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S U M M A R Y
To determine whether the piezomagnetic effect is a plausible mechanism in explaining varia-
tions in the magnetic field that occur synchronously with the propagation of teleseismic waves,
a set of solutions are derived for the electromagnetic field. The situation is considered in which
the Earth’s conductivity has a stratified structure and seismic waves are expressed as a plane
wave. The piezomagnetic field in this situation is expressed by an analytically closed form.
Using the obtained solution, quantitative aspects of the piezomagnetic field that accompanies
seismic Rayleigh waves are discussed. It is shown that the finite conductivity of the Earth’s
crust sometimes acts as an enhancer of the magnitude of the piezomagnetic field. However,
the expected piezomagnetic field is substantially small. Even in the case that the initial mag-
netization around the observation site is as large as 5 A m–1, the expected amplitudes in the
piezomagnetic field are at most 0.1 nT. This result means that the piezomagnetic effect is
not a reasonable mechanism to sufficiently explain variations in magnetic fields that occur
synchronously with ground motions, if the initial magnetization is horizontally uniform.

Key words: Electromagnetic theory; Magnetic and electrical properties; Earthquake ground
motions; Wave propagation.

1 I N T RO D U C T I O N

Variations in electromagnetic (EM) fields following large earthquakes are frequently reported (e.g. Eleman 1965; Honkura et al. 2000;
Iyemori et al. 1996, 2005; Taira et al. 2009). Such EM variations occur naturally, as theoretical considerations predict that changes in stress
and displacement of the crust cause EM variations of various types. The candidate mechanisms for such variations include the electrokinetic
effect (e.g. Mizutani et al. 1976; Ishido & Mizutani 1981), the EM induction effect due to ground motions (e.g. Honkura et al. 2002) and
piezoelectricity (e.g. Ikeda 1990). The problem to be addressed is which mechanism(s) is dominant in the generation of EM variations. The
electrokinetic effect is usually considered a major effect that converts seismic waves to variations in EM fields (e.g. Bordes et al. 2008). A
recent study proposed that the motions of ions caused by the Lorentz force in the geomagnetic field are also important (Honkura et al. 2009).
The contribution of the piezoelectric field has also been quantitatively discussed (e.g. Ogawa & Utada 2000a, 2000b). An understanding of
the basic properties of signals arising from each mechanism is essential from both theoretical and applied perspectives.

One of the candidate mechanisms that generate coseismic variations in the magnetic field is the piezomagnetic effect. The piezomagnetic
effect generates changes in magnetization in the Earth’s crust under the application of mechanical stress (e.g. Nagata 1970a; Stacey & Johnston
1972). Changes in the magnetic field due to the piezomagnetic effect, which are referred to as the piezomagnetic field, have been calculated
for a variety of elastic models (e.g. Sasai 1991; Utsugi et al. 2000; Okubo & Oshiman 2004). In these earlier studies, only permanent
displacements of elastic materials were considered. To investigate variations in the magnetic field during the propagation of seismic waves,
the calculation should be extended in such a way that time-varying stress fields are properly treated. In the Stokes’ solution of the theory of
elasticity, permanent displacements are represented by near-field terms, whereas seismic waves are mainly represented by far-field terms (e.g.
Aki & Richards 2002). Consideration of elastic waves corresponding to the far-field terms is essential when considering the piezomagnetic
field observed at sites located far (i.e. several tens of kilometres) from the seismic source.

The fundamental questions related to EM signals associated with seismic waves via the piezomagnetic effect are as follows: (i) Which
factors control the expected amplitude of the signal? and (ii) Are the signals detectable? Of course, the answers to several aspects of the first
question are obvious. For example, large seismic waves generate large piezomagnetic signals because of the linearity of the piezomagnetic
effect. However, other aspects of this question remain poorly understood, including how the Earth’s conductivity affects the magnitude of the
resultant piezomagnetic field.
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Piezomagnetic fields due to teleseismic waves 627

In this paper, an analytical solution is derived of the EM field that arises accompanying teleseismic waves, as generated by the
piezomagnetic effect. Quantitative properties of the piezomagnetic signals are deduced from the derived solution. The reminder of this paper
is organised as follows: In Section 2, the governing equations and assumptions are described for the problem of interest. In Section 3, an
analytical solution to the problem is derived. In Section 4, the solution is applied to a two-layer Earth model to gain a quantitative insight into
the piezomagnetic field. Finally, the main conclusions are presented in Section 5.

2 D E F I N I T I O N O F T H E P RO B L E M

2.1 Governing equations in the time domain

The situation considered in this study is summarized in Fig. 1. A layered structure in conductivity is assumed. Initial magnetization in the
crust is assumed to be uniform above the depth of the Curie point. Seismic plane waves are considered as sources of the piezomagnetic
effect. Variations in stress generate variations in magnetization via the mechanism of the piezomagnetic effect, which in turn causes variations
in the EM field. The governing equations of the above situation are the Maxwell equations of the EM field and the constitutive law of the
piezomagnetic effect. For simplicity, the electrical permeability, rigidity and Poisson’s ratio are assumed to be uniform. The relevant notation
is summarized in Table 1.

2.1.1 The electromagnetic field arising from time-varying magnetizations

Fluctuations in the electric and magnetic fields (�E and �B, respectively) arising from propagating seismic waves are investigated. In the
case of no electrical charge in the material, �E and �B satisfy the Maxwell equations in materials:

∇ · [ε0�E(x, t)] = 0, (1)

∇ · �B(x, t) = 0, (2)

∇ × �E(x, t) + ∂

∂t
�B(x, t) = 0 (3)

and

∇ ×
[

1

μm
0

�B(x, t) − �M(x, t)

]
= j(x, t) + ε0

∂

∂t
�E(x, t), (4)

where j is the electric current density; ε0 and μm
0 are the electric and magnetic permeability in a vacuum, respectively; and �M represents

temporal variations in magnetization. Ohm’s law is also assumed for �E and j; that is,

j(x, t) = σ�E(x, t), (5)

Figure 1. Configuration of the problem. The X -axis indicates the propagation direction of seismic waves in the horizontal plane; the Z-axis is vertically
downwards and the Y -axis is normal to the XZ plane. The large arrow and oblique lines in grey represent an example of the propagation direction and wave
fronts of seismic body waves, respectively. The two-layer model includes Layers 0 and 1 for consideration.
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628 K. Yamazaki

Table 1. Notation employed for variables and parameters.

