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S U M M A R Y
Temporal variations in the electromagnetic field that accompany earthquakes are generated by
various mechanisms, of which this study focuses on variations in the magnetic field arising
from motionally induced electric currents that accompany seismic waves at large distances
(several hundred kilometres) from the epicentre. A simple situation is considered in which
seismic waves are approximated by plane waves and the electrical conductivity of the Earth’s
crust has a stratified structure. Solutions of Maxwell’s equations corresponding to this sit-
uation have analytical expressions. Analysis of the solutions verifies that SH waves do not
generate variations in the EM field above the ground surface, thereby implying that Rayleigh
waves are dominant at a significant distance from earthquake epicentres. Numerical examples
demonstrate that the amplitudes of the variations in the magnetic field monotonically increase
with increasing conductivity, although attenuation because of the skin effect cannot be ig-
nored. The amplitudes of the generated magnetic field can be sensitive to the conductivity of
both the shallow and deep crust. Nevertheless, calculations assuming a simplified conductivity
structure provide an upper limit to the possible amplitudes of variations in the magnetic field
because of seismic waves. For example, the amplitudes of variations in the magnetic field
arising from a Rayleigh wave with displacement amplitude of 10 cm and a period of 30 s are
as large as 0.1 nT, close to the limit of detection under typical observation conditions. It is
also suggested that phase differences between seismic ground motions and variations in the
magnetic field are insignificantly influenced by details of conductivity structures, and they
occur within a rather narrow range of values determined by the direction orientation of the
ambient geomagnetic field. In the future, if a detection limit of 0.01 nT becomes available,
phase difference may be used to distinguish variations arising from the motional induction,
from variations arising from other mechanisms.
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1 I N T RO D U C T I O N

Temporal variations in the electromagnetic (EM) field associated
with seismic ground motions have been widely reported (e.g.
Eleman 1965; Karakelian et al. 2002; Matsushima et al. 2002;
Ujihara et al. 2004; Abdul Azeez et al. 2009; Honkura et al. 2009;
Kuriki et al. 2011). Such variations are expected to arise because
seismic waves can be converted to EM variations by numerous
mechanisms, including the motional induction in the Earth’s crust
that accompanies seismic waves (e.g. Matsushima et al. 2002). This
occurs because the Earth’s crust has finite electrical conductivity
and ground motions in the ambient geomagnetic field yield an elec-
tromotive force, resulting in motionally induced electric currents.
Theoretical and experimental studies predict that other mechanisms

also act to convert seismic ground motions or stress changes into
EM variations, including the electrokinetic effect (e.g. Ishido &
Mizutani 1981; Jouniaux et al. 1994; Pride 1994; Bordes et al.
2006, 2008), the piezoelectric effect (e.g. Bishop 1981; Ghomshei
& Templeton 1989; Huang 2002), the piezomagnetic effect (e.g.
Nagata 1970; Stacey & Johnston 1972; Zlotnicki et al. 1981) and
the ion-resonance effect (Honkura et al. 2009; Kuriki et al. 2011).
The results of these studies indicate that seismic waves are generally
accompanied by variations in the EM field.

Quantitative investigations are important because they can pro-
vide fundamental insight into the conversion of mechanical forces
into EM variations. If EM variations larger than the sum of the
contributions of known conversion mechanisms are observed at the
time of earthquakes, they should be interpreted as consequences of
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unknown conversion mechanisms in the Earth’s crust or of distur-
bances in the Earth’s external field.

In many previous studies, EM variations were estimated at sites
located close to seismic sources. Formulations and calculations for
this purpose have been developed corresponding to the electroki-
netic effect (e.g. Haartsen & Pride 1997; Garambois & Dietrich
2002; Gao & Hu 2010), the motional induction (e.g. Gershenzon
et al. 1993), the piezoelectric effect (Ogawa & Utada 2000a) and
the piezomagnetic effect (e.g. Okubo et al. 2011). It is reasonable
to focus on relatively small distances from epicentres because ob-
servations are usually obtained at ranges of less than several tens of
kilometres (e.g. Honkura et al. 2002, 2004, 2009; Karakelian et al.
2002; Matsushima et al. 2002; Ujihara et al. 2004; Kuriki et al.
2011; Okubo et al. 2011).

Several studies have reported observations of EM variations dur-
ing seismic events, both near the epicentre and at a distance of more
than several hundreds of kilometres (Eleman 1965; Abdul Azeez
et al. 2009; Taira et al. 2009). In principle, theoretical calculations
of EM phenomena near the epicentre are also valid at locations far
from the epicentre. Nevertheless, there are some advantages in con-
sidering only distant locations. For example, seismic waves can be
approximated there by plane waves, whereas they should be treated
as spherical waves at locations near the epicentre. An approximation
by plane waves enables analytical or semi-analytical expressions of
the EM variations arising from the piezoelectric effect (Ogawa &
Utada 2000b) and the piezomagnetic effect (Yamazaki 2011a,b).
Further studies are required to enable quantitative comparisons be-
tween observation and theory.

This paper considers EM variations arising from the motional
induction that accompanies seismic plane waves. The situation con-
sidered in this analysis is summarized in Fig. 1. The remainder of
this paper is organized as follows. In Section 2, the governing equa-
tions and assumptions are described for the problem of interest. In
Section 3, a set of analytical solutions to the problem is derived,

Figure 1. Configuration of the problem. The x-axis indicates the propaga-
tion direction of seismic waves in the horizontal plane; the z-axis is vertically
downwards; and the y-axis is chosen in such a way that xyz forms a right-
hand side orthogonal system. In this figure, σ represents conductivity, V
represents the ground velocity, Bamb represents the ambient geomagnetic
field, Ii represents the induced current density and k and ω represent the
wavenumber and the angular frequency of the seismic wave, respectively.

yielding the important finding that SH waves do not generate vari-
ations in the magnetic field. Numerical predictions of amplitudes
and phases of the generated variations in the magnetic field are
presented in Sections 4 and 5, respectively. Section 6 presents addi-
tional discussions on relevant topics. Finally, the main conclusions
are presented in Section 7.

