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Abstract 

Glutamate-receptor-like molecule delta2 (GluD2) is selectively expressed on the 

postsynaptic membranes at parallel fiber to Purkinje cell (PF-PC) synapses in the 

cerebellum. GluD2 plays critical roles not only in postsynaptic long-term depression but 

also in the induction of presynaptic differentiation through trans-synaptic interaction 

with neurexin. However, how GluD2 influences the presynaptic function remains 

unknown. Here, effects of the deletion of postsynaptic GluD2 on the presynaptic 

properties were studied focusing on the paired pulse ratio (PPR) of two consecutive 

EPSC amplitudes, which was larger in GluD2 knockout mice. The PPR difference 

remained even if saturation of glutamate binding to postsynaptic receptors was 

suppressed, confirming the presynaptic difference between the genotypes. We then 

explored the possibility that presynaptic voltage-gated Ca2+ channels (VGCCs) are 

affected in GluD2 knockout mice. Application of selective blockers for specific VGCCs 

indicated that R-type, but not P/Q- or N-type VGCC, was affected in the mutant mice. 

Furthermore, presynaptic long-term potentiation (LTP) at PF-PC synapses, which 

requires R-type VGCC, was impaired in GluD2 knockout mice. These results suggest 

that GluD2 deletion impairs presynaptic R-type VGCC, resulting in decreased release of 

synaptic vesicles, and also in the impairment of presynaptic LTP at PF-PC synapses. 
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Introduction 

Purkinje cells (PCs), which send the sole output from the cerebellar cortex, receive two 

types of excitatory synaptic inputs, one from parallel fibers (PFs) and the other from a 

climbing fiber (CF) coming from an inferior olivary nucleus. PF- PC synapses are the 

most abundant type of synapse in the mammalian central nervous system [1]. At PF-PC 

synapses, glutamate-receptor-like molecule delta2 (GluD2) is selectively expressed on 

the postsynaptic membrane [2]. GluD2 has been classified as an ionotropic glutamate 

receptor subunit based on amino acid sequence homology, although it shows neither 

glutamate binding nor ion channel function [3-8]. In GluD2 knockout mice, postsynaptic 

long-term depression (LTD) and motor learning are impaired, and the number of PF-PC 

synapses is reduced [9]. Further studies revealed the involvement of the intracellular 

C-terminal domain of GluD2 in LTD [10-13]. On the other hand, more recent studies 

demonstrated that postsynaptic GluD2 induces the differentiation of PF presynaptic 

terminals [14-16]. The flap loop in the extracellular N-terminal domain of GluD2 binds 

to cerebellin precursor protein (Cbln) secreted from PFs [17], and Cbln binds to 

neurexin on the presynaptic membrane of PFs [15, 18]. The GluD2-Cbln-neurexin 

interactions contribute to the formation, maturation and/or maintenance of PF-PC 

synapses. 

Thus, GluD2 might influence the function of PF presynaptic terminals through the 

trans-synaptic interaction of Cbln and neurexin. Previous studies showed that the 

paired pulse ratio (PPR) of the amplitudes of two consecutive EPSCs is larger in 

GluD2-deficient mice than in wild-type mice [9, 14]. PPR has been shown to be 

correlated with the presynaptic release probability of synaptic vesicles at various 

synapses [19, 20], although postsynaptic saturation of transmitter binding to receptors 
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can also influence PPR in some cases [21, 22]. It has been reported that presynaptic 

neurexin influences the presynaptic release probability by regulating voltage-gated 

Ca2+ channels (VGCCs) [23, 24]. The VGCCs in PF presynaptic terminals consist of P/Q-, 

N-, and R-type VGCCs [25, 26]. Here, we examined the possibility that GluD2 controls 

VGCC(s) through interaction with neurexin and thereby supports the presynaptic 

release process. We show that the contribution of R-type VGCC to the release was 

negligible in GluD2 knockout mice. We also demonstrate that the presynaptic long-term 

potentiation (LTP), which depends on R-type VGCC [26], was abrogated in the mutant 

mice. 

