
An In Silico Model for Interpreting Polypharmacology

in Drug-Target Networks

Ichigaku Takigawa, Koji Tsuda and Hiroshi Mamitsuka

Summary

Recent analysis on polypharmacology leads to the idea that only small fragments of drugs and

targets are a key to understanding their interactions forming polypharmacology. This idea moti-

vates us to build an in silico approach of finding significant substructure patterns from drug-target

(molecular graph-amino acid sequence) pairs. This article introduces an efficient in silico method

for enumerating, from given drug-target pairs, all frequent subgraph-subsequence pairs, which can

be then examined by hypothesis testing for statistical significance further. Unique features of the

method are in scalability, computational efficiency and technical soundness in terms of computer

science and statistics. The presented method was applied to 11,219 drug-target pairs in DrugBank

to obtain significant substructure pairs, which can divide most of the original 11,219 pairs into

eight highly exclusive clusters, implying that the obtained substructure pairs are indispensable

components for interpreting polypharmacology.

Keywords: Frequent pattern mining, Graphs, Strings, Likelihood-ratio test, Polypharmacology,

Drug-target networks

1 Introduction

Polypharmacology (or drug promiscuity) is a recently emerging concept in drug-target interac-

tions, due to mainly the following three reasons: 1) multi-targeted drugs have been clinically

successful, particularly as dual or multiplex kinase inhibitors [1]. 2) a lot of approved drugs are

not necessarily so selective [2], where a typical example is cancer drugs such as Gleevec (imatinib)

and Sutent (sunitinib) which can bind to multiple kinases [3]. 3) network science, particularly

scale-freeness of drug-target networks imply the robustness of biological systems [4, 5], by which

dysfunction of only a single protein can be in most cases compensated, indicating that inhibiting

a single target would be therapeutically insufficient [6].

1

Recent analysis suggests that targets of promiscuous drugs cannot necessarily be similar to

each other [2, 7], meaning that only a small part of each target might be connected to the princi-

ple behind polypharmacology. Furthermore recent research shows that smaller drugs in molecular

weight are likely to be more promiscuous [5], suggesting that only small fragments in each lig-

and would be related to drug promiscuity. They have brought us a hypothesis that fragments

in drug-target pairs, or paired fragments, must be important factors behind polypharmacology.

Thus naturally an in silico approach for analyzing polypharmacology based on this hypothesis is

to use molecular graphs for drugs (or chemical compounds) and amino acid sequences for targets

(or proteins) and examine paired fragments (or substructures) in molecular graphs and amino

acid sequences of drug-target pairs [8]. We introduce a data-driven approach for mining substruc-

ture pairs which significantly shared in currently available drug-target (graph-sequence) pairs. A

unique feature of this approach is scalability and efficiency for covering all possible substructure

(subgraph-subsequence) pairs which significantly co-occur in given drug-target pairs. Further-

more, in [8], obtained significant substructure pairs were used for clustering current drug-target

interactions into eight classes, which are highly exclusive each other, implying that each cluster

corresponds to one unique type of promiscuous drugs (or targets) forming polypharmacology.

2 Materials

The ’small molecules’ dataset of DrugBank [9] (version 2.5 as of January 29, 2009), a standard

database on drug information, contains 11,219 drug-target interactions, which are the input as

interacting pairs, including 4,191 compounds which were linked to 4,362 targets. On the other

hand, non-interacting pairs are all possible combinations from 4,191 compounds and 4,362 targets

except the 11,219 drug-target pairs (See Note 1). In drug-target pairs, 1,447 (34.5%) out of 4,191

drugs were promiscuous drugs, i.e. each with at least two targets, and this ratio was consistent

with 35% in [7]. These promiscuous drugs were involved with 8,475 interactions (75.5% of all

11,219 drug-target pairs) and 171,029 interaction pairs. Drugs are treated as molecular graphs

(See Note 2) and targets are represented by amino acid sequences.