Notation Unit

�B Magnetic field due to the piezomagnetic effect T
�B|x−x ′ |<W , �B|x−x ′ |≥W See eq. (19) and associated text T
�E Electric field due to the piezomagnetic effect V m−1

�m Magnetic Hertz potential Tm2

γ �
i j 3-D fundamental solution of �m Tm2

��
ij 2-D fundamental solution of �m Tm2

�B
ij 2-D fundamental solution of B or �B T

�E
ij 2-D fundamental solution of E or �E Vm−1

σ Electrical conductivity S m–1

ω Frequency (of seismic waves and EM waves) s−1

M Initial magnetization Am−1

�M Piezomagnetization Am−1

g Integral variable in integral transforms m−1

un Quantity defined in eq. (29) m−1

U ||
n , U⊥

n , D||
n , D⊥

n Functions of g and z′ (none)
V Displacement vector m
x, y, z Location of observation points m
x′, y′, z′ Location of sources of the EM field m
μm

0 Magnetic permeability in a vacuum = 4π × 10−7 (none)
μe Rigidity Pa
β Stress sensitivity of the piezomagnetic effect Pa−1

H Curie point depth m
lx, ly, lz Wavenumbers in the x, y and z directions m−1

A Amplitude vector of seismic waves m
AR Amplitude of Rayleigh waves m

where σ represents electrical conductivity. The conductivity is assumed to be a scalar function of the depth (z). By substituting Ohm’s law,
eq. (4) is reduced to

∇ × �B(x, t) − μm
0 σ�E(x, t) + ε0μ

m
0

∂

∂t
�E(x, t) = μm

0 ∇ × �M(x, t).
(6)

The third term on the left-hand side of this equation represents the displacement current, which is traditionally ignored, yielding

∇ × �B(x, t) − μm
0 σ�E(x, t) = μm

0 ∇ × �M(x, t). (7)

For a given �M, eqs. (1)–(3) and (7) uniquely determine �E and �B.

2.1.2 Time-varying magnetization due to the piezomagnetic effect

Experimental and theoretical studies have shown that changes in magnetization due to the piezomagnetic effect are approximately proportional
to the product of the applied stress and the initial magnetization when the amplitude of applied stress is the same order of magnitude as
that in the Earth’s crust (e.g. Stacey 1964; Ohnaka & Kinoshita 1968; Nagata 1970b; Stacey & Johnston 1972; Zlotnicki et al. 1981). The
constitutive laws of the linear piezomagnetic effect are summarized as the following simple relation (Sasai 1991):

�M = 3

2
βTM, (8)

Ti j = τi j − 1

3
δi j (τxx + τyy + τzz),

where �M is the change in magnetization, M is the initial magnetization, T is the deviatoric stress tensor, τi j is a component of the stress
tensor, β is the stress sensitivity and δi j is Kronecker’s Delta. Using Hooke’s law in an elastic medium, the constitutive law (eq. 8) is rewritten
in the form

�Mi = βμe
∑

j=x,y,z

⎡
⎣−δi j

∑
k=x,y,z

∂Vk

∂xk
+ 3

2

(
∂Vi

∂x j
+ ∂Vj

∂xi

)⎤
⎦M j ,

(9)

where μe is rigidity, Vi is the i-component of the displacement field, and xx, xy and xz are the coordinates that describe the position.
Far-field seismic waves in the elastic half-space are considered as the origin of changes in magnetizations. Seismic waves in the far-field

region are expressed by the superpositions of plane waves. Plane waves that arise from a single seismic event propagate in the same direction.
In addition, it is now assumed that all the physical properties of the Earth are horizontally uniform. Therefore, the x- and y-axes can be chosen
in such a way that the y component of the wavenumber vector is zero, without any loss of generality. Displacement fields for the seismic plane
wave are thus expressed in the form of

V(x, z, t) = A exp[i(lx x + lz z)] exp(−iωt), (10)
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Piezomagnetic fields due to teleseismic waves 629

where A represents the amplitude vector, li (i = x, y, z) is the wavenumber in the respective direction and ω is the angular frequency.
Substituting this expression into the constitutive law of the piezomagnetic effect (eq. 9), we have

�Mi (x, z, t) = Ci exp(ilx x) exp(ilz z) exp(−iωt), (11)

with

Ci = iβμe
∑

j=x,y,z

⎡
⎣−δi j

∑
k=x,y,z

lk Ak + 3

2
(li A j + l j Ai )

⎤
⎦ M j .

The expression of a seismic wave with eq. (10) is valid only if the wave has a single wavenumber and frequency. A more general form is

V(x, z, t) =
∫ ∞

−∞
dω

∑
α

V(x, z, t ; ω)α, (12)

V(x, z, t ; ω)α = A(ω)α exp{i[l(ω)αx x + l(ω)αz z} exp(−iωt),

where α denotes the index for each plane wave. Any displacement fields that satisfy V(t = −∞) = V(t = +∞) are expressed in this
form. An expression of Rayleigh waves in the form of eq. (12) is given in Appendix A. An expression of time-varying piezomagnetization
corresponding to the expression of eq. (12) is given by

�M(x, z, t) =
∫ +∞

−∞
dω

∑
α

�M(x, z, t ; ω)α, (13)

�M(x, z, t ; ω)α = C(ω)α exp
[
il(ω)αx x

]
exp

[
il(ω)αz z

]
exp(−iωt),

C(ω)αi = +iβμe
∑

j=x,y,z

⎧⎨
⎩−δi j

∑
k=x,y,z

l(ω)αk A(ω)αk + 3

2

[
l(ω)αi A(ω)αj + l(ω)αj A(ω)αi

]⎫⎬⎭ M j .

