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Abstract

We investigate the influence of surface displacement on fluid motions induced by hor-

izontally heterogeneous Joule heating in the inner core. The difference between the

governing equations and those of Takehiro (2011) is the boundary conditions at the

inner core boundary (ICB). The temperature disturbance at the ICB coincides with the

melting temperature, which varies depending on the surface displacement. The normal

component of stress equalizes with the buoyancy induced by the surface displacement.

The toroidal magnetic field and surface displacement with the horizontal structure of

Y0
2 spherical harmonics is given. The flow fields are calculated numerically for vari-

ous amplitudes of surface displacement with the expected values of the parameters of

the core. Further, by considering the heat balance at the ICB, the surface displace-

ment amplitude is related to the turbulent velocity amplitude in the outer core, near the

ICB. The results show that when the turbulent velocity is on the order of 10−1–10−2

m/s, the flow and stress fields are similar to those of Takehiro (2011), where the sur-

face displacement vanishes. As the amplitude of the turbulent velocity decreases, the

amplitude of the surface displacement increases, and counter flows from the polar to

equatorial regions emerge around the ICB, while flow in the inner regions is directed

from the equatorial to polar regions, and the non-zero radial component of velocity at

the ICB remains. When the turbulent velocity is on the order of 10−4–10−5 m/s, the

radial component of velocity at the ICB vanishes, the surface counter flows become
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stronger than the flow in the inner region, and the amplitude of the stress field near the

ICB dominates the inner region, which might be unsuitable for explaining the elastic

anisotropy in the inner core.

Keywords: Inner core flows, Elastic anisotropy, Turbulent velocity in the outer core,

Interaction between inner and outer core

1. Introduction1

The origin of the elastic anisotropy of the Earth’s inner core (e.g. Poupinet et al.,2

1983; Morelli et al., 1986; Souriau, 2007) is considered to be the alignment of texture3

formed along the solidification of the core (e.g. Karato, 1993; Bergman, 1997) or the4

alignment of the preferred orientation of crystals by plastic deformation of fluid mo-5

tions (e.g. Jeanloz and Wenk, 1988; Yoshida et al., 1996; Karato, 1999; Buffett and6

Wenk, 2001). The depth dependency of the anisotropy is difficult to explain by the so-7

lidification mechanism, whereas the various factors driving solid state flow in the inner8

core considered thus far do not appear to yield sufficiently strong stresses to generate9

elastic anisotropy. Takehiro (2011) proposed Joule heating of the magnetic field pen-10

etrating diffusively from the inner core boundary (ICB) as a possible source of inner11

core flows. His specific calculation in the case of a toroidal magnetic field with the12

horizontal structure of Y0
2 spherical harmonics showed that internal flows of sufficient13

magnitude can be induced to explain the elastic anisotropy. The obtained solution con-14

sists of downward flow in the equatorial region and upward flows in the polar region,15

and has a non-zero radial velocity component at the ICB, causing mass exchange be-16

tween the inner and outer core. This feature is a result of the constant normal stress17

boundary condition at the ICB, and it is implicitly assumed that the phase change oc-18

curs instantaneously at the ICB. However, the actual speed of the phase change is finite.19

If the speed of the phase change is slow enough, the ICB would be deformed, and sur-20

face displacement is induced by the non-zero radial velocity at the ICB. This surface21

displacement may prevent inner core flows due to the buoyancy force originating from22

the density contrast between the inner and outer core.23

In this paper, we investigate the influence of surface displacement on fluid motions24
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induced by horizontally heterogeneous Joule heating in the inner core. We examine25

the extent of development of surface displacement, and modification of the flow field26

of the inner core. Sec. 2 is a description of our model. In Sec. 3, numerical results27

are presented for various amplitudes of surface displacement at the ICB. Further, the28

equilibrated amplitude of surface displacement is related to the magnitude of turbulent29

velocity in the outer core just above the ICB. Sec. 4 summarizes the results, and dis-30

cusses whether Joule heating could be the origin of the elastic anisotropy of the Earth’s31

inner core.32

2. Model33

We consider an MHD Boussinesq fluid in a sphere. The governing equations deter-34

mining steady flow and temperature disturbance induced by differential Joule heating35

are as follows (Takehiro, 2011):36

0 = − 1
ρ0
∇p + αT g + ν∇2v, (1)

vr
dTB

dr
= κ∇2T +

QJ

ρ0Cp
, (2)