3 Methods

The main input of the method is drug-target (or compound-protein) pairs, which are turned into

graph-sequence pairs in the method. The method tries to find subgraph-subsequence pairs (See

Note 3), which significantly occur in given drug-target pairs, comparing with non-interacting

pairs. This method has two components: (1) all subgraph-subsequence pairs frequently occurring

in drug-target pairs are enumerated, and (2) the significance of a frequent subgraph-subsequence

2

pair is evaluated. We describe Steps (1) and (2) in Subsections 3.1 and 3.2, respectively. Note

that Step (1) corresponds to the entire procedure of the method, and in Step (1), Step (2) is

performed every time a frequent subgraph-subsequence pair is obtained. Note that Step (2) uses

both drug-target pairs and non-interacting pairs, while Step (1) uses drug-target pairs only.

3.1 Mining frequent subgraph-subsequence pairs

3.1.1 Preliminaries

Given a dataset of graph-sequence pairs, we can count the number of graph-sequence pairs which

contain a certain subgraph-subsequence pair. We call this number support of the corresponding

subgraph-subsequence pair, following the literature of frequent pattern mining [10]. When the

support of a subgraph-subsequence pair is larger than or equal to a given threshold value, which

is called minimum support, this pair is called a frequent subgraph-subsequence pair. That is, the

support of a frequent subgraph-subsequence pair must be larger than or equal to the minimum

support. We can further define marginal support of a subgraph as the number of given graph-

sequence pairs which have this subgraph. The marginal support can be defined for subsequences

as well.

The first, key idea for enumerating all frequent subgraph-subsequence pairs efficiently is the

following property, which is called downward closure:

Proposition 1 (Downward closure). A subgraph-subsequence pair is infrequent if this pair con-

tains any smaller infrequent subgraph-subsequence pairs.

This property is powerful, because if you find an infrequent subgraph-subsequence pair, you

do not have to search pairs with larger subgraphs and subsequences which include this pair.

Then this idea naturally leads to a so-called pattern-growth approach, in which we can start with

smallest subgraph-subsequence pairs and extend them to larger pairs, and if we come across an

infrequent pair, then we can stop going on to larger pairs due to the downward closure property.

Without loss of generality, we explain this approach more, focusing on sequences only (rather

than graph-sequence pairs). The pattern growth procedure naturally generates a hierarchy, which

can be represented in a rooted ordered tree, called an enumeration tree. The enumeration tree

is a rooted ordered spanning tree over all frequent subsequences, roughly with the following two

features: 1) the null sequence is on the root, and sequences with only one letter are the children

of the root. 2) each node corresponds to a frequent subsequence in a one-to-one manner, where

a subsequence with a larger number of letters are attached to nodes in a deeper level (See Note

4).

An important point of the enumeration tree is that we can enumerate all subsequences com-

pletely without any duplication by traversing an enumeration tree as a search space. This tree-

3

root

A C D

AA AEAC CC CD

AAA AAC CCA

root

Figure 1: Samples of enumeration trees for (a) frequent subsequences and for (b) frequent sub-
graphs.

shaped search space thus ensures the uniqueness of each subsequence attached to a node and the

completeness on searching all frequent subsequences.

In fact, an enumeration tree can be generated by considering the following three points: 1)

one node has only one parent node but can have more than one child nodes. 2) a subsequence of

a child must be a larger but the minimum. For example, AC in Fig. 1 (a) is a longer sequence but

the minimum of longer sequences. 3) an order of sibling nodes is defined by using some criterion,

by which for example, AC can be a child of A but cannot be a child of C in Fig. 1 (a). That is, A

is prior to C, by which AC is generated from A, being faster than that AC is generated from C.

The enumeration tree can be generated for subgraphs in a similar manner, as shown in Fig.

1 (b), and these subgraphs are used in the next subsection (See Note 5).

