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Abstract. This is the second of series of papers studyig moduli
spaces of a certain class of coherent sheaves, which we call stable

perverse coherent sheaves, on the blow-up p : X̂ → X of a projec-
tive surface X at a point 0.

The followings are main results of this paper:
a) We describe the wall-crossing between moduli spaces caused

by twisting of the line bundle O(C) associated with the ex-
ceptional divisor C.

b) We give the formula for virtual Hodge numbers of moduli
spaces of stable perverse coherent sheaves.

Moreover we also give proofs of the followings which we observed
in a special case in [25]:

c) The moduli space of stable perverse coherent sheaves is iso-
morphic to the usual moduli space of stable coherent sheaves
on the original surface if the first Chern class is orthogonal
to [C].

d) The moduli space becomes isomorphic to the usual moduli
space of stable coherent sheaves on the blow-up after twisting
by O(−mC) for sufficiently large m.

Therefore usual moduli spaces of stable sheaves on the blow-up
and the original surfaces are connected via wall-crossings.

Introduction

This paper is formally a sequel, but is independent of our previous
paper [25] except in §1.3. All the rest do not depend on results in [25],
though motivation to various definitions come from [25]. The result in
§1.3 is independent of other parts of the paper. See also the comment
below.

Let p : X̂ → X be the blow-up of a projective surface X at a point 0.
Let C be the exceptional divisor. Let OX(1) be an ample line bundle

on X. A stable perverse coherent sheaf E on X̂, with respect to OX(1),
is

(1) E is a coherent sheaf on X̂,
(2) Hom(E,OC(−1)) = 0,
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(3) Hom(OC , E) = 0,
(4) p∗E is µ-stable with respect to OX(1).

As was explained in [25], this definition came from two sources, a work
by Bridgeland [2] and one by King [9]. In [25] the latter was explained
in detail, and the first will be explained in this paper.

For a given integer m ∈ Z and homological data c ∈ H∗(X̂), we will

consider the moduli space M̂m(c) of coherent sheaves E with ch(E) = c
such that E(−mC) is stable perverse coherent. This family of moduli
spaces interpolates the moduli space MX(p∗(c)) of stable sheaves on

X and the moduli space M X̂(c) on X̂ as explained in the abstract.
We assume that (c1, p

∗OX(1)) and r are coprime, so the µ-stability
and µ-semistability are equivalent on X. Then we construct varieties

M̂m,m+1(c) connecting various M̂m(c) by the diagram

(∗) · · ·
M̂m(c)

ξm
((vv

M̂m+1(c)
ξm+1
))

ξ+m
vv xx

M̂m,m+1(c) M̂m+1,m+2(c)

· · ·

The morphism ξ+
m is a kind of ‘flip’ of ξm. (See Proposition 3.36 for

the precise statement.) This kind of the diagram appears often in
the variation of GIT quotients [27] and moduli spaces of sheaves (by
Thaddeus, Ellingsrud-Göttsche, Friedman-Qin and others) when we
move ample line bundles.

Furthermore, M̂m,m+1(c) will be constructed as the Brill-Noether
locus in the moduli space MX(p∗(c)) of stable sheaves on X, and the
fibers of ξm, ξ+

m over F ∈MX(p∗(c)) are Grassmann varieties consisting
of subspaces V ⊂ Hom(OC(−m−1), p∗F ) and U ⊂ Hom(p∗F,OC(−m−
1)) of dimV = (c1, [C]) + m, dimU = (c1, [C]) + m + r respectively.
The dimensions of spaces of homomorphisms depend on the sheaf F ,
so ξm, ξ+

m are stratified Grassmann bundles. This looks similar to the
picture observed in the context of quiver varieties [18] and exceptional
bundles on K3 [29, 14] (see also [22] for an exposition). But there is
a sharp distinction between the blowup case and these cases. In the
other cases, the spaces of homomorphisms (or extensions) appearing in
the fibers of ξm and ξ+

m are dual to each other, and dimU = dimV ,
so that two varieties are related by the stratified Mukai flop. However,
our spaces Hom(OC(−m− 1), p∗F ) and Hom(p∗F,OC(−m− 1)) have
different dimensions, and dimU 6= dimV . (See also Remark 3.30 for
another difference.)