2 G OV E R N I N G E Q UAT I O N S

This paper considers the conversion from seismic waves to EM
variations in the frequency domain. Results in the time domain
can be obtained by applying an inverse Fourier transform. Note,
however, only a narrow band centred on the dominant frequency of
seismic waves needs to be considered for estimating the amplitude
of variations in the magnetic field, unless we want to determine an
accurate time-series of EM variations (Yamazaki 2011a). Below,
a time dependency of exp(−iωt), where ω represents the angular
frequency, is assumed, following the convention in seismology (e.g.
Aki & Richards 2002). Temporal variations in electric and magnetic
fields (E and B, respectively) at the location x = (x, y, z) satisfy
the following Maxwell’s equations:

∇ · εE(x, ω) = ρ(x, ω), (1)

∇ · B(x, ω) = 0, (2)

∇ × 1

μ
B(x, ω) + iεωE(x, ω) = I(x, ω), (3)

and

∇ × E(x, ω) − iωB(x, ω) = 0, (4)

where ε and μ are the electric and magnetic permeabilities, respec-
tively; I represents the current density; and ρ is the electric charge
density. The current density is divided into two parts:

I(x, ω) = Ic(x, ω) + Ii(x, ω), (5)

where Ic is a conductive current obeying Ohm’s law, and Ii is the
induced current generated by ground motions. These terms are
expressed by

Ic(x, ω) = σ (x)E(x, ω) (6)

and

Ii(x, ω) = σ (x)V(x, ω) × Bamb, (7)

respectively, where V is the ground velocity and Bamb represents
the ambient geomagnetic field. This analysis considers time and
spatial scales up to several minutes and several hundred kilometres,
respectively. Although Bamb varies over these scales, the amplitudes
of these spatio-temporal variations are significantly smaller than
the spatio-temporal average. Therefore, spatio-temporal variations
in Bamb should cause only minor changes on the resultant EM vari-
ations. For this reason, in the following discussion Bamb is treated
as a constant over the area and period of interest.

The governing equations are reduced to simplified forms as fol-
lows. The electric permeability and magnetic permeability are fixed
to their values in a vacuum: ε0 and μ0, respectively. Phenomena
involving charge separations, such as the electrokinetic and piezo-
electric effects, are not considered; consequently, the charge density
in eq. (1) is set to zero. Only seismic waves that can be represented
by superpositions of plane waves propagating in the positive x di-
rection are considered. Therefore, particle motions of the ground
(i.e. V) are independent of y. In addition, it is assumed that electrical

C© 2012 The Author, GJI, 190, 1393–1403

Geophysical Journal International C© 2012 RAS

 at K
yoto U

niversity on A
pril 9, 2015

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


EM variations from seismic motional induction 1395

conductivity has a layered structure with N boundaries located at
z0 < · · · < zN−1 (Fig. 1). The conductivity in each layer is assumed
to be uniform, as follows:

σ (x) = σ (z) = σn, (zn−1 < z < zn, n = 0, · · · , N ) , (8)

where z−1 = −∞ and zN = +∞. Under these assumptions, the
induced current density Ii in each layer is independent of y, and
therefore E and B are independent of y.

With the above simplifications, the governing equations are re-
duced to

1

μ0
∇ × B(x, z, ω) − σ ′

nE(x, z, ω) = Ii(x, z, ω) (9)

and

∇ × E(x, z, ω) − iωB(x, z, ω) = 0, (10)

where

σ ′
n = σn − iωε0, (11)

together with the conditions of eqs (1) and (2) with ρ = 0. When
V and Bamb are known, Ii is determined by eq. (7). The object is to
solve eqs (9) and (10) for a given Ii to determine E and B.

Because phenomena are considered at a single frequency ω, it
is sufficient to calculate E and B arising from an induced current
distribution expressed by

Ii(x, z, ω) = Ii(kx , z, ω) exp(+ikx x), (12)

where kx denotes the horizontal wavenumber, satisfying kx = ω/vx

and vx is the propagation velocity of the seismic wave with re-
spect to the horizontal plane. Clearly, all field quantities depend
on exp(+ikx x) for this case. Consequently, the spatial derivative of
∂/∂x can be replaced by the factor ikx in the horizontal Fourier
wavenumber domain. Herein, the variables x, ω and kx, which
appear only as arguments of harmonic functions, are omitted for
simplicity.

3 S O LU T I O N S O F T H E E Q UAT I O N S

3.1 Explicit forms of solutions

Although we need to solve eqs (9) and (10) for a given Ii to de-
termine E and B, we can refer to a similar problem regarding the
piezomagnetic effect (Yamazaki 2011a). Using those solutions, we
can easily obtain the explicit forms of solutions of eqs (9) and (10),
as follows.

In layer n (i.e. zn−1 < z < zn), the z dependencies of B and E are
expressed as

Bx (z) = μ0σ
′
n

∫ +∞

−∞

[
− ∂

∂z
G y(z, z′)

]
Iy(z′)dz′, (13)

By(z) = μ0σ
′
n

∫ +∞

−∞

[
∂

∂z
Gx (z, z′)Ix (z′)

− ikx Gz(z, z′)Iz(z′)
]

dz′, (14)

Bz(z) = μ0σ
′
n

∫ +∞

−∞
ikx G y(z, z′)Iy(z′)dz′, (15)

Ex (z) =
∫ +∞

−∞
[(iωμ0σ

′
n − k2

x )Gx (z, z′)Ix (z′)

+ ikx
∂

∂z
Gz(z, z′)Iz(z

′)]dz′, (16)

Ey(z) =
∫ +∞

−∞
iωμ0σ

′
n G y(z, z′)Iy(z′)dz′, (17)

and

Ez(z) =
∫ +∞

−∞
[ikx

∂

∂z
Gx (z, z′)Ix (z′)

+
(

iωμ0σ
′
n + ∂2

∂z2

)
Gz(z, z′)Iz(z

′)]dz′, (18)

where I i (i = x, y or z) is each component of Ii, and Gi is the solution
of(

−k2
x + ∂2

∂z2
+ iωσ ′

n

)
Gi (z, z′) = − 1

σ ′
n

δ(z − z′), (19)

where δ(·) represents Dirac’s delta function. Note that eq. (19) is
equivalent to∫ +∞

−∞

(
−k2

x + ∂2

∂z2
+ iωσ ′(z′)

)
Gi (z, z′)Ii (z

′)dz′

= − 1

σ ′
n

Ii (z), (20)

for zn−1 < z < zn , 0 ≤ n < N ; hence, Gi can be interpreted as a
vector Green’s function for dipole sources aligned in the y direction.
We can easily confirm by direct substitution that eqs (13)–(18) with
the x dependency of exp(ikx x) satisfy eqs (9) and (10) for Gi

defined by eq. (20). In all layers (i.e. zn−1 < z < zn, 0 ≤ n ≤ N), the
solution of eq. (19) is expressed in the following form:

Gi (z, z′) = U (n)
i (z′) exp(+unz) + D(n)

i (z′) exp(−unz)

+ δn,m
1

2unσ ′
n

exp(−un

∣∣z − z′∣∣), (21)

where m represents the layer to which z’ belongs, δn,m is the
Kronecker’s delta, U (n)

i and D(n)
i are functions of z’ and ω, and

un = (k2
x + iωμ0σ

′
n)1/2. (22)

Because Gi should converge to a finite value at |z − z′| → ∞, a
condition of Re(un) > 0 should be imposed.

