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In recent years, the absolute value equation (AVE) has attracted a growing attention. The
absolute value program (AVP) is an extension of AVE, which contains absolute values of
variables in its objective function and constraints. In this paper, we propose an algorithm for
the AVP, which is based on the branch-and-bound method. In the branching procedure, we
generate two subproblems by restricting the sign of a variable to be nonnegative or nonpositive.
In the bounding procedure, we utilize the duality results for AVP. Furthermore, we carry out
numerical experiments for nonconvex multi-facility location problems to show the validity of
the proposed algorithm.
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1. Introduction

In recent years, the absolute value equation (AVE) [1, 4, 9, 11, 12, 14–16, 20] has
attracted a growing attention. The absolute value program (AVP) is an extension
of AVE, which contains absolute values of variables in its objective function and
constraints. Formally, the AVP is stated as follows:

(P) min c>x + d>|x|
s.t. Ax + B|x| = b,

Hx + K|x| ≥ p,

where c, d ∈ Rn, b ∈ Rm, p ∈ R`, A, B ∈ Rm×n, H, K ∈ R`×n, and |x| denotes
the vector |x| = (|x1|, |x2|, . . . , |xn|)> ∈ Rn. Although this problem is a nonconvex
optimization problem in general, Mangasarian [10] showed an interesting weak
duality result and a sufficient optimality condition for the problem. In addition,
the AVE that appears in the constraints of the AVP is shown to be equivalent to
a linear complementarity problem [10, 14]. This result indicates that the AVP is
equivalent to a linear program with linear complementarity constraints, which is
a special case of the mathematical program with equilibrium constraints (MPEC)
[7]. MPEC has many applications in various areas such as economics, engineering,
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and transportation. However, MPEC is in general difficult to deal with, since its
feasible region is necessarily nonconvex and even disconnected. The study on AVP
is in its infancy and, to the authors’ knowledge, there have been no work except
for the above-mentioned duality results of Mangasarian [10].

In this paper, we first propose an algorithm for the AVP, which is based on the
branch-and-bound method. In the branching procedure, we generate two subprob-
lems by restricting the sign of a component of the variable x in (P) to be nonneg-
ative or nonpositive. In the bounding procedure, we utilize the duality results in
AVP to obtain a lower bound for each subproblem. Furthermore, to examine the
effectiveness of the proposed algorithm, we apply it to solve facility location prob-
lems (FLPs). By using the `1 norm as a distance function, an FLP can naturally be
formulated as an AVP. In particular, we can use the AVP formulation to deal with
a nonconvex region in which facilities are located. We stress that such a problem is
considerably difficult to solve compared with the conventional FLPs that assume
the convexity of the region.

The paper is organized as follows. In the next section, we give some preliminary
results about the AVP. Using these results, we propose a branch-and-bound algo-
rithm for solving AVPs in Section 3. In Section 4, we carry out some numerical
experiments with the proposed algorithm for two types of nonconvex FLPs. Finally,
we conclude the paper in Section 5.

2. Duality

The dual problem of AVP (P) is defined as follows [10]:

(D) max b>u + p>v

s.t. |A>u + H>v − c|+ B>u + K>v ≤ d,

v ≥ 0.

Note that the inequality constraint can be represented as

|A>u + H>v − c| ≤ d−B>u−K>v

⇐⇒ −d + B>u + K>v ≤ A>u + H>v − c ≤ d−B>u−K>v

⇐⇒
{

(−A + B)>u + (−H + K)>v ≤ d− c,
(A + B)>u + (H + K)>v ≤ d + c.

Therefore, the dual problem (D) can be rewritten as follows:

max b>u + p>v

s.t. (−A + B)>u + (−H + K)>v ≤ d− c,

(A + B)>u + (H + K)>v ≤ d + c,

v ≥ 0.

Notice that the dual problem (D) is always a convex optimization problem, or
more precisely, a linear program, although the primal problem (P) is not convex
in general. Moreover, a weak duality theorem and a sufficient optimality condition
for AVP are shown in [10], which will be useful in our algorithm.
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Theorem 2.1 : [10] If x and (u, v) are feasible solutions of (P) and (D), respec-
tively, then the following inequality holds:

c>x + d>|x| ≥ b>u + p>v.