Because of the linearity of the governing equations, the resultant piezomagnetic field is given in the form of

�B(x, z, t) =
∫ ∞

−∞
dω

∑
α

�B(x, z, t ; ω)α, (14)

where �B(t ; ω)α represents the piezomagnetic field arising from the time-varying magnetization �M(t ; ω)α defined in eq. (13).

2.2 Governing equations in the frequency domain

Because the sources of EM variations are expressed in the form of eq. (13), it is reasonable to solve the Maxwell equations in the frequency
domain. Now that only far-field terms of the displacement are considered, all physical quantities, including �M, �B and �E, satisfy the
condition of f (−∞) = f (+∞), where f represents a physical quantity as a function of time t. This condition assures the existence of the
Fourier transform of f concerning the time t, which is given by

f (ω) = 1

2π

∫ +∞

−∞
f (t) exp(+iωt) dt . (15)

This definition follows a sign convention, which is usually adopted in seismology (e.g. column 5.2 in Aki & Richards 2002). Below, the same
symbol is assigned to functions in the frequency and time domains, although distinguished by the variable: t indicates the function is defined
in the time domain, whereas ω indicates the function is defined in the frequency domain.

By taking the Fourier transforms of the Maxwell equations (eqs 1–4) and the constitutive law of the piezomagnetic effect (eq. 13),
governing equations in the frequency domain are obtained as follows:

∇ × �E(x, ω) − iω�B(x, ω) = 0, (16)

∇ × �B(x, ω) − μm
0 σ�E(x, ω) = μm

0 ∇ × �M(x, ω) (17)

and

�M(x, z, ω) =
∑

α

C(ω)α exp
[
il(ω)αx x

]
exp

[
il(ω)αz z

]
, (18)

where C(ω)α is a function of ω defined in eq. (13).

2.3 Approximating transient seismic waves by persistent waves

The procedure used to calculate exact values of �B(t) (and �E(t)) is as follows: first, determine V(ω) based on the entire time-series
of seismograms V(t), then calculate �B(ω) corresponding to each �M(ω) by means of eqs (16)–(18), and finally calculate the inverse
Fourier transform of �B(ω) to obtain �B(t). Because ground motions due to seismic waves are transient phenomena, the spectrum V(ω) has
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630 K. Yamazaki

Figure 2. Example of (a) a transient seismic wave and (b) its approximation by a persistent wave at a specific time (i.e. t = 0; t represents time). The waveform
of the persistent wave is the same throughout the range of −W ′ < x ′ < +W ′, and has a spatial periodicity of 2W ′. Changes in magnetization at a distance
greater than W make only a minor contribution to the magnetic field at the observation point, because of the rapid decay of the magnetic field with increasing
distance from the source. Consequently, if W < W ′, the piezomagnetic field calculated for a persistent wave provides a good approximation of the actual
seismic wave for a limited period.

significant values throughout a relatively wide range of ω. Therefore, determination of the exact values of �B(t) through the reverse Fourier
transforms of �B(ω) is laborious.

Fortunately, an approximate estimation of �B(t) can be made without such a laborious calculation, as follows: For an arbitrary distance
W , �B(t) at a location (x, y, z) is separated into two parts:

�B(t) = �B|x−x ′ |≤W (t) + �B|x−x ′ |>W (t), (19)

where �B|x−x ′ |≤W and �B|x−x ′ |>W represent magnetic fields arising from magnetizations at (x ′, y′, z′) with |x − x ′| ≤ W and |x − x ′| > W ,
respectively. The rapid decay of the magnetic field with increasing distance from the sources assures an inequality:

|(�B|x−x ′ |>W )x | ≤ μm
0

π
|�M|max H × W −1, (20)

where |�M|max represents the maximum intensity of magnetization and H is the depth of the Curie point. The relevant proof is given in
Appendix B. Seismic waves in a finite spatial range (i.e. −W ′ < x ′ < +W ′) are regarded as a ‘clipping’ of a persistent wave with a periodicity
W ′. Inequality (20) indicates that the piezomagnetic field calculated for a persistent elastic wave provides a good approximation of the
piezomagnetic field corresponding to the transient elastic wave, if the value of W is sufficiently large for �B|x−x ′ |>W to be ignored (Fig. 2).

In contrast to the case of transient waves, Fourier transforms of the persistent wave have significant values in a relatively narrow range
of ω. Note that the spectra of seismograms are usually calculated in this way. Therefore, only �B(ω) from around the dominant frequency
of seismic waves is required for estimating the piezomagnetic field, although this approach does not provide the exact time-series of EM
variations. The same conclusion is also valid for �E because variations in �E are closely associated with those in �B.

3 I N T E G R A L S O F T H E G OV E R N I N G E Q UAT I O N S

3.1 Fundamental solutions for magnetic Hertz vectors

The determination of EM fields arising from time-varying magnetic dipoles is more easily accomplished by introducing the magnetic Hertz
vector �m than by directly considering the EM field (e.g. Stratton 1941). The magnetic Hertz vector is defined as a potential, from which the
magnetic and electric fields are derived by

�B(x, ω) = ∇ × (∇ × �m(x, ω)), (21)

�E(x, ω) = +iω∇ × �m(x, ω). (22)

Equations for the magnetic and electric fields (eqs 16 and 17, respectively) are reduced to three independent equations for components of the
magnetic Hertz vector:(∇2 + iωμm

0 σ
)
�m

i (x, ω) = −μm
0 �Mi (x, ω), (i = x, y, z). (23)

To find the solution of eq. (23), the following equation is first considered:

(∇2 + iωμm
0 σ )γ �

i j (x, y, z, z′, ω) = −μm
0 σδi jδ(x)δ(y)δ(z − z′), (24)
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Piezomagnetic fields due to teleseismic waves 631

where δ(•) is Dirac’s Delta function. The function γi j represents the i-component of the magnetic Hertz potential arising from the magnetic
dipole moment in the j-direction located at (0, 0, z′). In this sense, γ �

i j is referred to as the point source solution. The solution of eq. (24) is
given in the form of Hankel integrals, as follows:

γ �
xx (x, y, z, z′, ω) = γ �

yy(x, y, z, z′, ω) = γ �
zz (x, y, z, z′, ω)

= −μm
0

4π

∫ +∞

0

[
δnn′

g

un′
exp(−un′ |z − z′|) + U ||

n (g, z′, ω) exp(+unz) + D||
n (g, z′, ω) exp(−unz)

]
× J0(gr ) dg,

(25)

γ �
zx (x, y, z, z′, ω) = −μm

0

4π

∂

∂x

∫ +∞

0

1

g

[
U⊥

n (g, z′, ω) exp(+unz) + D⊥
n (g, z′, ω) exp(−unz)

]
J0(gr ) dg, (26)

γ �
zy (x, y, z, z′, ω) = −μm

0

4π

∂

∂y

∫ +∞

0

1

g

[
U⊥

n (g, z′, ω) exp(+unz) + D⊥
n (g, z′, ω) exp(−un z)

]
J0(gr ) dg, (27)

and

γ �
yx = γ �

xy = γ �
xz = γ �

yz = 0, (28)

where r =
√

x2 + y2; n and n′ represent the layers to which z and z′ belong, respectively; un is a function of g and ω, defined by

un(g, ω) =
√

g2 − iωμm
0 σn ; (29)

and U ||
n , U⊥

n , D||
n and D⊥

n are functions of g, z′ and ω, which are determined by the boundary conditions of the EM field. Terms involving U ||
n

and U⊥
n represent variations propagating upward, and those involving D||

n and D⊥
n represent variations propagating downwards. Therefore,

U ||
n and U⊥

n in the bottom layer, and D||
n and D⊥

n in the top layer are equal to zero. The above solution is given by Stoyer (1977), although
the sign of ω in un is modified to follow the sign convention employed in this study (eq. 15). Once γ �

i j are determined, �m
i for an arbitrary

distribution of magnetization (�M) is calculated by

�m
i (x, y, z, ω) =

∑
j=x,y,z

∫ +∞

−∞
dx ′

∫ +∞

−∞
dy′

∫ H

0
dz′ · γ �

i j (x − x ′, y − y′, z, z′, ω)�M j (x
′, y′, z′, ω). (30)

For this reason, γ �
i j is also referred to as the fundamental solution of the Hertz vector in 3-D problems.

In the case that magnetization does not depend on the variable y′, the integral for y′ in eq. (30) is executed beforehand to yield

�m
i (x, z, ω) =

∑
j=x,y,z

∫ +∞

−∞
dx ′

∫ H

0
dz′ · ��

i j (x − x ′, z, z′, ω)�M j (x
′, z′, ω), (31)

where

��
i j (x, z, z′, ω) =

∫ +∞

−∞
γ �

i j (x, y − y′, z, z′, ω) dy′

= −
∫ +∞

−∞
γ �

i j (x, y, z, z′, ω) dy. (32)

Substituting eqs (25)–(28) into eq. (32), and using a formula for the Bessel function derived in Appendix C, the following expressions are
obtained:

��
xx (x, z, z′, ω) = ��

yy(x, z, z′, ω) = ��
zz(x, z, z′, ω)

= +μm
0

2π

∫ ∞

0

1

g

[
g

un
δnn′ exp(−un|z − z′|) + U ||

n (g, z′, ω) exp(+unz) + D||
n (g, z′, ω) exp(−unz)

]
cos(gx) dg, (33)

��
zx (x, z, z′, ω) = −μm

0

2π

∫ ∞

0

1

g

[
U⊥

n (g, z′, ω) exp(+unz) + D⊥
n (g, z′, ω) exp(−unz)

]
sin(gx) dg, (34)

and

��
yx = ��

xy = ��
zy = ��

xz = ��
yz = 0. (35)

The function ��
i j represents the magnetic Hertz potential arising from a unit line source expressed by δi jδ(x)δ(z − z′). For this reason, it

is referred to as the line source solution. It is also referred to as the fundamental solution of the Hertz vector in 2-D problems, because of
expression (35).

3.2 Fundamental solutions for electric and magnetic fields

2-D fundamental solutions of the magnetic field (�B
i j ) and the electric field (�E

i j ) are defined as vectors, in which the magnetic and electric
fields arising from magnetizations are, respectively, calculated as

�Bi (x, z, ω) =
∑

j=x,y,z

∫ +∞

−∞
dx ′

∫ H

0
dz′ · �B

i j (x − x ′, z, z′, ω)�M j (x
′, z′, ω), (36)
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and

�Ei (x, z, ω) =
∑

j=x,y,z

∫ +∞

−∞
dx ′

∫ H

0
dz′ · �E

i j (x − x ′, z, z′, ω)�M j (x
′, z′, ω). (37)

Explicit forms of �B
i j and �E

i j are obtained by substituting 2-D fundamental solutions of Hertz vectors (eqs 33–35) into the definition of Hertz
vectors (eqs 21 and 22). Solutions corresponding to j = x are given by

�B
xx (x, z, z′, ω) = −μm

0

2π

∫ ∞

0

[
un

(
un

g
U ||

n (g, z′, ω) + U⊥
n\(g, z′, ω)

)
exp(+unz) + un

(
un

g
D||

n (g, z′, ω) − D⊥
n (g, z′, ω)

)
exp(−unz)

+ δnn′
1

un

d2

dz2
exp(−un|z − z′|)