3.2 Constraint imposed by EM boundary conditions

The functions U (n)
i and D(n)

i are determined by the boundary con-
ditions of the EM fields. For the top and bottom half-spaces (i.e.
layers 0 and N), U (n)

i and D(n)
i should satisfy

U (N )
i (z′) = D(0)

i (z′) = 0, (23)

because terms involving U (n)
i and D(n)

i represent variations propagat-
ing upwards and downwards, respectively, and there are no sources
at positive or negative infinity. Conditions at other boundaries are
the continuity of Bx, By, Ex and Ey at each boundary.

To obtain the conditions of U (n)
i and D(n)

i , it is necessary to rewrite
the boundary conditions on Bx, By, Ex and Ey to conditions on Gx,
Gy and Gz. Because the boundary conditions must be satisfied for an
arbitrary distribution of Ii, we can choose simple conditions without
loss of generality. For example, consider the case of Iy = Iz = 0.
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The boundary conditions for By and Ex at z = zn (0 < n < N) then
impose the following conditions on Gx:

lim
h→+0

σ ′
n

∂

∂z
Gx (zn − h, z′) = lim

h→+0
σ ′

n+1

∂

∂z
Gx (zn + h, z′) (24)

and

lim
h→+0

(iωμ0σ
′
n − k2

x )Gx (z − h, z′)

= lim
h→+0

(iωμ0σ
′
n+1 − k2

x ) × Gx (z + h, z′). (25)

These conditions, together with condition (23), completely deter-
mine U (n)

x and D(n)
x for 0 ≤ n ≤ N because now we have 2(N +

1) linear equations in 2(N + 1) unknowns. Similarly, the case
of Ix = Iz = 0 yields the conditions of

lim
h→+0

σ ′
n

∂

∂z
G y(zn − h, z′) = lim

h→+0
σ ′

n+1

∂

∂z
G y(zn + h, z′) (26)

and

lim
h→+0

σ ′
n G y(zn − h, z′) = lim

h→+0
σ ′

n+1G y(zn + h, z′) (27)

imposed on Gy to determine U (n)
y and D(n)

y , and the case of Ix =
Iy = 0 yields the conditions

lim
h→+0

∂

∂z
Gz(zn − h, z′) = lim

h→+0

∂

∂z
Gz(zn+1 + h, z′), (28)

and

lim
h→+0

σ ′
n G y(zn − h, z′) = lim

h→+0
σ ′

n+1G y(zn+1 + h, z′), (29)

imposed on Gz to determine U (n)
z and D(n)

z .
In practical terms, it is important to investigate properties of

the EM field near the ground surface, z = z0, because EM data
are usually acquired at this level. The ground surface is in contact
with the air layer. The conductivity of the air is approximated as
zero. Because a condition of ε0ω � σn (n > 0) is satisfied for
the frequency of seismic waves, σ ′

0 � σ ′
n (n > 0) is also satisfied.

Therefore, the EM field in layer 0 is determined by approximating
σ ′

0 	 0. Because the expression of the magnetic field (eqs 13–15)
involves the factor σ ′

n , Bi in layer 0 becomes zero, unless any of Gi

or ∂Gi/∂z becomes infinite when σ ′
0 approaches zero.

Concerning Gx, the boundary conditions (eqs 24 and 25) consti-
tute a system of equations for U (n)

x and D(n)
x , regardless of whether σ ′

0

is finite or zero. The determinant of the matrix defining these equa-
tions is not zero; consequently, U (n)

x and D(n)
x are finite according

to Cramer’s formula. Therefore, σ ′
0Gx becomes zero when σ ′

0 = 0.
The same discussion applies to Gz: σ ′

0Gx is confirmed to be zero
when σ ′

0 = 0. In contrast, the boundary conditions involving Gy do
not yield σ ′

0G y = 0. When σ ′
0 = 0, the unknown U (0)

y disappears
from eqs (26) and (27); hence, U (0)

y is indeterminable. Nevertheless,
eqs (26) and (27) define a system of equations for σ ′

nU (n)
y and σ ′

n D(n)
y ,

producing a finite value of σ ′
0U (0)

y . Therefore, σ ′
0G y generally has

a finite value, even when σ ′
0 = 0. Examples of explicit forms of

σ ′
nU (n)

y and σ ′
n D(n)

y corresponding to two- and three-layer cases (i.e.
N = 1 and 2, respectively) are presented in Appendix A.

On the basis of the above discussion, it is concluded that currents
induced by SH waves of seismic waves do not generate variations
in the magnetic field, for the following reason. When σ ′

0 is approx-
imated by zero, σ ′

0Gx and σ ′
0Gz are negligible. Because Gx is an

exponential function of z, σ ′
0∂Gx/∂z is also negligible. Therefore,

By is also negligible (eq. 14). The expressions of Bx and Bz do not
include terms involving Ix or Iz (eqs 13 and 15). Because Ii is the
vector product of V and Bamb, ground motions in the y direction do

not contribute to Iy, meaning B is independent of such ground mo-
tions. In the coordinate system employed here, seismic SH waves
cause ground motions only in the y direction. Therefore, SH waves
(including Love waves) do not generate variations in the magnetic
field.

Taking into account the above discussion, the procedure em-
ployed to estimate variations in the EM field because of electric
currents induced by seismic waves is summarized as follows. In the
frequency domain of time, the velocity fields of the seismic plane
waves are expressed in the form

V(x ′, z′) = exp(ikx x ′)V(z′). (30)

Only the y component of the induced currents contributes to varia-
tions in the magnetic field near the ground surface. The y component
of the induced current Iy is given by

Iy(z′) = σ (z′)
[
Vz(z

′)Bamb
x − Vx (z′)Bamb

z

]
. (31)

For an assumed 1-D structure of conductivity, the functions U (n)
y

and D(n)
y (n = 0, · · · , N ) in eq. (21) are determined to satisfy

eqs (26) and (27). The EM field (Bx, Bz and Ey) is determined by
completing the integrals of eqs (13), (15) and (17). Examples of
derived expressions of the EM field are presented in Appendix B.

4 A M P L I T U D E S O F VA R I AT I O N S
I N T H E M A G N E T I C F I E L D

To estimate variations in the EM field because of electric currents
induced by seismic waves, the calculation must consider the struc-
ture of electrical conductivity beneath the site of interest. Conduc-
tivity structures are determined from EM soundings. However, it
is frequently laborious to accurately determine conductivity in the
deep crust, particularly if the upper crust is relatively conductive.
It is therefore important to explore how uncertainty regarding con-
ductivity affects calculated variations in the EM field. It is also
important to identify quantities that do not depend on details of
conductivity structure, if such quantities exist.