 

Materials and Methods 

Sagittal cerebellar slices (250 µm thickness) were prepared from wild-type and GluD2 

knockout ICR mice of either sex after decapitation [9, 14] at P14-P18. A PC was 

whole-cell voltage-clamped with a patch pipette (2-4 MΩ) filled with a K-gluconate 

based internal solution consisting of (in mM) 120 K-gluconate, 9 KCl, 3.48 MgCl2, 10 

HEPES, 4 NaCl, 17.5 sucrose, 4 Mg-ATP (Sigma-Aldrich, St. Louis) and 0.4 Na-GTP 

(Sigma-Aldrich) adjusted to pH 7.3 with KOH at room temperature (21-24 °C) [27]. The 

slices were continuously perfused with Krebs’ solution containing (in mM) 124 NaCl, 1.8 

KCl, 1.24 KH2PO4, 1.3 MgCl2, 2.5 CaCl2, 26 NaHCO3 and 10 glucose oxygenated with 

95% O2 and 5% CO2 at 21-24°C. Bicuculline (20 µM, Tocris Cookson, Bristol, UK) was 

added to suppress inhibitory postsynaptic currents. γ-D-Glutamylglycine (2 mM, DGG, 

Tocris Cookson), NiCl2 (500 μM, Nacalai Tesque, Kyoto, Japan), ω-Agatoxin IVA (200 nM, 

AgTx, Peptide Institute, Osaka, Japan), ω-Conotoxin GVIA (500 nM, CgTx, Peptide 

Institute) or SNX-482 (500 nM, SNX, Peptide Institute), was applied to the bath 
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solution in some experiments. In the experiments examining the effects of SNX, 

8-Cyclopentyl-1,3-dipropylxanthine (DPCPX, 5 μM, Tocris Cookson), 

(2S)-(+)-5,5-Dimethyl-2-morpholineacetic acid (SCH50911, 2 μM, Tocris Cookson) and 

N-(Piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3- 

carboxamide (AM251, 2 μM, Tocris Cookson) were added to block adenosine A1 receptor, 

GABAB receptor and cannabinoid CB1 receptor, respectively [26, 28-30]. Ionic currents 

were recorded with an EPC-10 amplifier (HEKA Elektronik, Lambrecht, Germany), and 

the signal was filtered at 2.9 kHz and digitized at 10 kHz. The membrane potential was 

held at –70 mV or –80 mV after compensation of the liquid junction potential. The data 

were discarded if the series or input resistance changed by > 20 % or the latter became < 

100 MΩ. The PF-EPSCs were induced by 0.5 ms electrical stimulation of 5-15 V through 

a glass pipette in the molecular layer at 0.1 or 0.2 Hz. The intensity of stimulation was 

adjusted so that the amplitude of the first EPSC became 100-300 pA in each experiment, 

in order to reduce the error caused by the series resistance and also to keep good 

space-clamp conditions, unless otherwise stated. PPR at each interval was calculated 

from 3 recordings of paired EPSCs in a PC. The presynaptic LTP was induced by 30 sec, 

4 Hz conditioning stimulation of PFs [31, 32]. All data were expressed as mean ± SEM. 

Two-way ANOVA, Dunnett test, or Student’s t-test was used for statistical analyses. We 

regarded a difference as significant when p was < 0.05. 

All experimental procedures were performed in accordance with the guidelines 

regarding care and use of animals for experimental procedures of the National 

Institutes of Health, U.S.A., and Kyoto University, and approved by the local committee 

for handling experimental animals in the Graduate School of Science, Kyoto University. 
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Results 

Presynaptic change in GluD2 knockout mice increases PPR 

We first confirmed that PPR was different at PF-PC synapses between wild-type and 

GluD2 knockout ICR mice (Figure 1ab, circles). PFs were stimulated twice with an 

interval of 10, 20, 50, 100 or 200 ms, and the amplitude of the second EPSC divided by 

that of the first EPSC was calculated as PPR. PPR was significantly different between 

the genotypes (p < 0.001, ANOVA). PPR with an interval of 50 ms was 1.69 ± 0.03 in 

wild-type mice (n = 58) and 2.04 ± 0.05 in the knockout mice (n = 65).  

PPR has been reported to be a parameter related to the presynaptic release process [19, 

20]. It has also been shown that the postsynaptic receptor availability has a significant 

influence on PPR in some cases [21, 22]. At PF-PC synapses saturation of glutamate 

binding to postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate type 

ionotropic glutamate receptor (AMPAR) during the first EPSC might be negligible in a 

physiological condition, whereas some saturation occurs during the second EPSC in 

certain conditions [22, 33]. Recent immunohistological staining of AMPAR showed more 

intense signals in the cerebellar molecular layer of GluD2 knockout mice than in that of 

wild-type mice [34]. This finding raised a possibility that the number and/or 

distribution of AMPARs at PF-PC synapses and consequently the postsynaptic 

saturation during the second EPSC might be different between the two genotypes.  