Next we consider the formula for (virtual) Hodge numbers. This
study was not originally planned when we started this research project,
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and is motivated by recent works on wall-crossings of Donaldson-Thomas
invariants [3, 10]. It turns out to be a simple application of techniques
developed for the blow-up formula for virtual Hodge polynomials in
[24, Th. 3.13].

Since the formula becomes complicated in higher rank cases, we con-

sider the rank 1 case, where M̂0(c) (resp. M̂m(c)) is the Hilbert scheme

X [N ] (resp. X̂ [N ]) of N points in X (resp. X̂ for sufficiently large m de-
pending on N). Then we have the formula for the generating function
of Hodge polynomials

(∗∗)
∞∑
N=0

Px,y(M̂
m(c))qN =

(
∞∑
N=0

Px,y(X
[N ])qN

)(
m∏
d=1

1

1− (xy)dqd

)
,

where c = 1 − N pt. When m → ∞, the left hand side converges to∑∞
N=0 Px,y(X̂

[N ])qN as we have just remarked. Then the above formula
is compatible with the famous Göttsche formula1 of Betti numbers of
Hilbert schemes of points of surfaces [5]. Thus factors of the infinite
product of the Dedekind η-function appear one by one when we cross
walls.

Moreover, in this rank 1 case, M̂1(c) is isomorphic to the nested
Hilbert scheme of N and N + 1 points in X, where two subschemes
differ only at 0. The above formula coincides with Cheah’s formula [4,

Theorem 3.3.3(5)] in this special case. However our M̂m(c) for m ≥ 2
seems new even in rank 1 case. In particular, they are different from
incidence varieties used to define Heisenberg generators in [20, Chap. 8].

In higher rank cases, we have the formula relating virtual Hodge

polynomials of M̂m(c) and MX(p∗(c)). (See Corollary 5.7.) In the
limit m→∞, the formula converges to the blow-up formula for virtual
Hodge polynomials in [24, Th. 3.13]. (See also [24, Rem. 3.14] for earlier
works.)

Similar wall-crossing formulae for Donaldson-Thomas invariants in
3-dimensional situation of [2] will be discussed elsewhere ([17, 16]).

Finally let us comment on the quiver description in our first paper
[25]. The most of materials in this paper can be worked out in the lan-
guage of quiver representations. In fact, the constructions of moduli
spaces and the diagram (∗) are automatic in that setup, and the as-
sertion that the fibers are Grassmann varieties are easy to prove. The

only missing is the isomorphism M̂m(c) ∼= M̂0(ce−m[C]) induced by the
tensor product by O(−mC). We do not know how to construct the
isomorphism explicitly in terms of quivers. This, if it is possible, would

1We learned this naming from Atsushi Takahashi.
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be given by analog of reflection functors, developed by the first-named
author in the context of quiver varieties [21].

The paper is organized as follows. In §1 we study the category of per-

verse coherent sheaves Per(X̂/X) which is the heart of the t-structure

in the derived category D(X̂) of coherent sheaves on X̂, introduced in
more general setting in [2]. One of the main results in this section is
a simple criterion when a coherent sheaf E is perverse coherent (see
Proposition 1.9(1)). In §2 we construct moduli spaces of perverse co-
herent sheaves in the general context in [2]. One of key observations is

that though perverse coherent sheaves are objects in D(X̂) in general,
they are genuine sheaves if we impose the stability and the assumption
on the dimension of their supports. This was already observed in [2] in
the case of perverse ideal sheaves. Combined with the result in §1 we
get the conditions (1)∼(4) in the blow-up case. In §3 we construct the
diagram (∗). Our tools here are Brill-Noether loci and moduli spaces
of coherent systems, which had been used in different settings as we