We here define some notations which will be used in the next subsection. Let Q be given

subgraph-subsequence pairs. Let Qg and Qs be subgraph-subsequence pairs containing subgraph

g and subsequence s, respectively. Similarly let Q(g,s) be subgraph-subsequence pairs containing

both subgraph g and subsequence s. Let Tg and Ts be enumeration trees for subgraphs and

subsequences, respectively. Here ∅g and ∅s indicate the root nodes of Tg and Ts, respectively.

Similarly, parent(g) represents a subgraph of the parent of a node to which g is assigned in Tg,
and parent(s) represents a subsequence of the parent of a node to which s is assigned in Ts. The

support of a pair of subgraph g and subsequence s is denoted by support((g, s)|Q) = |Q(g,s)|.
Similarly the marginal support of subsequence s is denoted by support((∗, s)|Q). Let σ be the

minimum support.

3.1.2 Mining algorithm

For mining frequent subgraph-subsequence pairs, we combine two enumeration trees, one for

frequent subgraphs and the other for frequent subsequences. That is, all combinations of frequent

subgraphs and subsequences can cover all frequent subgraph-subsequence pairs, and the search

space for all these combinations can be defined by a product graph of the two enumeration

4

(a) (b) (c) a
b

c A

B

C

D

E

F

G

d
e

aA

aB

aC

aG

aD

aE

aF

bA

bB

bC

bG

bD

bE

bF

cA

cB

cC

cG

cD

cE

cF

dA

dB

dC

dG

dD

dE

dF

eA

eB

eC

eG

eD

eE

eF

L V

LI LW

a

b c

d e

C C

C C C

A

B C

D E F G

C C
O

C O

C O OC O C

Figure 2: An example of the search space. The search space (c) is defined as the graph product of
two enumeration trees for subsequences (a) and for subgraphs (b). (c) covers all possible frequent
subgraph-subsequence pairs.

trees. Fig. 2 (a) and (b) show examples of enumeration trees for subsequences and subgraphs,

respectively, which can be combined into Fig. 2 (c), where each subgraph-subsequence pair has

two parent nodes, and hence this is no longer a tree. In this case, theoretically, we can compute

the support of each subgraph-subsequence pair in a dynamic-programming manner.

Proposition 2 (Dynamic programming for subgraph-subsequence pairs). Q(g,s) can be iteratively

computed as follows:

1. Q(g,s) = Q(parent(g),s) ∩Q(g,parent(s)).

2. Q(g,?s) = {(G,S) ∈ Q | g ∈ G}.

3. Q(?g ,s) = {(G,S) ∈ Q | s ∈ S}.

In practice, all combinations of frequent subgraphs and frequent subsequences may have a lot

of infrequent subgraph-subsequence pairs, and so we can use the downward closure property on

the product graph of the two enumeration trees, which can be clearly stated as follows:

Proposition 3 (Two-way downward closure for subgraph-subsequence pairs). If a subgraph-

subsequence pair (g, s) is infrequent, then subgraph-subsequence pairs (g′, s′) (where g ⊆ g′ and

s ⊆ s′) are all infrequent. Thus if support((g, s)|Q) = |Q(g,s)| < σ, then there is no need to extend

(g, s) further.

For example, if (C-C,L) (at node bB) in Fig. 2 (c) is infrequent, patterns at nodes (C-C-C,L),

(C-C=O,L), (C-C,LI), (C-C,LW), (C-C-C,LI), (C-C-C,LW), (C-C=O,LI) and (C-C=O,LW) must

be all infrequent.

The recursion rules in Proposition 2 make us keep all instances explicitly in the graph product

Tg × Ts. That is, Q(g,s) must be kept and be passed to subsequent nodes. This is a space-

consuming procedure, because two enumeration trees are practically very huge. Thus we can

5

consider a depth-first traversal of the graph product Tg × Ts by simplifying recursion rules in

Proposition 2 into those in the following Proposition 4 (See Note 6).

Proposition 4 (A simplified recursion rule). The recursion rules in Proposition 2 can be simplified

to

Q(g,s) = Q(parent(g),s) ∩ {(G,S) ∈ Q | g ∈ G} and Q(?g ,s) = {(G,S) ∈ Q | s ∈ S}.