∇·v = 0. (3)

v is velocity, vr is the radial component of velocity, ρ0 is the mean density of the37

Boussinesq fluid, p is pressure, T is the temperature disturbance, and dTB/dr is the ra-38

dial temperature gradient of the basic state. Gravity induced by the mass of the sphere39

itself is a spherically symmetric distribution, g = −(g0/a)r, where g0 is the gravita-40

tional acceleration at the surface, a is the radius of the sphere, and r is the position41

vector in the radial direction. QJ = |J |2/σ = |∇×B|2/µσ is the Joule heating produced42

by the magnetic field B diffusing from the outer boundary (ICB) to the interior, where43

µ and σ are the magnetic permeability and electric conductivity. Note that eqs. (1)44

and (2) neglect second order nonlinear terms, the validation of which was discussed in45

Takehiro (2011).46

The difference between these governing equations and those of Takehiro (2011) is47

the boundary conditions at the ICB, where the effects of surface displacement emerge.48

The normal stress is balanced at the surface with a buoyancy force proportional to the49
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density difference of the inner and outer core. The temperature at the surface is equal to50

the melting point, which is varied by the surface displacement. The tangential stresses51

vanish at the surface.52

σrr = −p + 2ρ0ν
∂vr

∂r
= −∆ρgh, (4)

σrθ = ρ0ν

(
1
r
∂vr

∂θ
+
∂vθ
∂r
− vθ

r

)
= 0, σrϕ = ρ0ν

(
∂vϕ
∂r
−

vϕ
r
+

1
r sin θ

∂vr

∂ϕ

)
= 0, (5)

T =
dTm

dr
h, at r = a. (6)

Here, ∆ρ is the density difference between the inner and outer core, h(θ, ϕ) is the surface53

displacement distribution, θ and ϕ are colatitude and azimuth, respectively, and dTm/dr54

is the melting temperature gradient. For simplicity, stress and temperature are evaluated55

at r = a, which is the boundary where the surface displacement vanishes.56

The non-divergent flow field is expressed with the toroidal and poloidal potentials,57

ψ and Φ, defined by58

v = ∇×(ψ(r, θ, ϕ)r) + ∇×∇×(Φ(r, θ, ϕ)r), (7)

Eqs. (1) and (2) become59

∇2L2ψ = 0, (8)

ν∇2L2∇2Φ − α(g0/a)L2T = 0, (9)
L2Φ

r
dTB

dr
= κ∇2T +

QJ

ρ0Cp
. (10)

From Eq. (8), ψ ≡ 0, meaning that the toroidal component is not induced. Removing60

the temperature disturbance from Eqs. (9) and (10),61

L2Φ

r
dTB

dr
− κν

α(g0/a)
∇2∇2∇2Φ =

QJ

ρ0Cp
. (11)

The boundary conditions are expressed with the velocity potentials. By taking the62

horizontal divergence of Eq. (1), pressure can be expressed with the potentials. Then,63

Eqs. (4), (5), and (6) become64

ρ0ν
∂

∂r
r
(
−∇2Φ +

2L2Φ

r2

)
= −∆ρgh at r = a, (12)

∂2Φ

∂r2 −
2Φ
r2 +

L2Φ

r2 = 0 at r = a, (13)

νa
αg0
∇2∇2Φ =

dTm

dr
h, at r = a. (14)
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Following the procedure of Takehiro (2011), the governing equations are non-65

dimensionalised, considering the dominance of advection of basic temperature. Using66

the temperature rising rate |QJ |/ρCp and the difference between basic and adiabatic67

temperature at the center, ∆T , the time scale is chosen to be ∆TρCp/|QJ |. The length68

scale is chosen to be the radius of the sphere a. Then, the poloidal potential should be69

normalised by (|QJ |/ρCp)(a2/∆T ). Eq. (11) becomes70

L2Φ

r
dTB

dr
− 1

R
∇2∇2∇2Φ∗ = qJ , (15)

where q j = QJ/|QJ | is non-dimensionalised Joule heating, and R expresses the strength71

of stable stratification,72

R =
αg0∆Ta3

κν
. (16)