We evaluated the postsynaptic contribution to the PPR difference using DGG, a 

low-affinity competitive antagonist for AMPAR, in order to suppress the saturation of 

glutamate binding to AMPAR [22]. Application of 2 mM DGG decreased the amplitude 

of EPSCs in both wild-type mice (40.0 ± 1.8 %, n = 5, p = 0.009, Student’s t-test) and 

GluD2 knockout mice (35.8 ± 3.0 %, n = 5, p < 0.001) (Supplemental Figure 1a,b). 
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Importantly, PPR was still significantly different between the two genotypes even if the 

postsynaptic saturation was suppressed by DGG (p < 0.001, ANOVA) (Figure 1a,b). In 

the presence of DGG, PPR at 50 ms was 2.06 ± 0.12 (n = 9) in wild-type mice, and 2.54 ± 

0.12 (n = 9) in GluD2 knockout mice. These values were significantly larger than those 

without DGG (+/+, p < 0.001, -/-, p = 0.002, Dunnett test). Thus, the different 

availability of postsynaptic AMPAR alone cannot explain the difference of PPR between 

the genotypes. Taken together, our data suggest that in GluD2 knockout mice, PPR is 

larger probably because the initial release probability is lower.  

 

PPR dependence on [Ca2+]o 

The effects of DGG on the EPSC amplitude and PPR suggested that the presynaptic 

release process was altered in GluD2 knockout mice. In order to obtain some insights 

into the mechanism differentiating the presynaptic release machinery between the 

genotypes, we altered [Ca2+]o to change the release probability which depends on the 

amplitude of Ca2+ influx. When [Ca2+]o was increased from 1 mM to 2.5 and 4 mM, the 

amplitudes of the first EPSC in a PC increased to 235 ± 26 % (+/+) and 250 ± 36 % (-/-), 

and 383 ± 36 % (+/+) and 368 ± 59 % (-/-), respectively (n = 5 for each) (Supplemental 

Figure 2). These results were similar to previously reported results [22], and confirmed 

that presynaptic release probability is highly dependent on [Ca2+]o.  

PPR was larger in 1 mM [Ca2+]o (+/+, 2.64 ± 0.10 at 50 ms, n = 9, p < 0.001; -/-, 2.57 ± 

0.16, n = 6, p = 0.009, Dunnett test, Figure 2a) and smaller in 4 mM [Ca2+]o (+/+, 1.22 ± 

0.04, n = 9, p < 0.001; -/-, 1.27 ± 0.08, n = 6, p < 0.001, Figure 2b) than in 2.5 mM [Ca2+]o, 

suggesting that PPR depends on the amplitude of Ca2+ influx. In both of these 

conditions, the PPR difference between the genotypes was not significant (1 mM [Ca2+]o, 
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p = 0.87; 4 mM [Ca2+]o, p = 0.40, ANOVA). Thus, the PPR difference was apparent only 

at an intermediate [Ca2+]o (2.5 mM).  

It has been reported that the bindings of Ca2+ to its sensor for the transmitter release 

are cooperative [35]. The Ca2+-sensitivity of transmitter release is small in low [Ca2+]i 

[36]. In such a condition, even if there is a slight difference in the Ca2+-dependence of 

transmitter release between the genotypes, it might be difficult to detect it. Therefore, 

the PPR difference might become insignificant in 1mM [Ca2+]o.  On the other hand, in 

higher [Ca2+]o (4 mM), the release probability at the first stimulation might be high and 

its increase at the second stimulation might be limited, or postsynaptic glutamate 

binding to AMPAR might be saturated [22]. One or both of these factors seem to make 

PPR small in both genotypes and the PPR difference negligible in 4 mM [Ca2+]o. It 

seems that the PPR difference between the genotypes is apparent only at intermediate 

[Ca2+]o, where the Ca2+-sensitivity of transmitter release is large. 

 

P/Q- and N-type VGCC contribute to presynaptic release similarly in the two genotypes 

Next, we attempted to clarify which specific presynaptic molecule was affected by 

GluD2 knockout and contributed to the lower presynaptic release probability. GluD2 

mediates synaptic formation between PFs and a PC by interacting with presynaptic 

neurexin through Cbln [15, 18]. Neurexin participates in the regulation of synaptic 

transmission by affecting VGCCs in presynaptic terminals [23, 24]. Considering these 

reports together with the above results suggesting decreased presynaptic release in 

GluD2 knockout mice, we hypothesized that VGCC might be affected by the 

GluD2-ablation. There are P/Q-, N-, and R-type VGCCs in PF presynaptic terminals [25, 

26]. Therefore, we performed experiments using specific blockers of each type of VGCC 

 9 



to examine whether any of these VGCCs were altered by GluD2 knockout.  