mentioned above. In §4 we show that M̂0(c) is an incidence variety
in the product of two moduli spaces MX(p∗(c)) × MX(p∗(c) + n pt)
(n = (c1, [C])). In §5 we give the formula for virtual Hodge numbers

of M̂m(c). The proof goes like that of [24, Th. 3.13]. We observe that
the formula is universal, i.e. is independent of the surface X, and is
enough to compute it in the moduli of framed sheaves. Then we can
use a torus action to deduce it from a combinatorial study of fixed
points. The combinatorics involves Young diagrams and removable
boxes, which is closely related to one appearing in the Pieri formula
(but only for the multiplication by e1 !) for Macdonald polynomials
[13, §VI.6].

Acknowledgements. The first named author is supported by the
Grant-in-aid for Scientific Research (No. 19340006), JSPS. A part of
this work was done while the first named author was visiting the Insti-
tute for Advanced Study with supports by the Ministry of Education,
Japan and the Friends of the Institute. We are grateful to Y. Soibelman
for sending us a preliminary version of [10].

Notations. D(X) denotes the unbounded derived category of coher-
ent sheaves on a variety X. The full subcategory of complexes with
bounded cohomology sheaves is denoted by Db(X).

We consider a blowup p : X̂ → X of a smooth projective surface X
at a point 0 ∈ X. But occasionaly we consider a general situation
where p : Y → X is a birational morphism of projective varieties such
that Rp∗(OY ) = OX and dim p−1(x) ≤ 1 for any x ∈ X.
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When we write O without indicating the variety, it means the struc-
ture sheaf of OX̂ .

Let C = p−1(0) ⊂ X̂ denote the exceptional divisor. Let O(C)
denote the line bundle associated with C, and O(mC) its mth tensor
product O(C)⊗m when m > 0, (O(C)⊗−m)

∨
if m < 0, and O if m = 0.

The structure sheaf of the exceptional divisor C is denoted by OC .
If we twist it by the line bundle OP1(n) over C ∼= P1, we denote the
resulted sheaf by OC(n). Since C has the self-intersection number −1,
we have OC ⊗O(C) = OC(−1).

For c ∈ H∗(X̂), its degree 0, 2, 4-parts are denoted by r, c1, ch2

respectively. If we want to specify c, we denote by r(c), c1(c), ch2(c).
We also use the following notations often:

• rkE is the rank of a coherent sheaf E.
• e := ch(OC(−1)).

• pt is a single point in X or X̂. Its Poincaré dual in H4(X) or

H4(X̂) is also denoted by the same notation.

• χ(E,F ) :=
∞∑

i=−∞

(−1)i dim Exti(E,F ) =
∞∑

i=−∞

(−1)i dim Hom(E,F [i]).

• h0(E,F ) := dim Hom(E,F ).
• χ(E) := χ(OX̂ , E).
• h0(E) := h0(OX̂ , E).

1. Perverse coherent sheaves on blow-up

1.1. General situation. Let p : Y → X be a birational morphism of
projective varieties such that Rp∗OY = OX and dim p−1(x) ≤ 1 for any
x ∈ X. This is the assumption considered to define perverse coherent
sheaves in [2]. We set Z := {x ∈ X | dim p−1(x) = 1}. Then p−1(Z) is
the exceptional locus of p. The example we have in mind is the blowup
of a projective surface X at a smooth point 0 ∈ X, but we review the
arguments in [2] for the completeness in this subsection.

Definition 1.1 ([2, 3.2]). Let Per(Y/X) be the full subcategory of
D(Y ) consisting of objects E ∈ D(Y ) satisfying the following condi-
tions:

(1) H i(E) = 0 for i 6= −1, 0,
(2) R0p∗(H

−1(E)) = 0 and R1p∗(H
0(E)) = 0,

(3) Hom(H0(E), K) = 0 for any sheaf K on Y with Rp∗(K) = 0.

An object E ∈ Per(Y/X) is called a perverse coherent sheaf.