The boundary conditions, Eqs. (12), (13), and (14) are normalised as:73

∂

∂r
r
(
−∇2Φ +

2L2Φ

r2

)
= −Rsh, at r = 1, (17)

∂2Φ

∂r2 −
2Φ
r2 +

L2Φ

r2 = 0 at r = 1, (18)

1
R
∇2∇2Φ = −Γmh, at r = 1, (19)

where74

Γm =
(−dTm/dr)a
∆T

=
(dTm/dP)ρga

∆T
, Rs =

ρCp∆T
|QJ |

∆ρga
ρ0ν

. (20)

Given the values of R, Γm, and Rs, the steady flow and temperature disturbance fields75

can be obtained from these equations by setting the distributions of basic temperature76

gradient dTB/dr, Joule heating qJ , and surface displacement h.77

To solve the governing equations with the boundary conditions numerically, the78

poloidal potential Φ is expanded with spherical harmonic functions in the horizontal79

directions, and with the polynomials developed by Matsushima and Marcus (1995)80

in the radial direction. The surface displacement h is also expanded with spherical81

harmonics. Then, the problem becomes a system of linear equations for each spherical82

harmonic component of Φ, since the governing equations and boundary conditions are83

linear. The polynomials for the radial direction are calculated to the 63rd degree.84

In the same manner as the specific calculation of Takehiro (2011), the toroidal85

magnetic field component with spherical harmonics of degree 2 and order 0 is imposed86
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Figure 1: Flow fields in the inner core induced by Joule heating of Y0
2 type for various amplitudes of surface

displacement. From left to right, given amplitudes of surface displacement that are 0, 0.006, 0.06, 0.6, 1.2,

and 1.8m in the case of B = 10−1 T (or 0, 0.00006, 0.0006, 0.006, 0.012, and 0.018m in the case of B = 10−2

T). These panels correspond to cases with turbulent velocities in the outer core of u′ ∼ ∞, 1.4 × 10−1, 1.4 ×
10−2, 10−3, 2.6 × 10−4, and 2.1 × 10−5m/s, respectively.

on the ICB. The Joule heating distribution in the inner core produced by the steady87

magnetic field diffusing from the ICB becomes qJ = r2Y0
2 (cos θ), removing the ho-88

mogeneous component, and its amplitude is given by |QJ | = 8B2/(σµ2a2) (Takehiro,89

2011). Since the governing equations of the system are linear, the surface displacement90

distribution at the ICB induced by the flow driven by Joule heating is also proportional91

to Y0
2 . Following the setup of Takehiro (2011), the non-dimensionalised temperature92

gradient of the basic state dTB/dr is assumed to be in proportion to r. Table 1 sum-93

marizes the values of the parameters used for the numerical calculations. Note that94

larger values of electric conductivity and thermal diffusivity recently estimated by first95

principle calculations (e.g. Pozzo et al., 2012) are adopted than those used in Takehiro96

(2011). Using these values, the non-dimensional parameters are estimated as:97

R =
αg∆Ta3

κν
∼ 1.6 × 107, Rs =

ρCp∆T
QJ

∆ρga
ρ0ν

∼ 3.1 × 108 − 3.1 × 1010,

Γm =
mmρga
∆T

∼ 20.4. (21)

3. Results98

Fig. 1 shows the obtained flow field for several amplitudes of surface displace-99

ment. When the magnitude of magnetic field at the ICB is B = 10−1 T, the distribution100
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Magnetic field at ICB B 10−1–10−2 T

Electric conductivity σ 1.2 × 106 Sm

Magnetic permeability µ 4π × 10−7

Inner core radius a 1.2 × 106 m

Inner core density ρ0 1.2 × 104 kg/m3

Density difference between inner and outer core ∆ρ 5 × 102 kg/m3

Specific heat Cp 850 J/kg·K
Gravity at ICB g 5 m/s2

Difference between basic and adiabatic temperature at the center ∆T 30 K

Thermal expansion coefficient α 1 × 10−5 1/K

Thermal diffusivity κ 2 × 10−5 m2/s

Viscosity 1017 Pa·s

Latent heat L 106 J/kg

Adiabatic temperature gradient near ICB mad 6 × 10−9 K/Pa

Melting temperature gradient near ICB mm 8.5 × 10−9 K/Pa

Turbulent velocity near ICB in the outer core u′ 10−1–10−5 m/s

Table 1: Values of inner core model parameters used for numerical calculations. Physical properties of the

inner core are from Stacey and Davis (2008), σ and κ are from Pozzo et al. (2012), mad and mm are from