A P/Q-type VGCC blocker, ω-agatoxin IVA (200 nM, AgTx), clearly reduced the 

amplitude of evoked EPSC (+/+, 9.2 ± 1.7 %, n = 5, p < 0.001; -/-, 9.6 ± 2.8 %, n = 5, p < 

0.001, Student’s t-test), and enhanced PPR in both genotypes (+/+, 2.14 ± 0.10 at 50 ms, 

n = 9, p < 0.001; -/-, 2.45 ± 0.19, n = 9, p = 0.017, Dunnett test) (Figure 3a-d). Thus, 

P/Q-type VGCC made a large contribution to the transmitter release from PF 

presynaptic terminals, as reported previously [25, 26]. There was no significant 

difference in PPR between the genotypes after blockade of P/Q-type VGCC (p = 0.34, 

ANOVA). We would like to note that these results do not mean that a difference in 

P/Q-type VGCC causes the PPR difference between the genotypes. The Ca2+-sensitivity 

of transmitter release is low when [Ca2+]i does not reach a high value. Similarly to the 

results in 1 mM [Ca2+]o (Figure 2a), when Ca2+ influx is largely suppressed by AgTx, a 

slight difference in the Ca2+-dependence of transmitter release might not have been 

detected. 

ω-conotoxin GVIA (500 nM, CgTx), an N-type VGCC blocker, slightly reduced the EPSC 

amplitude (+/+, 78.5 ± 2.2 %, n = 6, p = 0.047; -/-, 78.7 ± 2.9 %, n = 4, p = 0.034, Student’s 

t-test), and enhanced PPR in both genotypes (+/+, 2.04 ± 0.11 at 50 ms, n = 9, p = 0.001; 

-/-, 2.31 ± 0.11, n = 9, p = 0.048, Dunnett test) (Figure 3e-h). PPR remained larger in the 

mutant mice than in wild-type mice in the presence of CgTx (p = 0.012, ANOVA). Thus, 

N-type VGCC makes a relatively minor contribution to the transmitter release in both 

genotypes. 

R-type VGCC is non-functional in GluD2 knockout mice 

In contrast, blockade of R-type VGCC clearly affected the PPR difference between the 

genotypes. Extracellular application of Ni2+ (500 μM), which blocks R-type VGCC, 
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slightly reduced the amplitude of evoked EPSC (77.6 ± 4.7 %, n = 5, p = 0.045, Student’s 

t-test) and enhanced PPR (1.88 ± 0.06 at 50 ms, n = 12, p = 0.039, Dunnett test) in 

wild-type mice (Figure 4a,c). On the other hand, Ni2+ affected neither the EPSC 

amplitude (104.4 ± 11.9 %, n = 5, p = 0.85) nor PPR (2.04 ± 0.11 at 50 ms, n = 10, p = 

0.99) in the knockout mice (Figure 4b,d). Ni2+ abolished the significant PPR difference 

between the genotypes (p = 0.14, ANOVA).  

We noticed that even in the presence of Ni2+, PPR in wild-type was still somewhat 

smaller at intervals < 100 ms (p = 0.022, ANOVA) and thought that this difference 

might be due to a difference in postsynaptic saturation of glutamate binding to 

receptors. To examine this possibility, we next applied DGG in addition to Ni2+, and 

found that this made the PPR difference between the genotypes negligible (p = 0.060, n 

= 9, ANOVA). PPR at 50 ms was 2.24 ± 0.10 in wild-type and 2.38 ± 0.10 in knockout 

mice (Supplemental Figure 3). These results suggest that R-type VGCC is functional in 

wild-type mice but not in GluD2 knockout mice, and that this difference is likely to 

underlie the PPR difference between the genotypes. 

We next attempted to confirm that R-type VGCC is non-functional in GluD2 knockout 

mice using a selective but weak R-type VGCC blocker, SNX-482 (500 nM, SNX). 

However, no clear effects of SNX on either the EPSC amplitude or PPR were detected in 

either genotype. In a previous study, Myoga and Regehr [26] showed significant effects 

of SNX on the EPSC in the presence of a cocktail of antagonists for adenosine A1 

receptor, GABAB receptor and cannabinoid (CB) 1 receptor. These receptors suppress 

synaptic transmission through inhibition of presynaptic VGCCs including R-type [29, 

37]. Thus, the antagonists might suppress partial inhibition of R-type VGCC and make 

the effects of SNX clearer. We therefore examined whether SNX would change PPR only 
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in wild-type mice in the presence of this cocktail in order to obtain further supporting 

evidence for the idea that R-type VGCC is non-functional in GluD2 knockout mice. 