This theorem says that we can get a lower bound of the optimal value of (P)
by solving the dual problem (D). The next theorem gives a sufficient optimality
condition for (P).

Theorem 2.2 : [10] Let x̄ be feasible in the primal AVP (P) and (ū, v̄) be feasible
in the dual AVP (D) with equal primal and dual objective values, that is,

c>x̄ + d>|x̄| = b>ū + p>v̄.

Then x̄ and (ū, v̄) are optimal solutions of (P) and (D), respectively.

3. Branch-and-Bound Method

In this section, we propose a branch-and-bound method for AVP. The branch-
and-bound method is one of fundamental global optimization methods for noncon-
vex optimization problems [3] and combinatorial optimization problems [5]. The
method consists of branching and bounding procedures. In the branching proce-
dure, we divide the feasible region of the original problem into some subregions to
generate subproblems. On the other hand, in the bounding procedure, we check if
a current subproblem can be discarded or not, by implementing some fathoming
tests. We now give the detail of the branching and bounding procedures used in
the proposed branch-and-bound method for solving AVPs.

A subproblem is constructed from (P) by restricting some variables to be either
nonpositive or nonnegative:

P(I,J ) min c>x + d>|x|
s.t. Ax + B|x| = b,

Hx + K|x| ≥ p,

xi ≥ 0 (i ∈ I),

xi ≤ 0 (i ∈ J ),

where I and J are subsets of {1, 2, . . . , n} such that I ∩ J = ∅. Note that
(P) = P(∅, ∅). The branching procedure can conveniently be explained by using
the enumeration tree, where each node corresponds to a subproblem. An example
of the enumeration tree with n = 2 is shown in Fig. 1. At each node of the tree,
branching means that we choose a variable xi and restrict it to be nonnegative or
nonpositive in the corresponding subproblem. The deepest nodes in the tree cor-
respond to 2n linear programs, which contain no absolute values of the variables.
The branch-and-bound method maintains the set of subproblems that can be se-
lected to apply a branching procedure. Such subproblems are said to be active,
and the set of the current active subproblems is denoted by A. For example, if we
generate two subproblems P({1}, ∅) and P(∅, {1}) at the root node P(∅, ∅) in the
enumeration tree of Fig. 1, then we have A = {P({1}, ∅), P(∅, {1})}.

In the bounding procedure, we consider the dual problem of P(I,J ) in order
to get a lower bound of P(I,J ). For convenience, let hi := σiei ∈ Rn for each
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Figure 1. Enumeration tree (n = 2)

i ∈ I ∪ J , where ei ∈ Rn is the ith column of the n × n identity matrix, and
σi = 1 if i ∈ I and σi = −1 if i ∈ J . Then, the nonnegativity and nonpositivity
constraints on variables xi in P(I,J ) are represented as

hT
i x ≥ 0 (i ∈ I ∪ J ).

Therefore, we can rewrite P(I,J ) as follows:

P(I,J ) min c>x + d>|x|
s.t. Ax + B|x| = b,

H̃x + K̃|x| ≥ p̃,

where H̃ ∈ R(`+|I|+|J |)×n, K̃ ∈ R(`+|I|+|J |)×n, p̃ ∈ R(`+|I|+|J |) are defined by

H̃ :=




H
...

hT
i
...




, K̃ :=




K
...
0
...




, p̃ :=




p
...
0
...




.

Moreover, the dual problem of P(I,J ) is written as

D(I,J ) max b>u + p̃>v

s.t. |A>u + H̃>v − c|+ B>u + K̃>v ≤ d,

v ≥ 0,

which can further be rewritten as a linear program. Based on the result of solving
the dual problem, the subproblem P(I,J ) can be fathomed if one of the following
conditions holds:

(i) D(I,J ) is unbounded.
(ii) The optimal value of D(I,J ) is greater than the objective value of the

incumbent solution, i.e., the best feasible solution of (P) found so far.
(iii) There is no duality gap between P(I,J ) and D(I,J ).
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We now give more details about the bounding operations based on the above
three conditions.