Alboussiere et al. (2010), and u′ is from Loper (2007).
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of the flow field in the case with a surface displacement magnitude of 0.006–0.06m is101

similar to the case of no surface displacement. The fact that the surface displacement102

does not affect significantly to the fluid field means that timescale of phase change at103

ICB is small compared with that of surface deformation in these cases. Recalling the104

result of Takehiro (2011), the solid state flow is mainly driven so that temperature in-105

crease/decrease by heterogenous Joule heating balances with the advection of the basic106

temprature. As a result, the flow velocity is essentially independent of the viscosity107

of the inner core. In other words, since the timescale of advection of temperature dis-108

turbance is small compared to that of advection of basic temperature, the inner core109

continuously deforms to keep the isotherms as close as possible to spherical surfaces.110

The amplitude of induced solid state flow is O(10−10)m/s, which is smaller than the111

estimation by Takehiro (2011) due to the larger value of electric conductivity. As the112

amplitude of surface displacement increases to O(1m), the counter flow from the poles113

to the equator emerges, and is strengthened below the ICB. However, in the deep re-114

gion, the flows directed from the equator to the poles still exist, and the magnitude of115

the internal flows is similar to the case with no surface displacement. The normal com-116

ponent of velocity at the ICB vanishes when the amplitude of surface displacement is117

about 1.8 m, where the amplitude of surface velocity becomes 3 × 10−10m/s. As the118

ICB approaches to a closed boundary, the amplitude of flow below the ICB increases,119

because mass flux from the equatorial to the polar regions by the deep flows (which120

does not change its amplitude) must return through the thin layer below the ICB. Fig. 2121

shows the direction and magnitude of the principal stresses of the flow fields presented122

in Fig. 1. When the magnitude of the magnetic field at the ICB is B = 10−1 T, the123

distribution of the stress field in the case where the amplitude of surface displacement124

of 0.006m is similar to the case of no surface displacement, Its magnitude is O(10)Pa,125

which is smaller than the estimation by Takehiro (2011) due to the larger value of elec-126

tric conductivity. The principal stress below the ICB is weak and directed in a different127

direction from that in the deep region. As the amplitude of surface displacement in-128

creases to O(1m), the magnitude of principal stress below the ICB becomes as large129

as O(102)Pa and its direction is parallel to the equatorial plane. However, in the deep130

region, the principal stress keeps its magnitude and is directed poleward, which is the131
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Figure 2: Direction and magnitude of principal stresses of the flow fields presented in Fig. 1. From left to

right, given amplitudes of surface displacements that are 0, 0.006, 0.06, 0.6, 1.2, and 1.8m in the case of B =

10−1 T (or 0, 0.00006, 0.0006, 0.006, 0.012, and 0.018m in the case of B = 10−2 T). These panels correspond

to cases with turbulent velocities in the outer core of u′ ∼ ∞, 1.4 × 10−1, 1.4 × 10−2, 10−3, 2.6 × 10−4, and

2.1×10−5m/s, respectively. The scale of the arrows in the three right panels are 1/5 of the arrows in the three

left panels.

same as the case with no surface displacement.132

The numerical calculations presented so far are performed by giving the amplitude133

of surface displacement as an external parameter. In order to determine equilibrium134

amplitude of surface displacement, let us consider thermal balance at the phase bound-135

ary. Heat transported to the ICB by turbulent velocity u′ in the outer core is assumed136

to be estimated by the difference between the adiabatic and melting temperature as137