The cocktail of antagonists by itself increased the EPSC amplitude (+/+, 144.8 ± 10.0 %, 

n = 5, p = 0.013; -/-, 130.7 ± 12.0 %, n = 5, p = 0.048, Student’s t-test) (Supplemental 

Figure 4) and decreased PPR in both wild-type (1.44 ± 0.04 at 50 ms, n = 6, p = 0.007,  

Student’s t-test) and GluD2 (1.72 ± 0.08, n = 9, p = 0.019) knockout mice as expected. 

PPR was significantly different between the genotypes (p < 0.001, ANOVA) in this 

condition.  

Next, we applied SNX in the presence of the cocktail. SNX decreased the EPSC 

amplitude (78.6 ± 1.6 %, n = 5, p = 0.006, Student’s t-test) and enhanced PPR (p = 0.002, 

n = 6, ANOVA) in wild-type mice (Figure 4e,g). In contrast, SNX affected neither the 

EPSC amplitude (107.6 ± 6.7 %, n = 4, p = 0.64) nor PPR (p = 0.51, n = 9) in GluD2 

knockout mice (Figure 4f,h), supporting the notion that R-type VGCC is non-functional 

in GluD2 knockout mice. PPR at 50 ms was 1.59 ± 0.05 in wild-type and 1.65 ± 0.08 in 

knockout mice. SNX abolished the significant PPR difference between the genotypes (p 

= 0.30, ANOVA). These results together suggest that R-type VGCC contributes to the 

transmitter release only in wild-type mice, and that R-type VGCC is non-functional or 

not expressed at PF terminals in GluD2 knockout mice, which contributes to the lower 

release probability and higher PPR. 

 

Impairment of R-type VGCC-dependent presynaptic LTP in GluD2 knockout mice 

It was recently reported that R-type VGCC is involved in presynaptic LTP at PF-PC 

synapses [26]. Considering this information and our results suggesting that presynaptic 

R-type VGCC is non-functional in GluD2 knockout mice, we thought that presynaptic 
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LTP might be affected in the knockout mice. Thus, we examined whether conditioning 

stimulation (4 Hz, 120 pulses) could induce presynaptic LTP in GluD2 knockout mice or 

not. 

The conditioning stimulation increased the EPSC amplitude in wild-type mice (at 30 

min, 163.3 ± 17.1 %, n = 5, p = 0.021, Student’s t-test) (Figure 5a). We also found that 

PPR with a 50 ms interval was significantly decreased after the conditioning (before 

1.70 ± 0.04, after 26-30 min 1.47 ± 0.07, Student’s t-test, p = 0.023) (Figure 5b), 

supporting the notion that the LTP is caused by a presynaptic change. In contrast, the 

conditioning stimulation failed to increase the EPSC amplitude in GluD2 knockout mice 

(108.2 ± 8.5 %, n = 5, p = 0.39) (Figure 5a). PPR was also not altered by the conditioning 

stimulation in the mutant mice (before 1.96 ± 0.02, after 2.02 ± 0.15, p = 0.59) (Figure 

5b). These results suggest that reduced Ca2+ influx through R-type VGCC abrogates the 

LTP induction. 

It might be possible that the reduced Ca2+ influx to presynaptic terminals irrespective of 

the route suppressed the LTP induction. To address this possibility, we examined 

whether increased Ca2+ influx to presynaptic terminals in higher [Ca2+]o could rescue 

presynaptic LTP in GluD2 knockout mice. LTP was not induced in GluD2 knockout 

mice in 3 mM [Ca2+]o (98.4 ± 7.0 %, n = 4, p = 0.83, Student’s t-test), while LTP was 

successfully induced in wild-type mice (143.7 ± 9.9 %, n = 4, p = 0.021) (Figure 6a). The 

conditioning stimulation was also applied in 4 mM [Ca2+]o. In this condition, LTP was 

not induced in either genotype (+/+, 105.6 ± 14.3 %, n = 5, p = 0.70; -/-, 90.3 ± 7.5 %, n = 5, 

p = 0.46) (Figure 6b). In 4 mM [Ca2+]o, the presynaptic release machinery might be 

almost fully used, and there might be no capacity to increase the presynaptic release 

further. Thus, increased Ca2+ influx in higher [Ca2+]o did not rescue LTP in GluD2 

 13 



knockout mice, which suggests that Ca2+ in microdomains near R-type VGCCs is critical 

for presynaptic LTP inductions as suggested by Myoga and Regehr [26].  