If the dual problem D(I,J ) is unbounded, then the primal problem P(I,J ) is
infeasible from the weak duality theorem. In this case, any subproblem generated
from the current subproblem by restricting the sign of some of its variables cannot
be feasible. Hence we can discard the current subproblem P(I,J ).

If the optimal value of D(I,J ), which is a lower bound of the optimal value
of P(I,J ) by Theorem 2.1, is greater than the objective value of the incumbent
solution, we have no chance to obtain an optimal solution of (P) by generating
subproblems from P(I,J ) further. So we can discard the current subproblem.

If we find out that there is no duality gap between P(I,J ) and D(I,J ), then this
means the subproblem P(I,J ) is just solved. For this reason, we need not generate
new subproblems from P(I,J ) further, and we can discard the current subproblem.
Moreover, if the optimal solution of P(I,J ) is better than the incumbent solution,
then we replace the incumbent solution by the optimal solution of P(I,J ). We
may check if there is no duality gap between P(I,J ) and D(I,J ) by solving the
following system of absolute value equations and inequalities:

c>x + d>|x| = f∗D,

Ax + B|x| = b, (S1)

H̃x + K̃|x| ≥ p̃,

where f∗D is the optimal objective value of the dual problem D(I,J ). If the system
(S1) has a solution, then P(I,J ) and D(I,J ) have no duality gap. Moreover, by
Theorem 2.2, it is an optimal solution of P(I,J ).

We now formally state the algorithm.
Branch-and-Bound Algorithm for AVP:

• Step 0. Let I := ∅ and J := ∅. Find a feasible solution of problem (P ) =
P(∅, ∅). Let it be the incumbent solution and let f∗ be the objective value at the
incumbent solution. Set A := {P(∅, ∅)}.

• Step 1. Choose a subproblem P(I,J ) from the set A.
• Step 1-a. If the dual problem D(I,J ) of P(I,J ) is infeasible, then go to

Step 2. If D(I,J ) is unbounded, then fathom P(I,J ). Set A := A\{P(I,J )}
and go to Step 3.

• Step 1-b. Let f∗D be the optimal objective value of the dual problem D(I,J ).
If it satisfies f∗D > f∗, then fathom P(I,J ). Set A := A \ {P(I,J )} and go
to Step 3.

• Step 1-c. Solve the system (S1) of absolute value equations and inequalities.
If we fail to get a solution of (S1), then go to Step 2. If we get a solution
of (S1) and, in addition, the objective value at the solution, denoted f(I,J ),
satisfies f(I,J ) ≥ f∗, then P(I,J ) is fathomed immediately. If f(I,J ) < f∗,
then set f∗ := f(I,J ), update the incumbent solution, and fathom P(I,J ).
Set A := A \ {P(I,J )} and go to Step 3.

• Step 2. Choose a variable xi such that i /∈ I ∪ J as the branching variable,
and generate two subproblems P(I ∪{i},J ) and P(I,J ∪{i}) from P(I,J ). Set
A := A ∪ {P(I ∪ {i},J ), P(I,J ∪ {i})} \ {P(I,J )}, and return to Step 1.

• Step 3. If A = ∅, then terminate. The incumbent solution is an optimal solution
of the original problem (P). Otherwise, return to Step 1.

In order to get a feasible solution of (P) in Step 0 and to solve (S1) in Step 1-c,
we can use the successive linearization algorithm (SLA) for the system of absolute
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value equations and inequalities. This algorithm was first proposed by Mangasarian
[10] to solve AVE. We extend the algorithm so as to deal with a system that also
contains absolute value inequalities (AVIs).

Here we describe the SLA for the system

{
Ax + B|x| = b,
Hx + K|x| ≥ p,

(S2)

which represents the constraints of (P). The algorithm can similarly be applied to
solve the system (S1).

First we give a result that relates the AVE-AVI system (S2) to the following
concave minimization problem constructed from (S2):

min
(x,t,s1,s2)∈Rn+n+m+`

ε(−e>|x|+ e>t) + e>s1 + e>s2

s.t. −s1 ≤ Ax + Bt− b ≤ s1,
−Hx−Kt + p ≤ s2,

0 ≤ s2,
−t ≤ x ≤ t,

(1)

where ε > 0 and e is the vector of ones.