(Alboussiere et al., 2010):138

u′CpδT ∼ u′Cp(mm − mad)ρgh,

where δT is the adiabatic and melting temperature difference, and mm and mad are139

the melting and adiabatic temperature gradients near the ICB, respectively. This heat140

transport should be balanced by the latent heat for melting of the solid material ejected141

from the ICB, vr(r = a)L, where vr(r = a) is radial flow at the ICB, and L is the latent142

heat for melting. Then, we have143

u′ =
vr(r = a)L

Cp(mm − mad)ρgh
. (22)

u′ are evaluated by using the numerical results of vr(r = a) and h. Table 2 shows144

the values of turbulent velocity in the outer core u′ for various values of the amplitudes145

of surface displacement and radial flow at the ICB. When the turbulent velocity is146
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h (m) 0 0.006 0.06 0.6 1.2 1.8

vr(r = a) (m/s) 1.1 × 10−10 1.1 × 10−10 1.1 × 10−10 7.6 × 10−11 4.0 × 10−11 4.9 × 10−12

u′ (m/s) ∞ 1.4 × 10−1 1.4 × 10−2 10−3 2.6 × 10−4 2.1 × 10−5

Table 2: Turbulent velocity in the outer core u′ calculated with equilibrium amplitudes of surface displace-

ment and radial flow at the ICB in the case of B = 10−1 T.

sufficiently large (u′ ∼ 10−1–10−2 m/s), the amplitude of surface displacement becomes147

small (h ∼ 10−2 m), since the growth time scale of surface displacement is large enough148

compared to the time scale of phase change. Then, the velocity and stress fields in the149

inner core are similar to those in the case of no surface displacement (the left three150

panels of Figs. 1 and 2). In contrast, when the turbulent velocity is small (u′ ∼ 10−3–151

10−5 m/s), the surface displacement becomes as large as h ∼ 1 m, since the growth152

time scale of surface displacement is small compared to the time scale of phase change.153

Then, the radial flows at the ICB are weakened, and strong return flows from the poles154

to the equator emerge near the ICB, while flows from the equator to the poles with155

amplitudes similar to the h = 0 case remain in the interior (the right three panels of156

Figs. 1 and 2).157

4. Conclusions and discussions158

We investigated the fluid motions induced by horizontally heterogeneous Joule159

heating in the inner core by taking into account the surface displacement. Given an160

ICB toroidal magnetic field of Y0
2 type, the distributions of the flow and stress fields161

were calculated for various values of surface displacement amplitude. Further, the re-162

lationship between the amplitudes of surface displacement and radial flow at the ICB163

was deduced from the heat balance at the ICB, and, as a result, the distributions of the164

flow and stress fields were obtained for various values of turbulent velocity near the165

ICB in the outer core. The results show that when the turbulent velocity is sufficiently166

large (u′ ∼ 10−1–10−2 m/s), the surface displacement does not develop significantly,167

and the velocity and stress fields in the inner core are similar to those in the case of168

no surface displacement (the left three panels of Figs. 1 and 2), which may explain169

the elastic anisotropy, although those magnitudes are estimated as O(10−10)m/s and170
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O(10)Pa (O(10−12)m/s and O(0.1)Pa for B = 10−2 T), which are smaller than the es-171

timation by Takehiro (2011) due to the smaller value of electric conductivity adopted172

here. In contrast, when the turbulent velocity is small (u′ ∼ 10−3–10−5 m/s), the rate173

of phase change decreases at the ICB, and the surface displacement develops signifi-174

cantly. The radial flows at the ICB is weakened, and strong return flows from the poles175

to the equator emerge near the ICB (the right three panels of Figs. 1 and 2), which may176

not be suitable for explaining the origin of anisotropy in the inner core. These results177

suggest that the amplitude of turbulent velocity in the outer core should be as large as178

u′ ∼ 10−2 m/s in order to attribute the origin of anisotropy in the inner core to the fluid179

motions induced by heterogeneous Joule heating.180

The amplitude of turbulent velocity in the outer core is considered to be on the order181

of 10−3 m/s or 10−4 m/s (Alboussiere et al., 2010). However, Loper (2007) theoretically182

estimated the velocity amplitude of compositional plumes near the ICB, and suggested183

that their value could be 1.3 × 10−3 m/s – 0.25 m/s. This suggests that the origin of184

elastic anisotropy in the inner core could be attributed to Joule heating.185

The advantage of the present model is that the velocity amplitude in the interior of186

the inner core does not depend on viscosity, the value of which is quite ambiguous in187

the inner core. However, the present estimation may be affected by other parameters.188