We can obtain Q(g,s) efficiently by using Proposition 4 as follows: we can first traverse Ts
until subsequence s is found, with computing marginal support, support((∗, s)|Q) (See Note 7).

We can then have Q(?g,s). We can further traverse Tg from node (∅g, s), keeping Q(·,s). Note

here that in this traversal, we can reduce the size of Q(·,s) by using the first rule: Q(x,s) =

Q(parent(x),s)∩Q(x,?s), each time when parent(x) is extended to x. In this way, we can trace Q(g,s)

along with the path from Q(g,?s) to Q(g,s). This procedure can be applied to subgraph g, since

g and s are symmetric. In addition a larger enumeration tree should be examined first for this

procedure, and in reality, we can examine Ts first, since practically Ts is expected to be larger

than Tg in drug-target pairs. Finally we can present a pseudocode of the in silico mining method

as follows:

Proposition 5 (Pseudocode for enumerating all frequent subgraph-subsequence pairs).

1. Compute Q(g,?s) for all possible g using a frequent subgraph mining algorithm in terms of

support((g, ∗)|Q).

2. Start a frequent subsequence mining algorithm from (∅g, ∅s):

For each s ∈ Ts in a depth-first traversal order:

For each g ∈ Tg in a depth-first traversal order:

- continue if g = ∅g or s = ∅s.

- reduce the size of Q(g,s) by Q(g,s) = Q(parent(g),s) ∩ Q(g,?s).

- compute support((g, s)|Q) = |Q(g,s)|.

- break if support((g, s)|Q) < σ.

We can explain this algorithm more by using a toy sample shown in Fig. 3, which has 10

graph-sequence pairs numbered as 1, 2, · · · , 10. Each cell of Fig. 3 shows graph-sequence pairs

having the corresponding subgraph-subsequence pair, such as that only graph-sequence pairs 4

and 5 have (C-C, L). Edges of the two enumeration trees in Fig. 2 are also shown by curves at

the outside of both rows and columns. The objective here is to find all frequent pairs colored in

white: (C-O,L), (C-O,V), (C-O-C,L), (C-O-O,L), and (C-O-O,V).

6

1 2 3 4 5 6
7 8 9 10

1 2 3 4 5 4 5 6 7 8 9 1 2 3 3 4 5 4 5 6 6 7 8 9

4 5 6 7
8 10

4 5 4 5 6 7 8 none 4 5 4 5 6 6 7 8

7 8 9 10 none 7 8 9 none none none 7 8 9

4 5 10 4 5 4 5 none 4 5 4 5 none

6 7 10 none 6 7 none none 6 6 7

L

V

LI

LW

A B C D E F G

a

b

c

d

e

C C C O C C C C C
O

C O OC O C

Figure 3: A sample for enumerating all subgraph-subsequence pairs with the support of 3 or larger
under 10 graph-sequence pairs (1, 2, . . . , 10). This table corresponds to two enumeration trees of
Fig. 2 (a) and (b).

We first build enumeration tree Tg, which corresponds to generating all subgraphs in the top

row of Fig. 3, and then starts traversing enumeration tree Ts from the root. By traversing Ts
in a depth-first manner, the first pattern to be found is (C-C,L). Since (C-C,L) is infrequent

(i.e. |Q(C-C,L)| < 3), we do not have to proceed to subsequent (C-C-C,L) and (C-C=O,L).