Below, numerical examples are presented of the amplitudes of
variations in the magnetic field (|Bi|; i = x or z) arising from ground
motions produced by Rayleigh waves. Because surface waves are
dominant at a significant distance from the epicentre, and because
Love waves do not generate variations in the magnetic field (as
verified above), it is reasonable to focus on Rayleigh waves. Each
component of ground motions corresponding to Rayleigh waves is
expressed as

Vx (x ′, z′) = −ωAR exp(ikx x ′)

×
[
exp

(−vRηP kx z′) + 1

2

(
v2

R

v2
S

− 2

)
exp(−vRηSkx z′)

]
,

(32)

Vz(x ′, z′) = +iωAR exp(ikx x ′)

×
[
vRηP exp(−vRηP kx z′)

+ 1

2vRηS

(
v2

R

v2
S

− 2

)
exp(−vRηSkx z′)

]
, (33)

and V y(x’,z’) = 0, where AR and kx = ω/vR = 2π/(vR T ) represent
the amplitude in displacement and the wavenumber, respectively; T
is the period; vP, vS and vR represent the velocities of the P, S and
Rayleigh waves, respectively; and ηP and ηS represent (v−2

R −v−2
P )1/2

C© 2012 The Author, GJI, 190, 1393–1403
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EM variations from seismic motional induction 1397

Table 1. Values of parameters adopted in numerical tests.

Parameter Value

x component of the ambient geomagnetic field (Bamb
x ) 35 000 nT

z component of the ambient geomagnetic field (Bamb
z ) 35 000 nT

P-wave velocity (vP) 6.0 km s–1

Amplitude of displacement of the Rayleigh wave (AR) 0.01 m
Geomagnetic observation altitude (z) 0 m

Figure 2. Amplitudes of variations in the magnetic field (|Bx |) because of
Rayleigh waves, plotted against conductivity of the lower half-space (σ1).
Solid, broken and dotted curves in black represent the results for frequencies
(T = 2π/ω) of 10, 30 and 100 s, respectively. The grey line represents the
amplitudes estimated by the Biot–Savart law, which is equivalent to ignoring
conductive currents. Note that the magnitudes of variations in the magnetic
field are invariant to the frequency; therefore, there is only one line in grey.

and (v−2
R − v−2

S )1/2, respectively (e.g. Lay & Wallace 1995). Herein,
a Poisson solid is assumed, for which vR/vP and vS/vP take values
of 0.531 and 0.577, respectively.

Table 1 lists the parameters employed in the following exam-
ples. Amplitudes of displacement, velocity and acceleration of the
Rayleigh wave are given by AR, ωAR and ω2 AR , respectively. The
results are normalized to AR = 1 cm. Because results are simply
proportional to AR, the results for other values of AR are obtained
by multiplying by an appropriate factor.

First, consider a two-layer model comprising an upper half-space
of resistive air (σ = σ0 = 0) and a lower half-space of crust with
uniform conductivity (σ = σ1). In two- and three-layer models,
|Bx| = |Bz| is satisfied in the upper half-space (see APPENDIX B);
therefore, it is sufficient to consider only |Bx|. Fig. 2 shows examples
of the estimated |Bx|.

A striking feature is a monotonic increase in |Bx| with increasing
conductivity for a given period of seismic waves (T = 2π/ω). Note
that this result is not trivial. The intensity of the source currents
(Ii in eq. 7) is proportional to the conductivity of the crust (σ1).
Consequently, it may seem logical that high conductivity would
result in large EM variations. However, high conductivity also acts to
attenuate EM variations propagating from lower points of the crust,
because of the skin effect. In fact, |Bx| is not strictly proportional
to the crust’s conductivity (σ1). For example, see the case of T =
30 s (dashed lines in Fig. 2) and compare with |Bx|s corresponding

to σ1 = 1 and 0.01 S m–1. The expected |Bx| corresponding to the
former case is only three times larger than that in the latter case,
despite the large difference in conductivity (by a factor of 100). In all
cases of T = 10, 30 and 100 s, |Bx| for high conductivity is strongly
suppressed to certain upper limits according to the frequencies of
the corresponding seismic waves. We can rigorously confirm |Bx|
has an asymptotic limit as σ 1 approaches infinity, and the asymptotic
limit is proportional to T−1 (see Appendix B3). Nevertheless, |Bx|
shows a monotonic increase as a function of σ 1 over the range of
conductivities considered here.

The results obtained for the two-layer model indicate that we
cannot calculate variations in the magnetic field arising from the
motional induction in the framework of magnetostatics, although
some earlier studies (e.g. Taira et al. 2009) have attempted to
do so. By ignoring conductive currents, Maxwell’s equations re-
duce to the simpler Biot–Savart law. However, Fig. 2 clearly shows
such a simplification is not valid for large σ1. Calculation by the
Biot–Savart law provides a good approximation only when conduc-
tivity is low. In the case of T = 30 s, for example, |Bx| values at σ1 =
0.1 S m–1 calculated by the Biot–Savart law are about five times
larger than the correct value. Consequently, it is concluded that
Maxwell’s equations are necessary for accurate estimations of |Bx|.

Next, consider a three-layer model comprising of an upper half-
space of resistive air (σ = 0), a middle layer of upper crust (σ =
σ 1), and a lower half-space of deep crust (σ = σ 2). Because the en-
ergy of Rayleigh waves is concentrated near the Earth’s surface and
decays exponentially with increasing depth, the effect of induced
currents should also decay with increasing depth in generating vari-
ations in the EM field at the ground surface. Therefore, it is rea-
sonable to test whether the amplitudes of variations in the magnetic
field are approximately independent of conductivity in the deep
crust.

Numerical examples show however that conductivity in the deep
crust may have a strong effect on the generated |Bx|. For example,
consider the case of T = 30 s and z1 = 5 km (Fig. 3a). Com-
pared with the three-layer model with σ 2 = 0.01 S m–1, the two-
layer model predicts a considerably small value of |Bx| when σ 1 <

0.01 S m–1, and a somewhat large value when σ 1 > 0.01 S m–1,
except for extremely large σ 1. The same trends are seen for other
values of σ2 and other depths of the boundary (Fig. 3b). These ex-
amples show that incorrect values of conductivity for the deep crust
can lead to incorrect estimations of the induced variations in the
EM field. The same conclusions are derived for seismic waves with
other periods (T = 10 and 100 s), although numerical examples are
not shown here.