]
cos(gx) dg, (38)

�B
zx (x, z, z′, ω) = −μm

0

2π

∫ ∞

0

[
g

(
un

g
U ||

n (g, z′, ω) + U⊥
n (g, z′, ω)

)
exp(+unz) − g

(
un

g
D||

n (g, z′, ω) − D⊥
n (g, z′, ω)

)
exp(−un z)

+ δnn′
g

un

d

dz
exp(−un|z − z′|)

]
sin(gx) dg, (39)

and

�E
yx (x, z, z′, ω) = −iω

μm
0

2π

∫ ∞

0

[ (
un

g
U ||

n (g, z′, ω) + U⊥
n (g, z′, ω)

)
exp(+unz) −

(
un

g
D||

n (g, z′, ω) − D⊥
n (g, z′, ω)

)
exp(−un z)

+ δnn′
1

un

d

dz
exp(−un|z − z′|)

]
cos(gx) dg. (40)

Solutions corresponding to j = z are given by

�B
xz(x, z, z′, ω) = − μm

0

2π

∫ ∞

0

[
unU ||

n (g, z′, ω) exp(+unz) − un D||
n (g, z′, ω) exp(−unz) + δnn′

g

un

d

dz
exp(−un|z − z′|)

]
sin(gx) dg, (41)

�B
zz(x, z, z′, ω) = + μm

0

2π

∫ ∞

0

[
gU ||

n (g, z′, ω) exp(+un z) + gD||
n (g, z′, ω) exp(−unz) + δnn′

g2

un
exp(−un|z − z′|)

]
cos(gx) dg, (42)

and

�E
yz(x, z, z′, ω) = −iω

μm
0

2π

∫ ∞

0

[
U ||

n (g, z′, ω) exp(+unz) + D||
n (g, z′, ω) exp(−unz) + δnn′

g

un
exp(−un|z − z′|)

]
sin(gx) dg. (43)

Solutions for other sets of i and j which do not appear in the above expressions are zero, which leads to �By = 0 and �Ex = �Ez = 0. In
addition, the contribution of �My disappears because �B

iy and �E
iy (i = x, y, z) are equal to zero.

3.3 Example of a two-layer model

The simplest situation that approximates the actual Earth is a two-layer model, in which only the atmosphere (Layer 0) and the lithosphere
with uniform conductivity (Layer 1) are considered. The conductivity in Layer 0 is assumed to be zero, meaning u0 = g. It is also assumed
that magnetization occurs only within Layer 1. The explicit forms of U ||

0 , U⊥
0 , D||

1 and D⊥
1 are determined in such a way that they satisfy the

boundary conditions (see Appendix D), which are given by

U ||
0 (g, z′, ω) = 2g

g + u1
exp(−u1z′), (44)

U⊥
0 (g, z′, ω) = −2

g − u1

g + u1
exp(−u1z′), (45)

D||
1 (g, z′, ω) = g(g − u1)

u1(g + u1)
exp(−u1z′) (46)

and

D⊥
1 (g, z′, ω) = −2

g − u1

g + u1
exp(−u1z′). (47)

For practical purposes, it is enough to determine the field in Layer 0. Given that most geomagnetic data are acquired near the ground
surface, it is only necessary to obtain the expression for Layer 0 to estimate the EM field at these points. Because of the continuity of the field
components, solutions in Layer 0 provide a good approximation of the expected value of the EM field even if observations are conducted
slightly beneath the ground surface. In addition, it is reasonable to neglect the ionosphere for the sake of simplicity in the calculations. In this
problem, variations in magnetization are assumed to exist only beneath the ground (Layer 1), meaning that only negligible disturbance of the
EM field is expected at the height of the ionosphere.
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3.4 Convolutions of fundamental solutions and magnetizations

The ranges of the integrals in eqs (36) and (37) are −∞ ≤ x ′ ≤ ∞ and 0 ≤ z′ ≤ H , where H represents the Curie point depth, because
magnetizations exist only in this volume. To calculate the integral for x′, expression of Dirac’s Delta function is referred to (e.g. Arfken &
Weber 1995):

δ(lx − g) = 1

2π

∫ +∞

−∞
exp[i(lx − g)x ′] dx ′, (48)

which leads to the following two formulae:∫ +∞

−∞
cos[g(x − x ′)] exp(ilx x ′) dx ′ = πδ(lx − g) exp(ilx x) + πδ(lx + g) exp(−ilx x), (49)

and∫ +∞

−∞
sin[g(x − x ′)] exp(ilx x ′) dx ′ = −iπδ(lx − g) exp(ilx x) + iπδ(lx + g) exp(−ilx x). (50)

In addition, Dirac’s Delta function has the following fundamental property:∫ +∞

−∞
δ(k − g) f (g) dg = f (k), (51)

where f represents an arbitrary function. Combining eqs (49)–(51), the following two formulae are obtained:∫ +∞

−∞
dx ′

∫ +∞

0
dg f (g) cos[g(x − x ′)] exp(ilx x ′) = π f (lx ), (52)

and∫ +∞

−∞
dx ′

∫ +∞

0
dg f (g) sin[g(x − x ′)] exp(ilx x ′) = −iπ f (lx ). (53)

Because the spatial distribution of magnetization due to the piezomagnetic effect has the form of eq. (18), the integrals in eqs (36) and (37)
for variables x′ and g are completed using formulae (52) and (53). Then, the integral for z′ is elementary. Therefore, convolutions of eqs (36)
and (37) are obtained to yield a set of analytical expressions.