Proposition 3.1: If (S2) is solvable, then there exists some ε̄ > 0 such that, for
any ε ∈ (0, ε̄], any solution (x̄, t̄, s̄1, s̄2) of (1) satisfies

|x̄| = t̄,

Ax̄ + B|x̄| = b,

Hx̄ + K|x̄| ≥ p.

Proof : The proof is analogous to that of Proposition 3 in [10]. ¤

From this result, a solution of the AVE-AVI system (S2) may be obtained by
solving the concave minimization problem (1) with a sufficiently small ε > 0. We
now give the SLA for the AVE-AVI system (S2), which is an extension of the SLA
for AVE [10]. Let z = (x, t, s1, s2)>. Denote the feasible region of problem (1) by
Z and its objective function by θ(z).

SLA for AVE-AVI:

• Step 0. Choose a starting point z0 ∈ Z. Set k := 0.
• Step 1. Given zk, find zk+1 such that

zk+1 ∈ arg vertex min
z∈Z

(ξk)>(z − zk),

where ξk is a subgradient of θ(z) at zk, and arg vertex minz∈Z(ξk)>(z − zk) is
the set of vertex solutions of the linear program: minz∈Z(ξk)>(z − zk).

• Step 2. If (ξk)>(zk+1 − zk) = 0, then stop. Otherwise, return to Step 1 with k
increased by one.

In our numerical experiments, we compute a subgradient ξk of θ(z) at zk as
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follows:

ξk =




−εgk

εe
e
e


 ∈ Rn+n+m+` with gk

i =





1 (xk
i > 0)

0 (xk
i = 0)

−1 (xk
i < 0)

, i = 1, · · · , n.

As is well-known, a concave minimization problem has at least one optimal solu-
tion at a vertex of the feasible region, provided a solution exists. Taking this fact
into account, the SLA tries to find an optimal solution of (1) by solving a sequence
of linear programs formed by linearizing the objective function of problem (1). The
sequence generated by the SLA finitely converges to a point that satisfies a neces-
sary optimality condition for the concave minimization problem [8, 10]. Notice that
the solution obtained by this algorithm is not guaranteed to be a global optimal
solution of (1). Nevertheless, we can easily check if the computed solution actually
satisfies (S2) by direct substitution.

We now show the way to generate subproblems in Step 2 of the branch-and-
bound algorithm. Recall that Step 2 is visited after either of the following two
cases occurs.

Case 1. In Step 1-a, D(I,J ) is infeasible.
Case 2. In Step 1-c, (S2) cannot be solved.

If Case 1 occurs, then we generate two subproblems by choosing any variable xi

such that i /∈ I ∪J as the branching variable. In Case 2, we fail to have a solution
of (S2), but a local optimal solution of problem (1) is obtained. In this case, we
choose as the branching variable a variable xi (i /∈ I ∪ J ) such that |xi| ≥ |xj | for
all j /∈ I ∪ J at the obtained local optimal solution of (1).

In Step 1, a certain rule should be used to choose an active subproblem P(I,J ) ∈
A. In the numerical experiments reported in the next section, we use the depth-first
search, which generally chooses an active subproblem corresponding to the farthest
node from the root node in the enumeration tree. In particular, when we return
to Step 1 after generating two subproblems, we choose one of these subproblems.
In this case, the choice depends on the above-mentioned two cases. If we generate
two subproblems in Step 2 after Case 1 occurs, then we choose any of the two
subproblems. In Case 2, as we mentioned above, we have a local optimal solution
of (1) at hand. In this case, if the branching variable xi in the local optimal solution
takes a positive value, then we choose subproblem P(I ∪ {i},J ). Otherwise, we
choose P(I,J ∪ {i}).

4. Numerical Experiments

In this section, we consider facility location problems (FLPs) as an application
of AVP, and show some numerical results with the proposed branch-and-bound
algorithm applied to some examples of FLPs. All computations were carried out
on an Intel r© CoreTM 2 Duo 3GHz machine with a MATLAB code. The CPLEX
was used to solve linear programs in the SLA.