Nevertheless, the two-layer model provides an upper limit to
possible amplitudes of variations in the magnetic field generated
by induced currents. The results in Fig. 3 suggest that |Bx| values
arising from the three-layer model are generally smaller than those
predicted by the two-layer model assuming a conductivity of the
crust to be the maximum of σ 1 and σ 2. Given that |Bx| is approx-
imately a monotonically increasing function of σ 1 and σ 2, it is
anticipated that this result would hold for N-layered (where N ≥ 2)
cases. A two-layer model, assuming the conductivity of the crust to
be the maximum of σ n (0 < n < N) provides the upper limit of the
possible values of |Bx|.

Based on the above discussion, an upper limit of |Bi| is roughly
obtained using a two-layer model assuming a high conductivity (e.g.
0.1 S m–1). An important conclusion is that the expected amplitudes
of variations in the magnetic field are small. For example, the maxi-
mum |Bx| corresponding to T = 30 s and A = 1 cm is only 0.01 nT.
Even if the displacement amplitude of the Rayleigh wave is AR = 10
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Figure 3. Amplitudes of variations in x-component of the magnetic field
(|Bx|) because of Rayleigh waves, plotted against the conductivity of the
upper crust (σ1) for a conductivity boundary at a depth of (a) 5 km and (b)
10 km. Results are shown for different values of conductivity in the lower
half-space (σ2), and when assuming σ1 = σ2 (dotted curves).

cm, the expected |Bx| is only 0.1 nT. This value is close to the limit
of detection by conventional instruments, including fluxgate mag-
netometers under typical observation conditions (e.g. Turner et al.
2007). If variations in the magnetic field with notable amplitudes
(>0.1 nT) are observed, they are not interpreted to be arisen from
the motional induction.

Future advances in data processing techniques may enable the
detection of variations in the magnetic field induced by seismic
waves with an accuracy of 0.01 nT. This possibility provides the
motivation to obtain more precise estimates of |Bi| to establish
theoretical predictions for comparison to future observations. If
the observed |Bi| is much smaller than the calculated upper limit,
and if other possibilities (e.g. the electrokinetic effect and external
disturbances) can be excluded, then it is tentatively concluded the

existence of resistive layers beneath conductive layers in the upper
crust.

5 P H A S E S O F VA R I AT I O N S I N
T H E M A G N E T I C F I E L D

It is useful to investigate the characteristics of the phase of magnetic
field variations arising from motional induction, because this may
help to distinguish signals arising from motional induction from
those resulting from other mechanisms.

An important feature of the magnetic field variations arising from
the motional induction is the difference in the phases of Bx and Bz ,
which is apparent from eqs (13) and (15), respectively. Expression
(13) is obtained by replacing ∂/∂z in expression (15) with −ik.
The operator ∂/∂z acts on the function Gi expressed by eq. (21).
Now consider the case in which the observation point z is located
in the air layer. In this layer (i.e. n = 0), the second and third terms
in eq. (21) become zero, and un = |k|. Given that the Rayleigh
waves propagate in the positive x direction, we have un = k. In this
case, the operator ∂/∂z acting on Gi is equivalent to multiplying
k. Consequently, it is concluded that Bz is obtained by multiplying
Bx by −i. In other words, the phase of Bz precedes that of Bx

by 90◦.
The difference between the phases of Bx and ground mo-

tions cannot be analytically derived; thus, numerical simulations
are required. A three-layer model is assumed with the same
parameters as in the previous section. Fig. 4 shows two sets
of results corresponding to layers boundaries (z1) of different
depths.

If we focus only on conductivity values for which high amplitudes
of |Bx| are expected (>0.01 nT), we find a narrow range of phase
difference (30◦–80◦). A similar feature is observed for other values
of T and vR, although numerical examples are not shown here.

The range of phase differences is roughly interpreted as follows.
Directions of particle motions of Rayleigh waves depend on depth
(e.g. see fig. 5.11 of Aki & Richards 2002). While particle motion
at the ground surface is anticlockwise, particle motion at a deeper
level is clockwise. Consequently, the phases of induced currents
Iy at deeper levels should be different from those at the ground
surface. Because B is generated from the sum of contributions from
each depth, it is natural that the range of phase difference between
V x and Bx would be large. However, when the conductivity is high,
the contributions from deeper levels are strongly attenuated. In the
case that contributions from deeper levels in the crust are strongly
attenuated, the phase of Bx is determined mainly by the phase of Iy at
shallower levels. As shown in the previous section, high conductivity
is necessary to generate Bx with a high amplitude. Consequently,
the phases of Bx with high amplitude are determined mainly by the
phase of Iy at shallow levels in the crust. This explains why the
phase difference falls within a relatively narrow range when |Bx| is
large.

The quantitative aspects of the results shown in Fig. 4 should be
modified when the direction of Bamb changes. The x direction is that
of Rayleigh wave propagation. Phase differences depend on the as-
sumed geometry of wave propagation and the ambient geomagnetic
field. However, as long as the conductivity has a layered structure,
qualitative aspects of the above discussion remain valid even if the
geometry is changed.

The phase difference between Bx and V x is used to distinguish
magnetic variations generated by motional induction from incor-
rectly recorded variations because of sensor vibrations, if precise
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Figure 4. Phase differences between V x and Bx (i.e. phase of V x minus phase
of Bx) for two different depths of conductivity boundary. Grey shading shows
the amplitude of Bx. (a) The case of z1 = 5 km. (b) The case of z1 = 10 km.

ground motions are available at the site of the magnetometer. A
rough prediction of the phase difference between Bx and Vx can be
obtained by a simplified calculation assuming a two-layer model.
If the observed phase differences are inconsistent with the predic-
tions derived from the two-layer model, variations in the magnetic
field are judged not to have arisen from the motional induction that
accompanies Rayleigh waves.

6 D I S C U S S I O N

6.1 Comparison with other mechanisms

Among several candidate mechanisms that convert seismic ground
motions to EM variations, this paper has considered only motional
induction up to this point. However, if this mechanism proves to be
insignificant compared with other mechanisms, theoretical calcula-
tions considering motional induction would be largely meaningless
in terms of comparisons with observations. Therefore, it is impor-
tant to compare the amplitudes of variations in the magnetic field
arising from motional induction, with the amplitudes arising from
other mechanisms.