By [2, §§2,3] Per(Y/X) is the heart of a t-structure on D(Y ), and
in particular, is an abelian category. This will be reviewed below.
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An object E ∈ Per(Y/X) satisfies H i(Rp∗(E)) = 0 for i 6= 0. Thus
Rp∗(E) ∈ Coh(X).

Lemma 1.2 (cf. [2, 5.1]). (1) For a coherent sheaf F on X, we have
an exact sequence

0→ R1p∗(L
−1p∗(F ))→ F → p∗p

∗(F )→ 0.

Moreover we have p∗(F ) ∈ Per(Y/X). Furthermore, F ∼= p∗p
∗(F ) if F

is torsion free.
(2) Let E be a coherent sheaf on Y . For a natural homomorphism

φ : p∗p∗(E) → E, we have (i) Rp∗(Kerφ) = 0, (ii) p∗(Imφ) → p∗(E)
is isomorphic, (iii) p∗(Cokerφ) = 0, (iv) R1p∗(Imφ) = 0, R1p∗(E) ∼=
R1p∗(Cokerφ).

(3) A coherent sheaf E belongs to Per(Y/X) if and only if φ : p∗p∗(E)→
E is surjective.

(4) For a coherent sheaf F on X, we have Ext1(p∗(F ), K) = 0 for
all K ∈ Coh(Y ) with Rp∗(K) = 0.

Proof. (1) The first assertion is a consequence of the projection formula
Rp∗(Lp

∗(F )) = F and the spectral sequence

Rpp∗(L
qp∗(F ))⇒ Hp+q(Rp∗(Lp

∗(F )).

We also getR1p∗(p
∗(F )) = 0 at the same time. Now we have Hom(p∗(F ), K) =

Hom(F, p∗(K)) = 0 for K ∈ Coh(Y ) with Rp∗(K) = 0. There-
fore p∗(F ) is perverse coherent. For the last assertion we note that
R1p∗(L

−1p∗(F )) is supported on p−1(Z), and hence is torsion.
(2) We have exact sequences

0→ p∗(Kerφ)→ p∗(p
∗(p∗(E)))→ p∗(Imφ)→ R1p∗(Kerφ)→ 0,

0 // p∗(Imφ) // p∗(E) // p∗(Cokerφ)

rr
R1p∗(Imφ) // R1p∗(E) // R1p∗(Cokerφ) // 0,

where we have used R1p∗(p
∗(p∗(E))) = 0 from (1) in the first exact

sequence. Since the composition p∗(E) → p∗(p
∗(p∗(E))) → p∗(E) is

the identity, (1) implies that both homomorphisms are isomorphisms.
Therefore p∗(Imφ)→ p∗(E) is also an isomorphism. We have Rp∗(Kerφ) =
0 from the first exact sequence.

Since R1p∗(Imφ) = 0 follows from R1p∗(p
∗(p∗(E))) = 0, the second

exact sequence gives p∗(Cokerφ) = 0 and R1p∗(E) ∼= R1p∗(Cokerφ).
(3) Suppose E ∈ Coh(Y ) and φ : p∗p∗(E) → E is surjective. We

have R1p∗(E) = 0 from (2)(iv). We also have 0 → Hom(E,K) →
Hom(p∗(p∗(E)), K) and Hom(p∗(p∗(E)), K) = Hom(p∗(E), p∗(K)) = 0
for a sheaf K with Rp∗(K) = 0. Therefore E ∈ Per(Y/X).
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Conversely suppose E ∈ Per(Y/X)∩Coh(Y ). By (2)(iii),(iv) we have
Rp∗(Cokerφ) = 0. By Definition 1.1(3) we have 0 = Hom(E,Cokerφ),
i.e. Cokerφ = 0.

(4) We consider a distinguished triangle L<0p∗F → Lp∗F → p∗F →
L<0p∗F [1]. We apply the functor Hom(•, K) to get an exact sequence

Hom(L<0p∗F [1], K[1])→ Hom(p∗F,K[1])→ Hom(Lp∗F,K[1]).