Then, the next subgraph-subsequence pair is (C-O,L), which turns out to be frequent. We then

move on to (C-O-C,L). Q(C-O-C,L) is obtained by Q(C-O-C,L) = Q(C-O,L) ∩ Q(C-O-C,?s) = {4, 5, 6}.
Similarly, we can move to (C-O-O,L) where Q(C-O-O,L) = Q(C-O,L) ∩ Q(C-O-C,?s) = {6, 7, 8}. We

now finished traversing all nodes of Tg for L ∈ Ts, and then we proceed to the next subgraph-

subsequence pair (C-C,LI) by traversing Ts from L to LI. However, subsequent nodes, (C-C,LI), (C-

O,LI), (C-C,LW), (C-O,LW) and (C-C,V) are all infrequent, and then the next frequent subgraph-

subsequence pair becomes (C-O,V). Then subsequent (C-O-C,V) and (C-O-O,V) are examined

in this order, and we can find that (C-O-C,V) is infrequent but (C-O-O,V) is frequent. Then we

have no nodes to proceed in Tg × Ts, and the procedure is terminated. Finally we obtain all five

frequent patterns (C-O,L), (C-O-C,L), (C-O-O,L), (C-O,V) and (C-O-O,V) in this order.

3.2 Evaluating significance of subgraph-subsequence pairs

This statistical test is the same as that for detecting ‘epistasis’ in genetics [11], called likelihood

ratio test with logistic regression. We first explain this test, focusing on drug-target pairs, being

followed by the method for maximizing the likelihood of logistic regression from given drug-target

pairs.

7

3.2.1 Likelihood ratio test with logistic regression

Logistic regression can be defined as the probability p that an event occurs given d explanatory

variables x1, x2, . . . , xd, as follows:

p = Prob{the event occurs | x1, x2, . . . , xd} =
exp(η)

1 + exp(η)
=

1
1 + exp(−η)

,

where η = θ0+θ1x1+ · · ·+θdxd is a (linear) composite variable. Note that p takes a value between

zero and one due to the logistic function, even though η ranges from −∞ to ∞. Note further

that this equation can be transformed into log{ p
1−p} = η where p

1−p = Prob{the event occurs |
x1, x2, . . . , xd}/Prob{the event does not occur | x1, x2, . . . , xd}.

Let Y ∈ {0, 1} be a binary response variable, where the probability of Y = 0 (and Y = 1) is

modeled by

Prob{Y = 0} = 1− p„(X) and Prob{Y = 1} = p„(X), p„(X) =
exp(θ′Z)

1 + exp(θ′Z)
,

where θ = (θ0, θ1, . . . , θd)′ and Z = (1,X ′)′ = (1,X1,X2, . . . ,Xd)′. To fit this model to n given

drug-target pairs for Y and X, {(y(1),x(1)), (y(2),x(2)), . . . , (y(n),x(n))} suffices to maximize the

likelihood �(θ) in terms of parameters θ. The likelihood of n given pairs is defined by

�(θ) :=
n∏

i=1

p„(x(i))y
(i)

(1− p„(x(i)))1−y(i)
. (1)

For subgraph-subsequence pair (g, s), we can consider two explanatory variables X1 and X2

for subgraph g and subsequence s, respectively, each taking 1 if a graph-target pair has the

corresponding substructure; otherwise zero. We use two logistic regression models for Y where

Y = 1 for drug-target pairs (and Y = 0 for non-interacting pairs), i.e. the probability that Y = 1:

pθ:0-2(X1,X2) =
exp(η)

1 + exp(η)
and pθ:0-3(X1,X2) =

exp(η + θ3X1X2)
1 + exp(η + θ3X1X2)

,

where η = θ0 + θ1X1 + θ2X2. Note that the second model has interaction term θ3X1X2 while the

first model has no interaction terms. Parameters of these two models are independently fitted by

maximizing the likelihood. Then, the significance of pair (g, s) can be statistically measured by

testing whether θ3 = 0 is kept or not. Note that this can be conducted by using the likelihood

ratio test of two maximum likelihoods L̂θ:0-2 for pθ:0-2(X1,X2) and L̂θ:0-3 for pθ:0-3(X1,X2). The

test statistic −2 log(L̂θ:0-2/L̂θ:0-3) follows the chi-squared distribution with one degree of freedom

under the hypothesis that θ3 = 0. Thus, we can compute the p-value of the observed statistic

from the chi-squared distribution.