In fluid-saturated porous media, the most important mechanism
that converts seismic waves to EM variations is generally consid-
ered to be the electrokinetic effect (e.g. Gao & Hu 2010, and refer-
ences therein). Although the intensity of the current induced by the
electrokinetic effect is strongly dependent on parameters including
permeabilities of materials (e.g. Jouniaux et al. 1994; Jouniaux &
Pozzi 1995), previous numerical evaluations have demonstrated that
variations in the magnetic field caused by the electrokinetic effect
may be much larger than those generated by the motional induction
(e.g. Gershenzon & Bambakidis 2001).

However, it is important to consider the differences in this study
(surface waves are dominant) and in previous studies (body waves
are dominant). An important difference between body waves and
surface waves is that the dominant frequencies of body waves are
much higher. Consequently, EM variations generated by the mo-
tional induction that accompanies body waves are strongly atten-
uated because of the skin effect. EM variations generated by the
electrokinetic effect are also strongly attenuated in the case of body
waves. However, the electrokinetic effect is significant only in a
rather thin (i.e. up to several metres) layer near the ground surface.
Consequently, the attenuation of EM variations is rather week for
signals of electrokinetic origin. This explains why the electrokinetic
effect is more important than the motional induction in generating
EM variations associated with body waves. In the case of surface
waves, the motional induction is not necessarily insignificant com-
pared with the electrokinetic effect.

It is also important to note that the electrokinetic effect can con-
vert SH seismic waves into variations in the EM field (Garambois
& Dietrich 2001), even if the seismic waves are assumed to be plane
waves. Indeed, in the assumed situation (i.e. plane seismic waves in
the Earth with a layered structure), only the y components of ground
motions are converted to EM variations by the electrokinetic effect.
This prediction can be confirmed as follows. In Section 3, it is shown
that only the y components of electric currents (i.e. Iy) contribute
to EM variations on the ground. For the motional induction, Iy is
induced only by the x or z components of ground motions; thus,
only P and SV waves contribute to the generation of EM variations.
In contrast, for the electrokinetic effect, Iy is induced only by the y
components of ground motions; thus, in that case, only SH waves
can contribute to the generation of EM variations.

The piezomagnetic effect (i.e. changes in magnetization under the
application of mechanical stress) is also a possible mechanism that
converts mechanical forces into EM variations. Yamazaki (2011a)
derived a set of analytical expressions of the EM variations gener-
ated by the piezomagnetic effect, corresponding to the same seis-
mic situation as in this study (i.e. plane waves propagating within
a layered conductivity structure). The amplitude of the piezomag-
netic signal is estimated to be approximately 0.03 nT (see fig. 3 in
Yamazaki 2011a). However, this estimation was obtained by as-
suming extremely large magnetizations of the crust (∼ 7.0 A m–1).
For typical values of magnetization (i.e. <1.0 A m–1), piezomag-
netic signals are much smaller than those generated by the mo-
tional induction in conductive crust. The piezomagnetic effect may
be dominant when the observation site is located near a strong
(∼10 A m–1) magnetization boundary (Yamazaki 2011b), but such
strong boundaries (e.g. Nishida et al. 2004) are an extreme case.

6.2 Future perspectives

When we attempt to compare actual and theoretical variations in
the magnetic field, it is necessary to consider the possibility that
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variations in vector magnetic field data are caused by sen-
sor vibrations. To assess whether known theories explain ob-
servations, based on a comparison between data and theoreti-
cal predictions, it is necessary to exclude the possibility of sen-
sor vibrations or to establish a methodology of correcting such
vibrations.

A practical option is to examine seismograms. If a precise seis-
mogram is available, it would be possible to identify and thereby
remove distortion of the geomagnetic data arising from vibrations of
the vector magnetometer. For this purpose, the seismometer should
be installed at the same site as the corresponding magnetometer.
Because seismic ground motions are highly site dependent, seis-
mograms at a remote station may provide erroneous predictions
of ground motions at the location of the magnetometer. Given that
seismometers and magnetometers are rarely installed at the same lo-
cation, it would be necessary to set up suitable observation stations
if we are to adopt this strategy.

Another approach that would enable a comparison between
data and theory would be to focus on variations in the mag-
netic field before the arrival of seismic waves. When a pulse of
seismic waves approaches a site, EM variations converted from
the waves are expected to occur before their arrival (Gershenzon
et al. 1994). Geomagnetic time-series for the period before the
arrival of seismic waves are not distorted by the seismic ground
motions; therefore, vector geomagnetic data can be compared with
theory without considering the possibility of sensor vibrations. The
main challenge in employing this strategy is the small magnitude of
the expected signals. Because magnetic variations that occur before
seismic waves should be much smaller than those simultaneous with
seismic waves, this approach requires further advances in sensor and
data-processing technologies.

7 C O N C LU S I O N S

For situations in which the conductivity of the Earth’s crust has a
layered structure and seismic waves are expressed as plane waves,
analytical expressions can be developed for variations in the EM
field arising from the motional induction that accompanies seis-
mic waves. In this situation, ground motions corresponding to SH
waves, including Love waves, do not generate variations in the EM
field above the ground surface. The amplitudes of the generated
variations in the magnetic field show a monotonic increase with
increasing conductivity. Attenuation because of the skin effect of
the conductive crust should be incorporated into the estimation;
otherwise, the amplitudes of variations in the magnetic field will be
significantly overestimated. The amplitude of the generated mag-
netic field may be sensitive to conductivity in both the shallow and
deep crust, thereby introducing errors into the calculation. Never-
theless, calculations assuming a simplified structure of conductivity
provide an upper limit to the possible variations in the magnetic field
because of seismic waves. For example, the amplitudes of variations
in the magnetic field arising from a Rayleigh wave with a displace
amplitude of 10 cm and a period of 30 s are estimated to be up to
0.1 nT, which is close to the limit of detection by conventional instru-
ments, including fluxgate magnetometers under typical observation
conditions. It is also suggested that phase differences between seis-
mic ground motions and variations in the magnetic field are not
influenced by detailed conductivity structures, and that they occur
within a rather narrow range of values determined by the orienta-
tion of the ambient geomagnetic field. This property may be used
to distinguish variations arising from the motional induction, from

other origins when data with an accuracy of 0.01 nT are available
in the future.
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A P P E N D I X A : D E T E R M I NAT I O N O F
U(n)

y A N D D(n)
y

When the source current exists in layer m (i.e. zm−1 < z′ < zm),
the boundary conditions given by eqs (26) and (27) at zn (n =
0, . . . , N − 1) yield

un exp(+unzn)σ ′
nU (n)

y (z′) − un exp(−unzn)σ ′
n D(n)

y (z′)

−un+1 exp(+un+1zn)σ ′
n+1U (n+1)

y (z′) + un+1 exp(−un+1zn)σ ′
n+1

×D(n+1)
y (z′) = δn,m

1

2
exp(−um zn) exp(+um z′)

+ δn+1,m
1

2
exp(+um zn) exp(−um z′), (A1)

and

exp(+un zn)σ ′
nU (n)

y + exp(−un zn)σ ′
n D(n)

y

− exp(+un+1zn)σ ′
n+1U (n+1)

y − exp(−un+1zn)σ ′
n+1 D(n+1)

y

= −δn,m
1

2um
exp(−um zn) exp(+um z′)

+ δn+1,m
1

2um
exp(+um zn) exp(−um z′), (A2)

respectively. Expressions of σ ′
nU (n)

y (z′) and σ ′
n D(n)

y (z′) are obtained
by solving (A1) and (A2) for 0 ≤ n < N , together with the condition
of U (N )

y = D(0)
y = 0. Note that we do not need to consider the case

of m = 0 (i.e. z’ < 0), because no electric current exist above the
ground surface (z = 0). Examples for two- and three-layer models
(N = 1 and 2, respectively) are presented as follows.

