edge labels”. Then, what kind of composite
values should we allow? In the semistructured data model explained in Section 2,
edge-labeled graph structure is the only data structure, and both records and
sets are represented by this data structure. In addition, a key of some data may
even include edge labels representing attribute names or class names, as shown
in [7]. Therefore, we should allow any edge-labeled graph to be embedded as an
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“Tom” . . . “John”

“Jones”

“Dow”

“Smith” “Brown”

“Dow”

“Smith”

Fig. 8. Meaningless hierarchical representation of composite keys

Table 6. A table whose key values are set values

Polygons in CAD

vertices color owner
x y

3 5
5 4 red ken
4 2

0 4
1 6
3 5 blue joe
2 1
...

...
...

...

edge label in another graph. For example, the data in Fig. 8 can be represented
as shown in Fig. 9. In the graph shown in Fig. 9, edges from the root node have
labels representing composite values consisting of a given name and a surname.

4.3 Definition of the New Model

In this section, the model in Section 2 has been extended in the following two
ways:

– Any edge-labeled graph can be used as an edge label in another graph.
– No node can have multiple outgoing edges with the same edge label.

Accordingly, the type τ of data in the data model is redefined as follows:

τ = set(τ × τ) | l
where l = int | string | . . . | symbol .

That is, we now allow any value of type τ to be a label, and because we do
not distinguish values and labels, any value of the type l is now regarded as a
value of the type τ . Notice that l (i.e., atomic values) can also be used as the
destination of an edge in this new definition.

If we emphasize the second extension, i.e., the uniqueness of labels of outgoing
edges from a node, we can also define τ in the following way:

τ = τ ⇀fin τ | l
where l = int | string | . . . | symbol
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. . .
GivenName SurName

“Tom” “Jones”

GivenName SurName

“John” “Smith”

Fig. 9. Representation using composite keys as edge labels

where τ ⇀fin τ denotes a finite partial function from τ to τ .
Now, this is exactly the core part of the deterministic semistructured data

model proposed by Peter Buneman and his colleagues in [9]. In this way, based
on the discussion on the meanings of the term “schemaless” in the context of
semistructured data model, and the discussion on what data and metadata are,
this section revised the data model explained in Section 2, and reinvented the
deterministic semistructured data model proposed in [9].

5 Graphs vs. Tables

The previous section reinvented the deterministic semistructured data model
by starting from the graph-based data model explained in Section 2. Section 3,
however, discussed data and metadata in the context of table representations
of data. Then a question that may arise is: why do we use graphs rather than
tables? To answer this question, this section briefly examines whether nested
multidimensional tables are appropriate for representing semistructured data.

One advantage of the table-based representation of information over the
graph-based representation is that it can naturally represent data indexed by
combinations of two or more values. On the other hand, its disadvantage against
the graph-based representation is that it is space-inefficient when the data is
sparse. Because semistructured data has irregular structure, and its table rep-
resentation can be sparse, we consider its relational encoding, which is more
space-efficient for sparse data. In relational encoding of nested multidimensional
tables, there is at most one row for each combination of indexing values. There-
fore, the type τ ′ of such a data can be defined as a finite partial function below:

τ ′ = (τ ′ × · · · × τ ′) ⇀fin τ
′ | l

where l = int | string | . . . | symbol .

In the definition above, the components of the tuple of indexing values are τ ′

because we should allow composite values and set values as indexing values, as
shown in the previous examples. The codomain of the function is also τ ′ because
the contents of a cell may be a nested table.

(τ ′ × · · · × τ ′) in this definition is a product of nested relations, but we can
encode them in τ ′. Therefore the type τ ′ above is a subset of the type τ defined
in the previous section. That is, the deterministic semistructured data model
can be used for concisely representing sparse nested multidimensional tables.
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Then the next question is why we do not flatten nested tables into flat tables,
as we do in the relational data model. The answer is simple. We can normalize
nested tables into flat tables only if we can have key values that are not set-
valued [10]. In semistructured data models, however, we want to allow keys that
take set values, as explained before.

In general, an important difference between graph-based data models and
table-based data models is how to represent references to other data. Most graph-
based models use some kind of IDs, and most table-based models use foreign keys.
In the model proposed in [9], two edges outgoing from the same node never have
the same label, and therefore, any node can be identified by the sequence of
edge labels on the path from the root to the node. Such a sequence of edge
labels is used to represent a reference to a node in their model. That is, their
model is value-based model just like the relational data model. Advantages and
disadvantages of ID-based data models and value-based data models have been
discussed extensively, and it is beyond the scope of this paper.

6 Conclusion

This paper reviewed what is schemaless semistructured data, and showed that
one of the most important issues in the design of a data model for schemaless
semistructured data, is the uniform treatment of data and metadata. Then this
paper discussed what data and metadata are in the context of various table
representations of data, and concluded that data which corresponds to attribute
names or key values are most useful as metadata. In accordance with that discus-
sion, this paper extended the standard edge-labeled graph model, which resulted
in a reinvention of the deterministic semistructured data model proposed by Pe-
ter Buneman and his colleagues in [9]. Finally, this paper also showed that we
can also reinvent the model by starting from nested multidimensional tables.
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