8

3.2.2 Computing likelihood ratio test numerically

Given drug-target pairs, to maximize the likelihood (or fit the logistic regression model to given

pairs), we can use the Newton-Raphson method, which is a typical and standard manner for

parameter estimation of logistic regression. Explanatory variables X1 and X2, as well as response

variable Y , are all binary (Y ∈ {0, 1},X1 ∈ {0, 1} and X2 ∈ {0, 1}), and thus drug-target pairs for

(Y,X1,X2) have eight possible combinations only, as shown in Table 1 (a). Thus, only what we

have to do is to count how many times each of the eight combinations occurs in given drug-target

pairs.

Table 1: Tables for counting eight values.

(a) model without the interaction term (b) model with the interaction term
explanatory response

X1 X2 #{Y = 1} #{Y = 0}
x00 0 0 P00 N00

x01 0 1 P01 N01

x10 1 0 P10 N10

x11 1 1 P11 N11

explanatory response
X1 X2 X1X2 #{Y = 1} #{Y = 0}

x000 0 0 0 P00 N00

x010 0 1 0 P01 N01

x100 1 0 0 P10 N10

x111 1 1 1 P11 N11

In fact, we can compute the likelihood ratio test using logistic regression from the counts of

eight possible combinations: P00, P01, P10, P11, N00, N01, N10, and N11 in Table 1. Denoting

(X1 = 0,X2 = 0) by x00, the probability that x00 is observed P00 times (from observations with

Y = 1) and N00 times (from observations with Y = 0) can be written:

P00︷ ︸︸ ︷
p(x00)× · · · × p(x00)×

N00︷ ︸︸ ︷
(1− p(x00))× · · · × (1− p(x00)) = p(x00)P00(1− p(x00))N00 ,

and the entire likelihood �(θ) of Eq. (1) is implicitly given for binary variables Y , X1, and X2 by

p(x00)P00(1−p(x00))N00p(x01)P01(1−p(x01))N01p(x00)P10(1−p(x00))N10p(x11)P11(1−p(x00))N11 .

Thus, letting an index set be Λ := {00, 01, 10, 11}, the log-likelihood can be written as follows:

L(θ) := log �(θ) = log

{∏
λ∈Λ

p(xλ)Pλ(1− p(xλ))Nλ

}
=

∑
λ∈Λ

{Pλ log p(xλ) + Nλ log(1− p(xλ))}

=
∑
λ∈Λ

{
Pλ log

p(xλ)
1− p(xλ)

+ (Pλ + Nλ) log(1− p(xλ))
}

,

9

which means that we can compute the p-value of likelihood ratio test using logistic regression

by using only P00, P01, P10, P11, N00, N01, N01, N11. To maximize L(θ) by changing θ, the

Newton-Raphson method repeats the following update:

θ[k+1] ← θ[k] + (∇2L(θ))−1∇L(θ) until

∣∣∣∣∣L(θ[k+1])− L(θ[k])
L(θ[k])

∣∣∣∣∣ < ε,

where score ∇L(θ) = ∇ log �(θ) and the Hessian matrix (asymptotic Fisher information matrix)

are given as

∇L(θ) =

⎡⎣∂L(θ)/∂θ0

∂L(θ)/∂θ1

∂L(θ)/∂θ2

⎤⎦ =

⎡⎣ ∑
λ∈Λ(Pλ − (Pλ + Nλ)p(xλ))∑

λ∈Λ(x1)λ(Pλ − (Pλ + Nλ)p(xλ))∑
λ∈Λ(x2)λ(Pλ − (Pλ + Nλ)p(xλ))

⎤⎦

∇2L(θ) =

⎡⎢⎢⎢⎢⎢⎢⎣

∂2L(θ)
∂θ0θ0

∂2L(θ)
∂θ0θ1

∂2L(θ)
∂θ0θ2

∂2L(θ)
∂θ1θ0

∂2L(θ)
∂θ1θ1

∂2L(θ)
∂θ1θ2

∂2L(θ)
∂θ2θ0

∂2L(θ)
∂θ2θ1

∂2L(θ)
∂θ2θ2

⎤⎥⎥⎥⎥⎥⎥⎦ ,
∂2L(θ)
∂θiθj

=
∑
λ∈Λ

(Pλ + Nλ)(xi)λ(xj)λp(xλ)(1− p(xλ)).