A1 Two-layer model (N = 1)

σ ′
0U (0)

y (z′) = 1

u0 + u1
exp(−u1z′), (A3)

σ ′
0 D(1)

y (z′) = − u0 − u1

2u1(u0 + u1)
exp(−u1z′). (A4)

A2 Three-layer model (N = 2)

The functions σ ′
nU (n)

y (z′) and σ ′
n D(n)

y (z′) for zm−1 < z′ < zm (m =
1, 2; z2 = ∞) of the three-layer model are expressed in the forms of

σ ′
nU (n)

y (z′) = U+
n,m exp(+um z′) + U−

n,m exp(−um z′) (n = 0 or 1)

(A5)

and

σ ′
n D(n)

y (z′) = D+
n,m exp(+um z′) + D−

n,m exp(−um z′) (n = 1 or 2) ,

(A6)

where the coefficients U±
n,m and D±

n,m are independent of z’. Explicit
forms of U±

n,m and D±
n,m are presented below.
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n = 0:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

U+
0,1 = 1

P
(u1 − u2) exp(−u1z1)

U−
0,1 = 1

P
(u1 + u2) exp(+u1z1)

U+
0,2 = 0

U−
0,2 = 2u1

P
exp(+u2z1),

(A7)

n = 1:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U+
1,1 = 1

2u1 P
(u0 + u1)(u1 − u2) exp(−u1z1)

U−
1,1 = − 1

2u1 P
(u0 − u1)(u1 − u2) exp(−u1z1)

D+
1,1 = − 1

2u1 P
(u0 − u1)(u1 − u2) exp(−u1z1)

D−
1,1 = − 1

2u1 P
(u0 − u1)(u1 + u2) exp(+u1z1)

U+
1,2 = 0

U−
1,2 = 1

P
(u0 + u1) exp(+u2z1)

D+
1,2 = 0

D−
1,2 = − 1

P
(u0 − u1) exp(+u2z1),

(A8)

n = 2:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D+
2,1 = 1

P
(u0 + u1) exp(+u2z1)

D−
2,1 = − 1

P
(u0 − u1) exp(+u2z1)

D+
2,2 = 0

D−
2,2 = − 1

2u2 P
[(u0 + u1)(u1 − u2) exp(+u1z1)

+(u0 − u1) (u1 + u2) exp(−u1z1)] exp(+2u2z1).

(A9)

where

P = (u0 + u1)(u1 + u2) exp(+u1z1)

+ (u0 − u1)(u1 − u2) exp(−u1z1). (A10)

Note that σ ′
nU (n)

y and σ ′
n D(n)

y for N > 2 are also expressed in the
forms of (A5) and (A6), but explicit forms of U±

n,m and D±
n,m are

different in these cases.

A P P E N D I X B : E X P L I C I T F O R M S O F
T H E E L E C T RO M A G N E T I C F I E L D

We consider electric currents in the y direction whose intensities are
expressed by

Iy(z′) =
{

Aσm exp(−pz′) (zm−1 < z′ < zm, 0 ≤ m ≤ N ),

0 (z′ < 0),
(B1)

where A and p are constants, and zN are defined as being +∞.
Electric currents are expressed in these forms when the currents
are induced by motional induction and the particle velocity of the
ground is expressed in the form of

Vi (z
′) = Vi (0) exp

(−pz′) (i = x, z) (B2)

by taking

A = Vz(0)Bamb
x − Vx (0)Bamb

z . (B3)

Substituting (B1) and (B2) into eqs (13), (15) and (17), we obtain

Bx (z) = −μ0σ
′
0 A

N∑
m=1

∫ zm

zm−1

σm
∂

∂z
G y(z, z′) exp(−pz′) dz′, (B4)

Bz(z) = ikxμ0σ
′
0 A

N∑
m=1

∫ zm

zm−1

σm G y(z, z′) exp(−pz′) dz′, (B5)

and

Ey(z) = iωμ0σ
′
0 A

N∑
m=1

∫ zm

zm−1

σm G y(z, z′) exp(−pz′) dz′, (B6)

respectively. To obtain analytical expressions, these expressions are
further deformed by using eq. (18). For example, Bx and Bz are
deformed to

Bx (z) = −u0μ0 A exp(+u0z)

×
N∑

m=1

σm

∫ zm

zm−1

(
σ ′

0U 0
y (z′)

)
exp(−pz′)dz′, (B7)

Bz(z) = ikx Aμ0 exp(+u0z)
N∑

m=1

σm

∫ zm

zm−1

(
σ ′

0U (0)
y (z′)

)
exp(−pz′) dz′,

(B8)

for z < 0, and to

Bx (z) = −unμ0 A exp(+unz)

×
[

N∑
m=1

σm

∫ zm

zm−1

(σ ′
0U (n)

y (z′)) exp(−pz′) dz′
]

+ unμ0 A exp(−unz)

×
[

N∑
m=1

σm

∫ zm

zm−1

(σ ′
n D(n)

y (z′)) exp(−pz′) dz′
]

+ 1

2
μ0 Aσn exp(−unz)

∫ z

zn−1

exp(+unz′) exp(−pz′) dz′

− 1

2
μ0 Aσn exp(+unz)

∫ zn

z
exp(−unz′) exp(−pz′) dz′,

(B9)

Bz(z) = ikxμ0 A exp(+unz)

×
[

N∑
m=1

σm

∫ zm

zm−1

(σ ′
0U (n)

y (z′)) exp(−pz′) dz′
]

+ikxμ0 A exp(−unz)

×
[

N∑
m=1

σm

∫ zm

zm−1

(σ ′
n D(n)

y (z′)) exp(−pz′) dz′
]

+ ikx

2un
μ0 Aσn exp(−unz)

∫ z

zn−1

exp(+unz′) exp(−pz′) dz′

+ ikx

2un
μ0 Aσn exp(+unz)

∫ zn

z
exp(−unz′) exp(−pz′) dz′,

(B10)

for z > 0, respectively. Given that U (n)
y and D(n)

y are the sums of
exponentials of z’, all integrals are accomplished analytically.