Finally, we addressed whether an intracellular process downstream of the Ca2+ influx 

through R-type VGCC leading to the LTP induction might be affected in the knockout 

mice or not. Previous studies showed that forskolin, an activator of adenylyl cyclase, 

increases the amplitude of evoked EPSC at PF-PC synapses and prevents the induction 

of presynaptic LTP [26, 38]. Forskolin potentiates the synaptic transmission without 

changing presynaptic Ca2+ influx, and enhances the frequency but not the size of 

miniature EPSCs [39], indicating that forskolin enhances the synaptic transmission 

primarily via a presynaptic process independent of Ca2+ influx. Thus, an increase in 

[cAMP]i might be a process downstream of [Ca2+]i increase in the LTP induction. We 

found that forskolin increased the EPSC amplitude (at 9-10 min, +/+, 137.7 ± 13.8 %, n = 

5, p = 0.038; -/-, 143.3 ± 17.6 %, n = 6, p = 0.044, Student’s t-test) and reduced PPR with 

an interval of 50 ms (+/+, before, 1.62 ± 0.11, after 9-10 min, 1.29 ± 0.06, p = 0.038; -/-, 

before, 1.96 ± 0.08, after, 1.42 ± 0.08, p < 0.001, Student’s t-test) in both genotypes 

(Figure 6c). There was no significant difference between the genotypes either in the 

increase in EPSC amplitude (p = 0.81) or in the decrease in PPR (p = 0.26, Student’s 

t-test). Therefore, steps downstream of the [cAMP]i increase in the potentiation cascade 

of presynaptic release seem not to be affected by deletion of GluD2.   

 

Discussion  

Pre- and postsynaptic regulation by GluD2 

GluD2 is selectively expressed on the postsynaptic membrane at PF-PC synapses and is 

required for cerebellar LTD [9, 40], which has been considered to be a critical 
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mechanism for motor learning [41, 42]. This LTD is expressed at the postsynaptic 

membrane as a decrease in the number of postsynaptic AMPARs [43]. GluD2 is also 

involved in synaptic formation through interaction with presynaptic neurexin and 

secreted Cbln [15, 16]. Thus, GluD2 plays roles in organizing both presynaptic and 

postsynaptic sites through its extracellular and intracellular domains, respectively [7, 

8]. 

Both pre- and postsynaptic mechanisms contribute to paired pulse facilitation of EPSC 

amplitudes, although the preponderance of the evidence suggests that the former is the 

main determinant of PPR [20, 44, 45]. GluD2 knockout mice show an increase in the 

number of postsynaptic AMPARs at PF-PC synapses [34], which led us to examine 

whether the contribution of postsynaptic saturation to PPR was different between the 

wild-type and GluD2 knockout genotypes. When DGG was used to suppress the 

saturation of glutamate binding to postsynaptic AMPAR [22], we found that even in the 

presence of DGG, PPR was still larger in GluD2 knockout mice, suggesting that there 

are some presynaptic changes in these mice. 

 

Presynaptic VGCC is affected by GluD2 knockout 

Multiple mechanisms directly or indirectly modulate the function of presynaptic VGCCs 

and regulate synaptic transmission [46, 47]. P/Q- and N-type VGCCs mainly contribute 

to the synaptic transmission in the central nervous system, and have different gating 

and recruitment mechanisms [46, 48]. For example, endocannabinoid suppresses the N-, 

P/Q- and R-type VGCCs differently in presynaptic terminals [37]. At rat PF presynaptic 

terminals, the contribution of Ca2+ increase through P/Q-type VGCC is the largest, 

followed by that through N- and R-type VGCCs [26]. We confirmed that the 
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contributions of N- and R-type VGCCs were similar and limited in wild-type mice, and 

then demonstrated that R-type VGCC was non-functional in GluD2 knockout mice. We 

also showed that the effects of blocking P/Q- or N-type VGCC on EPSC amplitude were 

similar between these two genotypes. These results suggest that Ca2+ influx through 

P/Q- and N-type VGCC, and their coupling to glutamate release are not affected by 

GluD2 knockout, and that only R-type VGCC becomes non-functional. A slot hypothesis 

for presynaptic VGCCs proposes that there are different kinds of VGCC slots in 

presynaptic terminals [49, 50]. Slots preferring P/Q-type VGCC and those preferring 

N-type VGCC were reported. There might also be slots preferring R-type VGCC in PF 

presynaptic terminals, which might be affected by GluD2 deletion. 