We have

Hom(Lp∗F,K[1]) = Hom(F,Rp∗(K[1])) = Hom(F,Rp∗(K)[1]) = 0,

Hom(L<0p∗F [1], K[1]) = Hom(L<0p∗F,K) = 0,

where the latter follows from the degree reason. We therefore have
Hom(p∗F,K[1]) = Ext1(p∗F,K) = 0. �

Let

C := {K ∈ Coh(Y ) | Rp∗(K) = 0},
T := {E ∈ Coh(Y ) | R1p∗(E) = 0, Hom(E,K) = 0 for all K ∈ C},

F := {E ∈ Coh(Y ) | p∗(E) = 0}.
From the above definition, we have

Per(Y/X) = {E ∈ D(Y ) | H i(E) = 0 for i 6= 0,−1, H−1(E) ∈ F , H0(E) ∈ T }.
Then the definition of Per(Y/X) is an example of a general construc-

tion in [6, §2]:

Lemma 1.3. (T ,F) is a torsion pair on Coh(Y ) in the sense of [6,
§2].

Proof. We check two assertions: (i) Hom(T, F ) = 0 for T ∈ T , F ∈ F ,
(ii) for any E ∈ Coh(Y ), there exists an exact sequence 0→ T → E →
F → 0 with T ∈ T , F ∈ F .

(i) By Lemma 1.2(3), we have p∗p∗(T )� T . Therefore Hom(T, F ) ⊂
Hom(p∗p∗(T ), F ) = Hom(p∗(T ), p∗(F )) = 0 for T ∈ T , F ∈ F .

(ii) For E ∈ CohY , let us consider the exact sequence 0 → Imφ →
E → Cokerφ→ 0 for φ as in Lemma 1.2(2). We have R1p∗(Imφ) = 0
and p∗(Cokerφ) = 0 by (2)(iii),(iv). We also have Hom(Imφ,K) ⊂
Hom(p∗p∗(E), K) = Hom(p∗(E), p∗(K)) = 0 for K ∈ C. Therefore
Imφ ∈ T , Cokerφ ∈ F . �

An exact sequence 0 → A → B → C → 0 in Per(Y/X) is a dis-
tinguished triangle A → B → C → A[1] in D(Y ) such that all A, B,
C ∈ Per(Y/X). Hence it induces an exact sequence

0→ H−1(A)→ H−1(B)→ H−1(C)→ H0(A)→ H0(B)→ H0(C)→ 0
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in Coh(Y ). From a general theory, if A → B → C → A[1] is a
distinguished triangle in D(Y ) such that all A, C ∈ Per(Y/X), then
B ∈ Per(Y/X). We have ExtiPer(Y/X)(A,B) = HomD(Y )(A,B[i]) for
A,B ∈ Per(Y/X), i = 0, 1 ([6, Cor. 2.2(c)]). It was proved that
Db(Y ) ∼= Db(Per(Y/X)) in [28], but we will not use it in this paper.

Remark 1.4. Let E ∈ Per(Y/X) ∩Coh(Y ). By Lemma 1.2(3) we have
the exact sequence 0 → Kerφ → p∗p∗(E) → E → 0 in the category
Coh(Y ). This gives a distinguished triangle Kerφ→ p∗p∗(E)→ E →
Kerφ[1]. Now notice that p∗p∗(E), E, Kerφ[1] ∈ Per(Y/X). There-
fore we have 0 → p∗p∗(E) → E → Kerφ[1] → 0 in the category of
Per(Y/X).

Lemma 1.5. Let E, F be objects in Per(Y/X), and hence Rp∗(E),
Rp∗(F ) ∈ Coh(Y ).

(1) Assume that H i(E) = 0 for i 6= 0 and p∗(E) = 0. Then E = 0.
(2) a homomorphism ξ : E → F is injective in Per(Y/X) if and ony

if H−1(E) → H−1(F ) is injective in Coh(Y ) and Rp∗(E) → Rp∗(F )
is injective in Coh(X).