In the case of a two-layer model, U ||
n , U⊥

n , D||
n and D⊥

n (n = 0, 1) are given by eqs (44)–(47), respectively. The explicit forms of the
magnetic and electric fields due to the piezomagnetic effect are given by

�Bx (x, z, ω) = μm
0

(
− lx u1

lx + u1
Cx + i

l2
x

lx + u1
Cz

)
1 − exp[−(u1 − ilz)H ]

u1 − ilz
exp(ilx x) exp(+lx z), (54)

�Bz(x, z, ω) = μm
0

(
i

lx u1

lx + u1
Cx + l2

x

lx + u1
Cz

)
1 − exp[−(u1 − ilz)H ]

u1 − ilz
exp(ilx x) exp(+lx z), (55)

and

�Ey(x, z, ω) = iωμm
0

(
− u1

u0 + u1
Cx + i

lx

u1 + u0
Cz

)
1 − exp[−(u1 − ilz)H ]

u1 − ilz
exp(ilx x) exp(+lx z), (56)

with u1 = u1(g = lx ) = √
l2
x − iωμm

0 σ1 and Ci defined in eq. (11).
By considering the Taylor expansion of exponentials in eqs (54) and (55), the order estimation of �B is obtained as

|�Bi | ≈ μm
0

π
|m|max Hlx (i = x, z). (57)

Compared with inequality (20), an approximation,

�B ∼= �B|x−x ′ |≤W , (58)

is confirmed for W that satisfies W � l−1
x . Because the spatial lengths of sequences of seismic waves (i.e. W ′ in Fig. 2) are sufficiently

longer than the reciprocals of their wavenumber, it is possible to choose W such that W < W ′ and W � l−1
x . Therefore, the magnetic field

calculated for a persistent elastic wave provides a good approximation of the actual magnetic field that arises from a transient seismic wave.
A similar consideration is applied for the associated electric field.

4 N U M E R I C A L E X A M P L E S A N D D I S C U S S I O N

Using the obtained expressions of the EM field due to the piezomagnetic effect, the amplitudes of magnetic field variations are calculated
for various parameter values. According to an earlier report that variations in the magnetic field occur simultaneously with Rayleigh waves
(Taira et al. 2009), only Rayleigh waves are considered as the cause of changes in magnetization. The numerical evaluation is performed for a
two-layer model. The lower layer, representing the Earth’s lithosphere, is assumed to be a Poisson solid, for which the seismic velocities of P
waves, S waves and Rayleigh waves (vP , vS and vR , respectively) satisfy vS/vP = 0.5774 and vR/vS = 0.9194 (e.g. Sheriff & Geldart 1995).
The amplitude of the magnetic field (|�Bx |) is calculated for combinations of parameters: periods T of 10 ≤ T ≤ 100 s; conductivities of
σ1 =1, 10−2 and 10−4 S; and Curie point depths H = 5 and 15 km. Other parameters employed in the calculation are fixed to the values listed
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Table 2. Values of parameters adopted in the numerical test shown in Fig. 3.

β μe Mx Mz vP AR

2 × 10−9 Pa−1 35 × 10+9 Pa 5 A m–1 5 A m–1 1 × 10−2 m s–1 0.01 m

Figure 3. Amplitudes of the piezomagnetic field that accompany Rayleigh waves, plotted against the period of the wave (i.e. T = 2π/ω = 2π/(L RvR); L R :
wavenumber). Values are calculated using eq. (54) for Curie point depths of (a) 5 km and (b) 15 km. The observation height (z) is set to 0 m (at the ground
surface). Assumed parameters are listed in Table 2. In each panel, results for the cases of σ = 1, 10−2 and 10−4 S m–1 are shown by solid, dashed and dotted
lines, respectively.

in Table 2. Since the assumed intensities of the initial magnetizations (Mx = Mz = 5 A m–1) are rather large, the corresponding estimation
based on these parameters should be regarded as an upper limit. Note that eqs (54) and (55) yield �Bz = −i�Bx , so that consideration of only
�Bx is sufficient for the order estimation of variations in the magnetic field. Eqs (54) and (56) also yield the simple relation �Ey = −vR�Bx .
Therefore, the estimation of variations in the electric field (�Ey) is straightforward, although it is not shown below. The results of the
estimation of �Bx are plotted in Fig. 3.

An obvious feature of the results is the dependency of amplitude on period. The amplitude of the signal tends to decrease with increasing
period, although with some exceptions. This feature is easily interpreted, as follows. The amplitudes of variations in stress are proportional
to the wavenumber. Therefore, the intensity of magnetization due to the piezomagnetic effect is proportional to the wavenumber. Since
wavenumbers are inversely proportional to the period of oscillation, the amplitude of the piezomagnetic field is reasonably expected to
decrease with increasing wavenumber.

The dependency of �Bx on electrical conductivity σ1 is an important feature. Variations in the EM field are converted to electric
currents via EM induction. The energy of upward-propagating EM fields should be smaller in a conductive medium than in a resistive
medium. Therefore, conductive crust is generally expected to act as an attenuator of variations in the EM field. However, the data in Fig. 3
are inconsistent with this explanation. Indeed, the expected magnitude of variations in the magnetic field is relatively large when the crust
is conductive (σ1 = 1 S m–1). This contradiction is interpreted as follows. Induced currents that arise from the downward-propagating EM
fields generate secondary magnetic variations, half of which propagate upwards. In this sense, the conductive crust acts as a reflector. The
variations observed on the ground may be enhanced by the existence of the reflector. The magnitude of observed variations is determined by
summation of these two opposite effects. Similar results are expected to be obtained in a more complex model, including heterogeneities in
conductivities and initial magnetizations. One implication of the above consideration is that finite conductivity of the Earth should be included
in the model when attempting to make an accurate estimate of the piezomagnetic field that accompanies seismic waves.