Ca2+ microdomains near R-type, but not those around P/Q- or N- type VGCC, control the 

induction of presynaptic LTP at rat PF-PC synapses [26]. Our finding of impaired 

presynaptic R-type VGCC in PF terminals of GluD2 knockout mice raised the 

possibility that presynaptic LTP might also be affected. As expected, we found that LTP 

was suppressed in GluD2 knockout mice. Furthermore, we also demonstrated that LTP 

failure was not rescued by an increase in [Ca2+]o, suggesting that not ambient Ca2+ in 

the presynaptic terminal but Ca2+ in the microdomain around R-type VGCC is critical 

for the LTP induction. Thus, R-type-preferring slots in PF terminals might be located 

close to signaling molecules involved in presynaptic LTP. In addition, we found that the 

effects of forskolin were similar between the genotypes. Forskolin increases [cAMP]i 

through activation of adenylyl cyclase, enhances the presynaptic release and prevents 

the LTP induction at PF-PC synapses [26, 38]. Thus, the [cAMP]i increase has been a 

candidate downstream process of the [Ca2+]i increase in LTP induction. Our results 

indicate that the steps downstream of the [cAMP]i increase are not affected by GluD2 
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knockout. Taking these facts together, we suggest that postsynaptic GluD2 deficiency 

impairs not only postsynaptic LTD, but also presynaptic LTP, presumably through 

alteration of presynaptic R-type VGCC. 

 

Retrograde regulation of presynaptic properties 

Pre- and postsynaptic coordination is brought about by interactions between 

membrane-bound molecules on the two sides of the synaptic cleft or through secreted 

messenger molecules. Correlations between pre- and postsynaptic structures and 

functions differ between cerebellar and hippocampal glutamatergic synapses [51]. 

There is evidence that a postsynaptic neuron determines presynaptic functional 

properties. For example, PF synapses on PCs or on cerebellar inhibitory interneurons 

show different presynaptic short-term plasticity [52, 53]. A trans-synaptic interaction by 

synaptic adhesion molecules could bridge the presynaptic release apparatus with the 

postsynaptic density. Postsynaptic neuroligin or leucine-rich repeat transmembrane 

protein contacts presynaptic neurexin, and this interaction induces the differentiation 

of both pre- and postsynaptic structures [54-57]. Interactions between different pairs of 

synaptic adhesion molecules such as neuroligin and neurexin splice isoforms might 

determine excitatory versus inhibitory synapse formation, and also the properties of 

synapses [58]. GluD2 mediates synapse formation between PFs and a PC by interacting 

with presynaptic neurexin through Cbln [15]. Even if GluD2 is ablated, PF synapses on 

a PC can be formed through neuroligin-neurexin interaction, etc. The affinity for 

binding between Cbln and GluD2, and that for binding between Cbln and certain types 

of neurexin (Kd = 16.5 nM and 0.17 nM, respectively), are higher than those for binding 

between various subtypes of neuroligin and neurexin (Kd = 200-600 nM) [15, 59, 60]. 
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Thus, neurexin1β (+4), which is expressed in presynaptic terminals of PFs, seems to 

preferentially bind to GluD2 through Cbln rather than to neuroligin. On the other hand, 

in the absence of GluD2, presynaptic neurexin might bind to neuroligin. Whether 

neurexin binds to GluD2 or neuroligin might determine presynaptic properties. As 

mentioned above, the presynaptic properties of PF terminals are different depending on 

whether the postsynaptic neurons are PCs expressing GluD2 or inhibitory interneurons 

without GluD2. In addition, neurexin was reported to influence presynaptic release 

probability by affecting VGCCs, as described above [23, 24]. Taking all these facts 

together, we suggest that postsynaptic GluD2 affects presynaptic R-type VGCC 

through interaction with Cbln and neurexin, contributing to the transmitter release 

process and to formation of Ca2+ microdomains involved in the induction of presynaptic 

LTP. 

 

Conclusion 

We examined the roles of postsynaptic GluD2 in the functional regulation of presynaptic 

PF terminals. PPR measurement in the presence of DGG, which suppresses saturation 

of glutamate binding to postsynaptic AMPAR, suggested that the presynaptic release 

probability was lower in GluD2 knockout mice than in wild-type mice. Application of 

selective inhibitors for specific VGCCs revealed that the contribution of R-type, but not 

P/Q- or N-type, VGCC to presynaptic release was affected in the mutant mice. 

Furthermore, we found that the presynaptic R-type VGCC-dependent LTP was 

impaired in GluD2 knockout mice. Based on all these findings, we suggest that 

postsynaptic GluD2 deletion impairs the function of the presynaptic R-type VGCC, 

resulting in decreased release of synaptic vesicles, enhanced PPR, and impaired 

 18 



presynaptic LTP induction. 
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Legends 

 

Figure 1 

PPR difference between the two genotypes. (a, b), PPR with various intervals in the 

absence (circles; a, n = 58, b, n = 65) or in the presence (squares; n =9 for each) of 2 mM 

DGG in wild-type (a) and GluD2 knockout (b) mice. Representative traces of paired 

EPSCs are also presented. The vertical scale is adjusted so that the first EPSC 

amplitudes with or without DGG become similar.  