FLP is the problem of finding optimal locations of facilities in a given area, and it
can be formulated as mathematical programs of different natures depending on the
type of constraints and optimization criteria [2]. Generally speaking, there are two
kinds of facilities from the residents’ standpoint. The first category is a desirable
facility such as schools, libraries and fire stations. Such a facility should be located
as closely as possible to the residents. The other category is an undesirable facility,



November 16, 2011 17:6 Optimization AVP-final

8 Taylor & Francis and I.T. Consultant

which includes incineration plants, electric power stations, chemical factories and
so on. These facilities should be located far from the residential area. From the
viewpoint of geography, there are three kinds of areas in which facilities can be
located, i.e., continuous spaces, discrete spaces, and networks. Furthermore, the
distance between two facilities or between a facility and a residential district can
be measured by using various norms such as the Euclidean, `1, and `∞ norms.

In our numerical experiments, we consider two types of FLPs on a continuous
space with the `1 distance, which can be reformulated as AVPs. Note that the `1

distance between two points x and y can be represented as e>|x− y|.

4.1. Minimax Location Problem

A minimax multi-facility location problem can be formulated as follows [2]:

min max { max
i∈I,j∈J

αije
>|xi − P j |, max

i,k∈I,i 6=k
βike

>|xi − xk| }
s.t. xi ∈ X (i ∈ I),

(2)

where xi ∈ R2 (i ∈ I) and P j ∈ R2 (j ∈ J) denote the locations of the new and the
existing facilities, respectively, I and J are finite index sets, αij and βik are positive
weighting factors, and X ⊂ R2 is the region in which the facilities are located.

The problem is to minimize the maximum weighted distance between new and
existing facilities, and between new facilities themselves. If each existing facility
is regarded as a residential district, then this problem represents a mathematical
model of locating desirable facilities, such as schools and fire stations, in a city. This
kind of problems has been well-studied for the past decades. In particular, using
the `1 norm as the distance function, Konforty and Tamir [6] studied the minimax
single facility location problem with a forbidden region around each existing facility.

Problem (2) can be rewritten as the following problem by introducing a new
variable z ∈ R:

(Pa) minx,z z
s.t. z ≥ αije

>|xi − P j | (i ∈ I, j ∈ J),
z ≥ βike

>|xi − xk| (i, k ∈ I, i 6= k),
xi ∈ X (i ∈ I).

If X is a convex polyhedron, (Pa) is easy to solve because it reduces to a linear
program. Here, we deal with the more general case where X is a nonconvex region.

We now give the detail of the problem that we solve in numerical experiments.
We define the region X as the set of points x = (x1, x2)> ∈ R2 that satisfy the
following inequalities:

|x1|+ |x2|+ 0.2x1 + 0.4x2 ≤ 10,
|x1|+ 2|x2 + 12| − 0.5x1 ≥ 12,
|x1 + 2|+ 1.5|x2 + 1| − 0.3x1 − 0.5x2 ≥ 5.

(3)

The region X is nonconvex, as shown in Fig. 2. Notice that since the region X is
described by (3), problem (Pa) is an instance of AVP.

In the numerical experiments, we let I = {1, 2}, J = {1, 2, 3} and set the lo-
cations of the existing facilities as P 1 = (−7,−5), P 2 = (−2, 5), P 3 = (7,−1).
Moreover, we choose the positive weight β12 = 1.0, and use two data sets for the
weights αij given as follows:
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Figure 2. Region X where the facilities are located.

(α11, α12, α13, α21, α22, α23) = (0.5, 1.0, 0.7, 0.5, 0.7, 1.0) (4)

and

(α11, α12, α13, α21, α22, α23) = (0.7, 1.0, 0.5, 0.5, 1.0, 0.7). (5)

The problems with αij ’s given by (4) and (5) are called Minimax-1 and Minimax-2,
respectively. The branch-and-bound method was able to find solutions of Minimax-
1 and Minimax-2, which are given by x1 = (0, 1.5), x2 = (0.98,−1.9) and x1 =
(−3.42, 1.05), x2 = (−0.07, 1.55), respectively. The solutions are depicted in Fig. 3
and Fig. 4. For each problem, the CPU time, the numbers of subproblems fathomed
in Step 1-a, Step 1-b, Step 1-c, and the number of nodes explored are summarized
in Table 1.