The expression of Rayleigh waves (eqs 32 and 33) does not have
the form of (B2). However, it is separated into two terms, each of
which has the form of (B2) with p = vRηP kx or vRηSkx . For each
term, it is possible to apply the calculation procedure developed

C© 2012 The Author, GJI, 190, 1393–1403
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above. The total amount of variation in the EM field arising from
the Rayleigh waves is obtained as the sum of the contributions of
the two terms.

Below, explicit forms of Bx and Bz corresponding to two- and
three-layer models (i.e. N = 1 and 2, respectively) are presented.
Based on a comparison between eqs (B6) and (B7), the non-zero
component of the electric field (Ey) is obtained from Bz by replacing
kx by ω.

B1 Two-layer model (N = 1)

B1.1 In the upper half-space (n = 0, i.e. z < 0)

Bx (z) = −u0 Aμ0σ1
1

(u0 + u1)(u1 + p)
exp(+u0z), (B11)

Bz(z) = +ikx Aμ0σ1
1

(u0 + u1)(u1 + p)
exp(+u0z). (B12)

B1.2 In lower half-space (n = 0, i.e. z > 0)

Bx (z) = −1

2
Aμ0σ1

(
u0 − u1

u0 + u1

1

u1 + p
+ 1

u1 − p

)
exp(−u1z)

+1

2
Aμ0σ1

(
1

u1 − p
− 1

u1 + p

)
exp(−pz), (B13)

Bz(z) = − ikx

2u1
Aμ0σ1

(
u0 − u1

u0 + u1

1

u1 + p
+ 1

u1 − p

)
exp(−u1z)

+ ikx

2u1
Aμ0σ1

(
1

u1 − p
+ 1

u1 + p

)
exp(−pz). (B14)

B2 Three-layer model (N = 2)

A function J± is defined by

J ±(m; a, b) =
∫ b

a
exp(±um z′) exp(−pz′) dz′

= 1

±um − p
[exp(±umb) exp(−pb)

− exp(±uma) exp(−pa)] (B15)

for simplicity of expression. The coefficients U±
n,m and D±

n.m , which
are defined in Appendix A for the case of N = 2, are also used.

B2.1 In the upper half-space (n = 0, i.e. z < 0)

Bx (z) = −u0 Aμ0[σ1U+
0,1 J +(1; 0, z1) + σ1U−

0,1 J −(1; 0, z1)

+ σ2U−
0,2 J −(2; z1, ∞)] exp(+u0z), (B16)

Bz(z) = ikx Aμ0[σ1U+
0,1 J +(1; 0, z1) + σ1U−

0,1 J −(1; 0, z1)

+ σ2U−
0,2 J −(2; z1, ∞)] exp(+u0z). (B17)

B2.2 In the middle layer (n = 1, i.e. 0 < z < z1)

Bx (z) = −u1 Aμ0[σ1U+
1,1 J +(1; 0, z1) + σ1U−

1,1 J −(1; 0, z1)

+ σ2U−
1,2 J −(2; z1, ∞)] exp(+u1z)

+u1 Aμ0[σ1 D+
1,1 J + (1; 0, z1) + σ1 D−

1,1 J −(1; 0, z1)

+σ2 D−
1,2 J −(2; z1, ∞)] exp(−u1z) + 1

2
Aμ0σ1

× [J +(1; 0, z) exp(−u1z) − J −(1; z, z1) exp(+u1z)],
(B18)

Bz(z) = ikx Aμ0[σ1U+
1,1 J +(1; 0, z1) + σ1U−

1,1 J −(1; 0, z1)

+ σ2U−
1,2(2; z1, ∞)] exp(+u1z) + ikx Aμ0

× [σ1 D+
1,1 J +(1; 0, z1) + σ1 D−

1,1 J −(1; 0, z1)

+σ2 D−
1,2 J −(2; z1,∞)] exp(−u1z) + ikx

2u1
Aμ0σ1

× [J +(1; 0, z) exp(−u1z) + J −(1; z, z1) exp(+u1z)].
(B19)

B2.3 In the lower half-space (n = 2, i.e. z1 < z)

Bx (z) = +u2 Aμ0[σ1 D+
2,1 J +(1; 0, z1) + σ1 D−

2,1 J −(1; 0, z1)

+ σ2 D−
2,2 J −(2; z1, ∞)] exp(−u2z)

+ 1

2
Aμ0σ2[J +(2; z1, z) exp(−u2z)

− J −(2; z, ∞) exp(+u2z)], (B20)

Bz(z) = +ikx Aμ0[σ1 D+
2,1 J +(2; 0, z1)

+ σ1 D−
2,1 J −(2; 0, z1) + σ2 D−

2,2 J −(2; z1, ∞)]

× exp(−u2z) + ikx

2u2
Aμ0σ2[J +(2; z1, z) exp(−u2z)

+ J −(2; z, ∞) exp(+u2z)]. (B21)

B3 Limiting values of Bx of the two-layer model

First, we consider an asymptotic limit of Bx as σ1 → ∞ for fixed
values of other parameters. At this limit, |u1|  |u0| and |u1|  p;
therefore,

Bx (z) ≈ −μ0 Aσ1
u0

u2
1

exp(+u0z) = i A
kx

ω
exp(+u0z). (B22)

When the amplitude of displacement is fixed, the amplitude of ve-
locity (i.e. A) is proportional to ω. In addition, kx is also proportional
to ω. Therefore, Bx is proportional to ω.

Next, we consider the case of σ1 being very small. Now we
consider Rayleigh waves, and p is given by vRηP kx or vRηSkx

(eqs 33 and 34). The parameter vR is on the order of 103, and ηP

and ηS are on the order of 1. Therefore, a condition of kx � p is
always satisfied, meaning |u0| � p. In addition, we can approximate
u1 ≈ u0 when σ1 ≈ σ0 = 0. Taking these inequalities into account,
we obtain

Bx (0) ≈ −1

2
μ0 Ap−1σ1, (B23)

meaning that Bx is proportional to σ1 and is independent of ω at this
limit. The condition of u1 ≈ u0 is equivalent to ωμ0σ1 � k2

x ,
which is satisfied when σ1 � 10−2 S m–1 for the present
parameters.

C© 2012 The Author, GJI, 190, 1393–1403
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