Proof. (1) Since Rp∗(E) = 0 from the assumption and the Defini-
tion 1.1(2), we have Hom(E,E) = 0 by Definition 1.1(3). Thus E = 0.

(2) We first assume that E → F is injective in Per(Y/X). Since
Per(Y/X) is an abelian category, we have an exact sequence

0→ E → F → G→ 0, G := Coker ξ ∈ Per(Y/X).

Hence H−1(E)→ H−1(F ) is injective in Coh(Y ) and we have an exact
sequence in Coh(X):

0→ Rp∗(E)→ Rp∗(F )→ Rp∗(G)→ 0,

as Rp∗(E), Rp∗(F ), Rp∗(G) ∈ Coh(X).
Conversely, we assume thatH−1(E)→ H−1(F ) is injective in Coh(Y )

and Rp∗(E)→ Rp∗(F ) is injective in Coh(X). Let K ∈ Per(Y/X) be
the kernel of ξ in Per(Y/X). Then H−1(K) = 0 and we have an exact
sequence

0→ Rp∗(K)→ Rp∗(E)→ Rp∗(F ).

Hence Rp∗(K) = 0. By (1), we get K = 0. �

Lemma 1.6. Let E ∈ Coh(Y ) and let F be a subsheaf of p∗(E). Then
F → p∗(p

∗(F )) is an isomorphism.

Proof. Consider the composite of F → p∗(p
∗F ) → p∗(p

∗(p∗(E))) →
p∗(E). It is equal to the given inclusion F ↪→ p∗(E). Hence F →
p∗(p

∗F ) is injective. On the other hand, F → p∗(p
∗(F )) is surjective

by Lemma 1.2(1). So F → p∗(p
∗(F )) is an isomorphism. �



PERVERSE COHERENT SHEAVES ON BLOW-UP. II 9

1.2. Blow-up case. Suppose p : X̂ → X is a blow-up of a projective
surface X at a smooth point 0 ∈ X.

We first determine the sheaves K appearing the condition (3) in
Definition 1.1.

Lemma 1.7. Let K be a sheaf on X̂.
(1) If p∗(K) = 0, then there is a filtration

K = F 0 ⊃ F 1 ⊃ · · · ⊃ F s−1 ⊃ F s = 0

such that F k/F k+1 ∼= OC(−1− ak) for ak ≥ 0. In particular, we have
K = 0 if Hom(K,OC(−1)) = 0.

(2) If Rp∗(K) = 0, then K = OC(−1)⊕s.

Remark 1.8. The filtration in (1) can be considered as a kind of Harder-
Narashimhan filtration. This will be clear in a different proof given in
the next subsection.

Proof. (1) We may assume K 6= 0. Since p∗(K) = 0, K is of pure
dimension 1, and hence c1(K) = s[C] with s > 0. Then

χ(K,OC(−1)) =

∫
X̂

ch(K)∨ ch(OC(−1)) td X̂ = −(c1(K), [C]) = s > 0.

Let C0 be the skyscraper at 0. Since

Ext2(K,OC(−1)) ∼= Hom(OC , K)∨ ∼= Hom(p∗(C0), K)∨

∼= Hom(C0, p∗(K))∨ = 0

from the assumption, we must have Hom(K,OC(−1)) 6= 0. Take a non-
zero homomorphism φ : K → OC(−1). Then we have p∗(Kerφ) = 0
and Imφ ∼= OC(−1−a) with a ≥ 0. Applying this procedure to Kerφ,
we get the assertion.

(2) We first note that χ(K) = 0. Let E be a subsheaf of K.

Then H0(X̂, E) = 0, which implies that χ(E) ≤ 0. Applying this
to E := Kerφ in the proof of (1), we get χ(Imφ) ≥ 0. Then a in
(1) must be 0, i.e. Imφ ∼= OC(−1). We also have χ(Kerφ) = 0. Re-
peating this argument, we conclude all F k/F k+1 ∼= OC(−1). Since
Ext1(OC(−1),OC(−1)) = 0, we get the assertion. �

Proposition 1.9. (1) A coherent sheaf E on X̂ belongs to Per(X̂/X)
if and only if Hom(E,OC(−1)) = 0.