 

Figure 2 

PPR in 1 mM (a) or 4 mM (b) [Ca2+]o. PPR (+/+, open circles, n = 9; -/-, filled circles, n = 6) 

and representative EPSC traces are presented. 

 

Figure 3 

Effects of AgTx or CgTx on the amplitude of EPSC and PPR. (a, b), Decrease of the 

amplitude of evoked EPSC by AgTx (200 nM) in wild-type (+/+, n = 5) (a) and in 

knockout (-/-,n = 5) (b) mice. Representative traces of paired EPSCs are presented. (c, d), 

PPR with various intervals in the absence (circles) or presence (triangle) of AgTx in 

wild-type (+/+, n = 9) (c) and in knockout (-/-, n = 9) (d) mice. (e, f), Suppression of 

amplitude of evoked EPSC by CgTx (500 nM) in wild-type (+/+, n = 6) (e) and in 

knockout (-/-, n = 4) (f) mice. Representative traces of paired EPSCs are presented. (g, h), 
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PPR with various intervals in the absence (circles) or presence (triangles) of CgTx in 

wild-type (+/+, n = 9) (g) and in knockout (-/-, n = 9) (h) mice. The data without AgTx or 

CgTx (circles) are the same as shown in Figure 1c and d, which are presented for 

comparison. 

 

Figure 4 

Effects of Ni2+ or SNX on the amplitude of EPSC and PPR. (a, b), Decrease of the 

amplitude of evoked EPSC by Ni2+ (500 μM) in wild-type (+/+, n = 5) (a) and in knockout 

(-/-, n = 5) (b) mice. Representative traces of paired EPSCs are presented. (c, d), PPR 

with various intervals in the absence (circles) or presence (triangles) of Ni2+, in 

wild-type (+/+, n = 12) (c) and in knockout (-/-, n = 10) (d) mice. The data without Ni2+ 

(circles) are the same as shown in Figure 1c and d, which are presented for comparison. 

(e, f), Decrease of amplitude of evoked EPSC by SNX (500 nM) in wild-type (+/+, n = 5) 

(e) and knockout (-/-, n = 4) (f) mice. Representative traces of paired EPSCs are 

presented. (g, h), PPR with various intervals in the absence (circles) or presence 

(triangles) of SNX in wild-type (+/+, n = 6) (g) and in knockout (-/-, n = 9) (h) mice. (e-h), 

These experiments were performed in the presence of antagonists for A1, GABAB and 

CB1 receptors . 
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Figure 5 

Impairment of presynaptic LTP in GluD2 knockout mice. (a), The time courses of EPSC 

amplitude before and after the 4 Hz, 30 sec, PF stimulation at 0 min in wild-type mice 

(+/+, open circles, n = 5) and in knockout (-/-, filled circles, n =5) mice.  Representative 

traces of paired EPSCs are also presented. (b) PPR with 50 ms interval before and after 

the conditioning stimulation (*, p < 0.05).  

 

Figure 6 

(a, b), The time courses of EPSC amplitude before and after the 4 Hz, 30 sec, PF 

stimulation at 0 min in wild-type (+/+, open circles) and in knockout (-/-, filled circles) 

mice in 3 mM [Ca2+]o (+/+, n = 4; -/-, n = 4)(a) or in 4 mM [Ca2+]o (+/+, n = 5; -/-, n = 5) (b). 

(c), The time courses of EPSC amplitude before and after the application of forskolin (50 

μM) in wild-type (+/+, open circles, n = 5) and in knockout (-/-, filled circles, n = 6) mice. 

 

Supplemental Figure 1 

Effects of DGG on the EPSC amplitude. (a, b), The decrease in EPSC amplitude caused 

by application of 2 mM DGG in wild-type (+/+, n = 5) (a) and GluD2 knockout (-/-, n = 5) 

(b) mice.  

 

Supplemental Figure 2 

The time courses of EPSC amplitude change when [Ca2+]o was increased in wild-type 

(+/+, open circles, n = 5) and in knockout (-/-, filled circles, n = 5) mice. 
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Supplemental Figure 3 

PPR with various intervals in the presence of both Ni2+ and DGG in wild-type (+/+, open 

circles, n = 9) and in knockout (-/-, filled circles, n = 9) mice. 

 

Supplemental Figure 4 

Effects of a cocktail of antagonists for A1R, GABABR and CB1R. Application of the 

cocktail increased the EPSC amplitude both in wild-type (+/+, open circles, n = 5) and in 

knockout (-/-, filled circles, n = 5) mice. 
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