The most important implication of the above results is the small magnitude of the expected piezomagnetic fields, regardless of the
dependency of the resultant piezomagnetic field on each variable. The dominant period (reciprocal of frequency) of Rayleigh waves is larger
than 20–30 s. For these frequencies, the magnitudes of variations due to the piezomagnetic effect are up to 0.1 nT, which is close to the limit
of detectability. The occurrence of more complex structures in the conductivity may enhance the signal. For example, when a conductor is
embedded in a deep part of the lithosphere, it reflects the variations, meaning that the observed signal is enhanced. However, such amplification
will not significantly alter the observability of variations in the magnetic field. In addition, the estimations are obtained for relatively high
values of magnetization (i.e. Mx = Mz = 5 A m–1). Most of the Earth’s crust has smaller magnetizations than this value, meaning that
the expected variations due to the piezomagnetic effect would be smaller than those estimated in the present examples. In summary, the
piezomagnetic effect is unlikely to be a major mechanism, which explains fluctuations in the magnetic field accompanying the propagation
of Rayleigh waves in far-field regions.
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For situations in which the piezomagnetic field appears with a detectable magnitude, the configuration is different from those assumed in
this study. Examples of such differences include heterogeneities in the initial magnetization of the crust and the inclusion of near-field terms
of the displacement field. Regarding heterogeneities in initial magnetization, earlier studies on the piezomagnetic field, based on elastostatics,
demonstrated that the piezomagnetic field is effectively enhanced near the boundaries of regions of intense magnetization (e.g. Oshiman
1990; Utsugi 1999; Yamazaki 2009). Such an enhancement effect is expected to be significant when considering the piezomagnetic field
corresponding to the propagation of seismic waves. In the case of inhomogeneous magnetization, the convolutions of fundamental solutions
are not represented in the forms of eqs (52) and (53). Consequently, they should be calculated numerically. The treatment of near-field terms
is more difficult, although important. When the near-field terms are considered, it is no longer valid to approximate the displacement fields
by persistent phenomenon with a periodicity (Fig. 2). Consequently, the present approach, which relies on the Fourier transform, cannot be
applied. A formulation is currently being developed that treats the near-field terms at the expense of ignoring the Earth’s conductivity (M.
Utsugi, private communication, 2010).

5 C O N C LU S I O N S

For the case in which the conductivity of the Earth has a layered structure and magnetization is uniform, the piezomagnetic fields generated
by a stress field caused by teleseismic waves is expressed by an analytically closed form. Numerical examples, employing the resultant
expressions, show that the finite conductivity of the Earth’s crust may enhance the piezomagnetic field observed on the ground surface.
However, the expected amplitude of the piezomagnetic field is relatively small. The amplitudes corresponding to Rayleigh waves are up to
0.1 nT, even in the case that magnetization of the ambient crust is as large as 5 A m–1. Therefore, piezomagnetic fields in the far-field of
seismic events are not expected to be observed, if the initial magnetization of the Earth’s crust is uniform.
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A P P E N D I X A : E X P L I C I T F O R M S O F R AY L E I G H WAV E S

For simplicity, a Rayleigh wave is considered with a single frequency, so that exp(−iωt) is omitted in the following expression. The
displacement fields of Rayleigh waves are given by the real parts of the following expressions (e.g. Lay & Wallace 1995):

Vx (x ′, z′) = i AR exp(i L R x ′)
[

exp(−vRηP L R z′) + 1

2

(
v2

R

v2
S

− 2

)
exp(−vRηS L R z′)

]
, (A1)

Vz(x
′, z′) = −AR exp(i L R x ′)

[
vRηP exp(−vRηP L R z′) + 1

2vRηS

(
v2

R

v2
S

− 2

)
exp(−vRηS L R z′)

]
, (A2)

where LR is the wavenumber of the Rayleigh wave;

ηP =
√

1

v2
R

− 1

v2
P

; (A3)

ηS =
√

1

v2
R

− 1

v2
S

; (A4)

AR is the amplitude of the Rayleigh wave; and vP , vS and vR represent the velocities of P waves, S waves and Rayleigh waves, respectively.
Eqs (A1) and (A2) are rewritten to the same form as eq. (12), by taking

V(x ′, z′, t) = AP exp
[
i
(
l P
x x ′ + l P

z z′)] exp(iωt) + AS exp
[
i
(
l S
x x ′ + l S

z z′)] exp(iωt), (A5)

where

AP = (i AR, 0, −vRηP AR), lP = (L R, 0, ivRηP L R), (A6)

and

AS =
(

1

2
i AR

(
v2

R

v2
S

− 2

)
, 0, −AR

1

2vRηS

(
v2

R

v2
S

− 2

))
, lS = (L R, 0, ivRηS L R). (A7)

A P P E N D I X B : P RO O F O F A N I N E Q UA L I T Y

This appendix provides a proof of inequality (20). For simplicity, the location of the observation point is fixed at (0, 0, 0). First, consider the case
of a resistive Earth (i.e. σ = 0) for which the x-component of the magnetic field �B arising from the magnetization �M = (�Mx , �My, �Mz)
is given by

(�B|x ′ |>W )x = −μm
0

4π

{∫ −W

−∞
dx ′ +

∫ +∞

+W
dx ′

} ∫ +∞

−∞
dy′

∫ H

0
dz′

[
x ′�Mx + y′�My + z′�Mz

(x ′2 + y′2 + z′2)3/2

]
. (B1)

When �M is a function of x′ and z′, and does not depend on y′, the integral for variable y′ is calculated to yield

(�B|x ′ |>W )x = μm
0

2π

∫ ∞

W
dx ′

∫ H

0
dz′

[
�Mx

x ′2 − z′2

(x ′2 + z′2)2
+ �Mz

2x ′z′

(x ′2 + z′2)2

]
. (B2)

The integrand is evaluated with the help of the Cauchy–Schwarz inequality:∣∣∣∣�Mx
x ′2 − z′2

(x ′2 + z′2)2
+ �Mz

2x ′z′

(x ′2 + z′2)2

∣∣∣∣ ≤ |�M| 1

x ′2 + z′2 . (B3)

Hence, the absolute value of (�B|x ′ |>W )x satisfies the inequality∣∣(�B|x ′ |>W )x