Table 1: Results for minimax location problems
CPU time (sec) Step 1-a Step 1-b Step 1-c No. of nodes explored

Minimax-1 0.55 16 63 4 164
Minimax-2 2.7 230 96 30 710

4.2. Maximin Location Problem

A maximin multi-facility location problem is generally formulated as follows [2]:

max min { min
i∈I,j∈J

αije
>|xi − P j |, min

i,k∈I,i 6=k
βike

>|xi − xk| }
s.t. xi ∈ X (i ∈ I),

(6)
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Figure 3. Solution of Minimax-1

Figure 4. Solution of Minimax-2

where xi, P j , αij , βij and X represent the same stuffs as in problem (2). Unlike
the minimax location problem, this problem maximizes the minimum weighted
distances between new and existing facilities, and between new facilities themselves.
The maximin location problem will be useful in locating competing facilities such
as convenience stores and gas stations.

Sayin [17] and Nadirler and Karasakal [13] reformulated single facility maximin
location problem on a convex region with the `1 distance as a mixed integer pro-
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gram. Tamir [18] proposed an algorithm for two-facility maximin location problems
on a convex region with the `1 distance. In these approaches, the region for locating
facilities is assumed to be convex. Here we solve multi-facility location problems
on a nonconvex region.

Problem (6) can be rewritten as the following problem by introducing a new
variable z ∈ R [18, 19]:

(Pb) maxx,z z
s.t. z ≤ αije

>|xi − P j | (i ∈ I, j ∈ J),
z ≤ βike

>|xi − xk| (i, k ∈ I, i 6= k),
xi ∈ X (i ∈ I).

Notice that, unlike the inequality constraints in (Pa), those in this problem are
nonconvex.

In the numerical experiments, we let the index sets of the new and the existing
facilities be I = {1, 2} and J = {1, 2, 3}, respectively. In addition, we set all the
positive weights αij and β12 to be 1. The region X is the nonconvex region described
by (3). Moreover, the locations of the existing facilities are given in the following
two data sets:

P 1 = (−10,−1), P 2 = (−5, 2), P 3 = (2, 4) (7)

and

P 1 = (−9, 1), P 2 = (−1,−3), P 3 = (6,−2). (8)

The problems with the data sets (7) and (8) are called Maximin-1 and Maximin-
2, respectively. By using the proposed branch-and-bound method, we obtained a
solution x1 = (−2.42,−7.81), x2 = (6.27,−4.12) for Maximin-1 and a solution
x1 = (−5.12,−9.84), x2 = (0, 6.96) for Maximin-2. Those solutions are shown in
Fig. 5 and Fig. 6. For each problem, the CPU time, the numbers of subproblems
fathomed in Step 1-a, Step 1-b, Step 1-c, and the number of nodes explored are
shown in Table 2.

Table 2: Results for maximin location problems
CPU time (sec) Step 1-a Step 1-b Step 1-c No. of nodes explored

Maximin-1 7.9 753 492 13 2514
Maximin-2 14.1 1478 686 18 4362

For each of the above examples Minimax-1, 2, and Maximin-1, 2, the AVP in
the form of (P) has 27 variables and 22 constraints. From the results shown in
this section, we observe that a global optimal solution of each problem was found
by exploring only a small number of nodes compared with the number of all pos-
sible nodes (227 − 1) in the enumeration tree. Although (Pa) and (Pb) have the
same numbers of variables and constraints, there is a significant difference in the
CPU time between these two types of problems, as shown in Table 1 and Table 2.
The reason for this phenomenon may be explained as follows. The minimax lo-
cation problem (2) has a convex objective function, although the feasible region
is nonconvex. On the other hand, the objective function of the maximin location
problem (6) is neither convex nor concave. Such a problem is considered to be much
more difficult to deal with in practice.
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Figure 5. Solution of Maximin-1

Figure 6. Solution of Maximin-2

5. Conclusion

In this paper, we have proposed an algorithm for the AVP, which is based on the
branch-and-bound method. We have also carried out numerical experiments for
nonconvex multi-facility location problems with the `1 norm, which can naturally
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be reformulated as AVPs. The numerical results demonstrate the validity of the
proposed algorithm.
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