For example, smaller toroidal magnetic field at ICB B brings smaller Joule heating and189

then, smaller velocity amplitude. The value 10−1T used in the present study may be190

rather large, since several recent studies proposed the averaged values of magnetic field191

of a few mT in the interior of the present outer core (e.g. Christensen and Aubert, 2006;192

Gillet et al., 2010; Buffett, 2010). The toroidal part of the magnetic field at the ICB193

may be significantly larger, for example, due to the differential rotation of the inner core194

(e.g. Aurnou et al., 1998), however, recent seismological studies yield relatively small195

rotation rates (e.g Tkalc̃ić et al., 2013) or infer no differential rotation (e.g Mäkinen196

and Deuss, 2011). The value of difference between basic and adiabatic temperature197

at the center also affects the estimation, which is influenced by thermal history of the198

inner core. When the temperature difference becomes small, the velocity amplitude199

increases. Thermal history of the inner core should be reexamined with a recently200

updated value of thermal conductivity to evaluate the temperature difference.201
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ICB tends to be impermeable at u′ ∼ O(10−3)m/s in our estimation. This transition202

turbulent velocity in the outer core u′c depends on several parameters. In order to clear203

this issue, let us remove h from the boundary conditions (13) and (14) using (22). After204

non-dimensionalizing these equations, we obtain,205

∂

∂r
r
(
−∇2Φ +

2L2Φ

r2

)
= −Pη

L2Φ

r
, ∇2∇2Φ = −PT

L2Φ

r
, at r = 1, (23)

where206

PD =
δρga
ρν
· L
Cp(mm − mad)ρgu′

=
τp

τη
, PT =

αgmmρga2

ν
· L
Cp(mm − mad)ρgu′

=
∆Tm

∆Tv
.

(24)

PD is the non-dimensional parameter expressing the effect of phase change on the dy-207

namical balance at ICB (Deguen et al., 2013), meaning the ratio between the phase208

change timescale τp = L/[Cp(mm − mad)ρgu′] and the viscous relaxation timescale209

τη = (ρν)/(δρga). PT is the non-dimensional parameter expressing the effect of phase210

change on the thermal balance at ICB, interpreted as the ratio between the tempera-211

ture scale induced by surface displacement ∆Tm = mmρgτpV and that induced by vis-212

cous and buoyancy forces balance ∆Tv = (νV)/(αga2), where V is the velocity scale.213

Whether ICB becomes permeable or impermeable is determined by the values of PD214

andPT , When bothPD andPT approaches 0, instantaneous phase change occurs at and215

ICB becomes fully permeable. In contrast, either PD or PT is sufficiently large, ICB216

becomes impermeable due to slow phase change. Both PD and PT depend on several217

parameters, respectively. For example, if viscosity becomes large and other parame-218

ters are fixed, both PD and PT is reduced, resulting permeable ICB. In other words,219

larger viscosity gives smaller transition turbulent velocity u′c. Note that the conditions220

PD ∼ 1 and PT ∼ 1 and the values of the paramters used in this study give u′c ∼ 0.2m/s221

and 0.03m/s, seeming to contradict the present numerical results. However, since the222

thickness of the boundary layer is about 0.2 in our solutions, the lefthandsides of Eq.223

(23) should not be assumed as O(1) but O(0.23) and O(0.26), yielding u′c ∼ O(10−3)m/s224

and O(10−6)m/s, which is consistent with the numerical results.225

The present results show that when the surface displacement of the inner core is226

significant the solid state flow is restricted to the surface of the ICB where anisotropy227

in the present inner core is weaker. It seems that Joule heating is unsuitable for the228
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origin of the elastic anisotropy. However, the mechanism proposed here might play a229

important role in the past, possibly because heat flux through the core-mantle boundary230

was larger, yielding stronger magnetic field in the outer core. There is a possibility that231

the elastic anisotropy was produced by the solid state flow driven by Joule heating232

during the growing stage of the inner core, and is now buried while the mechanism is233

not operating (e.g. Deguen and Cardin, 2009).234
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