∣∣ <
μm

0

2π
|�M|max

{∫ −W

−∞
dx ′ +

∫ ∞

W
dx ′

} ∫ H

0
dz′ 1

x ′2 + z′2

<
μm

0

2π
|�M|max

{∫ −W

−∞
dx ′ +

∫ ∞

W
dx ′

} ∫ H

0
dz′ 1

x ′2 = μm
0

π
|�M|max H W −1, (B4)
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where |�M|max represents the maximum intensity of �M(x ′, z′) in the region of W ≤ x ′ < ∞ and 0 ≤ z′ ≤ H . This inequality is the same
as inequality (20). In the case of finite conductivity, the rate of decrease in increasing x is expected to be high because of attenuation of the
EM field. Therefore, inequality (B4) is also assured. In a conductive Earth (i.e. σ1 �= 0), the magnetic field is expressed in a different form to
(B1). However, the decay of a magnetic field with increasing distance x should be faster than that in a resistive Earth. Therefore, the inequality
(B4) is still satisfied.

A P P E N D I X C : A N I N T E G R A L O F T H E B E S S E L F U N C T I O N

We start from Neuman’s additional theorem (Watson 1995), which leads to

J0(g
√

x2 + y2) = J0(gx)J0(gy) + 2
∞∑

m=1

(−1)m J2m(gx)J2m(gy). (C1)

By integrating the above equation over the whole range of y, the following relation is obtained:∫ +∞

−∞
J0(g

√
x2 + y2) dy = 2

g

[
J0(gx) + 2

∞∑
m=1

(−1)m J2m(gx)

]
. (C2)

The Bessel functions appear in a Laurent series of its generating function:

exp

[
1

2

(
t − 1

t

)
gx

]
=

∞∑
n=−∞

tn Jn(gx). (C3)

Using the relation J−n(gx) = (−1)n Jn(gx), the above expression is rewritten as

exp

[
1

2

(
t − 1

t

)
gx

]
= J0(gx) +

∞∑
n=1

[tn + (−1)nt−n]Jn(gx). (C4)

Putting t = +i in the above equation, and comparing the real part of both sides, the following series expansion is obtained:

cos(gx) = J0(gx) + 2
∞∑

m=1

(−1)m J2m(gx). (C5)

A comparison between (C2) and (C5) yields∫ +∞

−∞
J (g

√
x2 + y2) dy = 2

g
cos gx . (C6)

A P P E N D I X D : D E T E R M I NAT I O N O F U||
n , U⊥

n , D||
n A N D D⊥

n B A S E D O N T H E B O U N DA RY
C O N D I T I O N S O F T H E E M F I E L D

The boundary conditions of an EM field are the continuity of the tangentials E and B. These conditions are applied to 2-D fundamental
solutions. The continuities of �B

xx , �E
yx , �B

xz and �E
yz (eqs 38, 40, 41 and 43, respectively) are imposed at the boundaries (z = zn), yielding

un

(
un

g
U ||

n + U⊥
n

)
exp(+unzn) + un

(
un

g
D||

n − D⊥
n

)
exp(−unzn) + δnn′

1

un

d2

dz2
exp(−un|zn − z′|)

= un+1

(
un+1

g
U ||

n+1 + U⊥
n+1

)
exp(+un+1zn) + un+1

(
un+1

g
D||

n+1 − D⊥
n+1

)
exp(−un+1zn+1)

+ δn+1,n′
1

un+1

d2

dz2
exp(−un+1|zn − z′|), (D1)

(
un

g
U ||

n + U⊥
n

)
exp(+unzn) −

(
un

g
D||

n − D⊥
n

)
exp(−unzn) + δnn′

1

un

d

dz
exp(−un|zn − z′|)

=
(

un+1

g
U ||

n+1 + U⊥
n+1

)
exp(+un+1zn) −

(
un+1

g
D||

n+1 − D⊥
n+1

)
exp(−un+1zn) + δn+1,n′

1

un+1

d

dz
exp(−un+1|zn − z′|), (D2)

unU ||
n exp(+unzn) − un D||

n exp(−unzn) + δnn′
g

un

d

dz
exp(−un|zn − z′|)

= un+1U ||
n+1 exp(+un+1zn) − un+1 D||

n+1 exp(−un+1zn) + δn+1,n′
g

un+1

d

dz
exp(−un+1|zn − z′|), (D3)

and

U ||
n exp(+unzn) + D||

n exp(−unzn) + δnn′
g

un
exp(−un|zn − z′|)

= U ||
n+1 exp(+un+1zn) + D||

n+1 exp(−un+1zn) + δn+1,n′
g

un+1
exp(−un+1|zn − z′|),

(D4)
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respectively. Arguments regarding U ||
n , U⊥

n , D||
n and D⊥

n are omitted for simplicity. Physical requirements impose an additional two constraints:

U ||
M = U⊥

M = 0, (D5)

and

D||
N = D⊥

N = 0, (D6)

where M and N represent the bottom and top layers, respectively. Eqs (D1)–(D6) determine U ||
n , U⊥

n , D||
n and D⊥

n for M ≤ n ≤ N . In the
particular case of a two-layer model, in which M = 0, N = 1, z0 = 0 and z′ < 0, these conditions are reduced to

g
(
U ||

0 + U⊥
0

) = u1

(
u1

g
D||

1 − D⊥
1

)
+ u1 exp(−u1z′), (D7)

(
U ||

0 + U⊥
0

) = −
(

u1

g
D||

1 − D⊥
1

)
+ exp(−u1z′), (D8)

gU ||
0 = −u1 D||

1 + g exp(+u1z′) (D9)

and

U ||
0 = D||

1 + g

u1
exp(+u1z′). (D10)

Eqs (D7)–(D10), combined with eqs (D5) and (D6), yield the results described in eqs (44)–(47).

C© 2010 The Authors, GJI, 184, 626–638

Geophysical Journal International C© 2010 RAS