Hence, the Newton-Raphson update can be written in a matrix form:

θ[k+1] ← θ[k] + (X ′WX)−1X ′(y − p), (2)

where when we use a logistic model pθ:0-2(·) for p(·),

X :=

⎡⎢⎢⎣
1 0 0
1 0 1
1 1 0
1 1 1

⎤⎥⎥⎦ , W :=

⎡⎢⎢⎣
d00 0 0 0
0 d01 0 0
0 0 d10 0
0 0 0 d11

⎤⎥⎥⎦ , y :=

⎡⎢⎢⎣
P00

P01

P10

P11

⎤⎥⎥⎦ , p :=

⎡⎢⎢⎣
(P00 + N00) pθ:0-2(x00)
(P01 + N01) pθ:0-2(x01)
(P10 + N10) pθ:0-2(x10)
(P11 + N11) pθ:0-2(x11)

⎤⎥⎥⎦ ,

d00 = (P00 + N00) pθ:0-2(x00)(1− pθ:0-2(x00)), d01 = (P01 + N01) pθ:0-2(x01)(1− pθ:0-2(x01)),

d10 = (P10 + N10) pθ:0-2(x10)(1− pθ:0-2(x10)), d11 = (P11 + N11) pθ:0-2(x11)(1− pθ:0-2(x11)),

and when we use a logistic model pθ:0-3(·) for p(·),

X :=

⎡⎢⎢⎣
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

⎤⎥⎥⎦ , W :=

⎡⎢⎢⎣
d000 0 0 0
0 d010 0 0
0 0 d100 0
0 0 0 d111

⎤⎥⎥⎦ , y :=

⎡⎢⎢⎣
P00

P01

P10

P11

⎤⎥⎥⎦ , p :=

⎡⎢⎢⎣
(P00 + N00) pθ:0-3(x000)
(P01 + N01) pθ:0-3(x010)
(P10 + N10) pθ:0-3(x100)
(P11 + N11) pθ:0-3(x111)

⎤⎥⎥⎦ ,

d000 = (P00 + N00) pθ:0-3(x000)(1− pθ:0-3(x000)), d010 = (P01 + N01) pθ:0-3(x010)(1 − pθ:0-3(x010)),

d100 = (P10 + N10) pθ:0-3(x100)(1− pθ:0-3(x100)), d111 = (P11 + N11) pθ:0-3(x111)(1 − pθ:0-3(x111)).

10

The deviance of maximum likelihood θ̂ can be defined by

D := −2(L(θ̂)− L∗)

where L∗ is the log-likelihood by the so-called full model (or saturated model) where probabilities

can be given in the following:

p(x00) =
P00

P00 + N00
, p(x01) =

P01

P01 + N01
, p(x10) =

P10

P10 + N10
, p(x11) =

P11

P11 + N11
,

resulting in that the log-likelihood L∗ can be obtained as

L∗ =
∑
λ∈Λ

{
Pλ log

Pλ

Pλ + Nλ
+ Nλ log

Nλ

Pλ + Nλ

}
.

Finally the deviance thus can be written by

D(θ̂) = 2(L∗ − L(θ̂)) = 2 ·
∑
λ∈Λ

{
Pλ log

Pλ

(Pλ + Nλ)p„̂(xλ)
+ Nλ log

Nλ

(Pλ + Nλ)(1− p„̂(xλ))

}
.

4 Notes

1) Unknown drug-target pairs may be in non-interacting pairs. However we think that they are

statistically negligible, since the number of non-interacting pairs is huge.

2) 2D structures of drugs were converted into hydrogen-suppressed molecular graphs, where

nodes were labeled with atom types except hydrogens and edges are labeled with bond

types.

3) Drug substructures and target substructures mean connected subgraphs and consecutive sub-

sequences, respectively.

4) The support of a subgraph-subsequence pair is monotonically decreasing with increasing the

size of the subgraph or the subsequence, meaning that a subgraph on a deeper level in an

enumeration tree has a smaller support.

5) In the literature of mining frequent subsequences (or subgraphs), there already exist estab-

lished algorithms, such as the PrefixSpan algorithm [12] for frequent subsequences and the

gSpan algorithm [13] for frequent subgraphs. Here the original PrefixSpan algorithm allows

any size of gaps in subsequences, but we restrict to only consecutive subsequences. This

is because input sequences are amino acid sequences, which are usually long and consist of

only twenty amino acids, meaning that if we allow any size of gaps, small subsequences are

likely to be frequent, by which mining subsequences in protein sequences will be infeasible.

11

7) This depth-first traversal, which is similar to the gSpan and PrefixSpan algorithms, gives a

practically efficient algorithm.

8) We can use any algorithm for mining frequent subgraphs (subsequences) to compute the

marginal support in Q with the traversal over Tg (and Ts). As mentioned above, for this

purpose, we use gSpan and PrefixSpan for graphs and sequences, respectively.

References

[1] Apsel, B., Blair, J., Gonzalez, B., Nazif, T., Feldman, M., Aizenstein, B., Hoffman, R.,

Williams, R., Shokat, K., Knight, Z. (2008) Targeted polypharmacology: discovery of dual

inhibitors of tyrosine and phosphoinositide kinases. Nat. Chem. Biol., 4, 691-699.

[2] Campillos, M., Kuhn, M., Gavin, A., Jensen, L., Bork, P. (2008) Drug target identification

using side-effect similarity. Science, 321, 263-266.

[3] Frantz, S. (2005) Drug discovery: playing dirty. Nature, 437, 942-943.

[4] Yildirim, M., Goh, K., Cusick, M., Barabasi, A., Vidal, M. (2007) Drug-target network. Nat.

Biotechnol., 25, 1119-1126.

[5] Morphy, R., Rankovic, Z. (2007) Fragments, network biology and designing multiple ligands.

Drug Discov. Today, 12, 156-160.

[6] Hopkins, A. (2008) Network pharmacology: the next paradigm in drug discovery. Nat. Chem.

Biol., 4, 682-690.

[7] Paolini, G., Shapland, R., van Hoorn. W., Mason. J., Hopkins. A (2006) Global mapping of

pharmacological space. Nat. Biotechnol., 24, 805-815.

[8] Takigawa, I., Tsuda, K. and Mamitsuka, H. (2011) Mining significant substructure pairs for

interpreting polypharmacology in drug-target network. PLoS One, 6(2), e16999.

[9] Wishart, D., Knox, C., Guo, A., Cheng, D., Shrivastava, S., Tzur, D., Gautam, B., Hassanali,

M. (2008) DrugBank: a comprehensive resource for in silico drug discovery and exploration.

Nucleic Acids Res. 36, D901-906.

[10] Han, J., Cheng, H., Dong, X. and Yan, X. (2007) Frequent pattern mining: current status

and future directions. Data Mining and Knowledge Discovery, 15(1), 55-86.

[11] Cordell, H. (2002) Epistasis: what it means, what it doesn’t mean, and statistical methods

to detect it in humans. Hum. Mol. Genet. 11, 2463-2468.

12

[12] Pei, J., Han, J., Mortazavi-Asl, B., Wan, J., Pinto, H., Chen, Q., Dayal, U. and Hsu, M-C.

(2004) Mining sequential patterns by pattern-growth: the PrefixSpan approach. IEEE Trans.

Knowl. Data Eng., 16(11), 1424–1440.

[13] Yan, X. and Han, J. (2002) gSpan: Graph-based substructure pattern mining. IEEE Inter-

national Conference on Data Mining (ICDM’02), 721–724, Washington, DC, USA, 2002.

13