(2) Let E ∈ Per(X̂/X)∩Coh(X̂) and φ : p∗(p∗(E))→ E be the nat-
ural homomorphism. Then Kerφ ∼= Ext1(E,OC(−1))∨⊗OC(−1), and
the exact sequence 0 → Kerφ → p∗(p∗(E)) → E → 0 obtained from
Lemma 1.2(3) is the universal extension of E with respect to OC(−1).
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Proof. (1) From Definition 1.1(3)E ∈ Per(X̂/X) satisfies Hom(E,OC(−1))

= 0. For the converse, suppose E ∈ Coh(X̂) satisfies Hom(E,OC(−1)) =
0. By Lemma 1.2(3) it is enough to show that φ : p∗p∗(E) → E
is surjective. By Lemma 1.2(2)(iii) we have p∗(Cokerφ) = 0. Since
Hom(Cokerφ,OC(−1)) ⊂ Hom(E,OC(−1)) = 0 from the assumption,
we have Cokerφ = 0 from Lemma 1.7(1).

(2) Consider φ : p∗p∗(E) → E. By Lemma 1.2(2),(3) this is surjec-
tive and Kerφ satisfies Rp∗(Kerφ) = 0. By Lemma 1.7(2), Kerφ =
OC(−1)⊕s for some s ∈ Z≥0. We also have Ext1(E,OC(−1)) ∼= Hom(Kerφ,OC(−1))
by Lemma 1.2(4). �

Lemma 1.10. If E ∈ Per(X̂/X) ∩ Coh(X̂), then R1p∗(E(C)) = 0.

Proof. By the exact sequence 0 → OX̂ → OX̂(C) → OC(−1) → 0, we
have Rp∗(OX̂(C)) = OX . From the projection formula we have

Rp∗(OX̂(C)⊗ Lp∗(p∗(E))) ∼= Rp∗(OX̂(C))⊗ p∗(E) ∼= p∗(E).

The spectral sequence as in the proof of Lemma 1.2(2) impliesR1p∗(OX̂(C)⊗
p∗(p∗(E))) = 0. As p∗p∗(E) → E is surjective by the assumption, we
have the conclusion. �

Lemma 1.11. Let E ∈ Coh(X̂). Then p∗(E) does not contain a 0-
dimensional subsheaf at 0 if and only if Hom(OC , E) = 0.

Proof. We have

Hom(OC , E) ∼= Hom(p∗C0, E) ∼= Hom(C0, p∗(E)).

Now the assertion is clear. �

1.3. Perverse coherent sheaves and representations of a quiver.
This subsection is a detour. We look at the definition of the perverse
coherent sheaves in view of [25]. The result of this subsection will not
be used later.

Let X = C2 and let X̂ be the blowup of X at the origin 0. As a by-
product of the main result of [25], we have an equivalence between the

derived category Db
c(Coh X̂) of complexes of coherent sheaves whose

homologies have proper supports and the derived category of finite

dimensional modules of the quiver •
d
// •

B1,B2
oo
oo with relation B1dB2 =

B2dB1.

Proposition 1.12. The abelian category {E ∈ Per(X̂/X) | E has a proper
support } is equivalent to the abelian category of finite dimensional rep-
resentations of the above quiver with relation B1dB2 = B2dB1.
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Proof. Let us first recall how we constructed the equivalence between
derived categories in [25]. Let us number the left (resp. right) vertex
as 0 (resp. 1). We consider line bundles L0 := O and L1 := O(C),
and homomorphisms between them s = z1/z = z2/w : L0 → L1, z,

w : L1 → L0, where X̂ = {(z1, z2, [z : w]) ∈ C2 × P1 | z1w = z2z}. For

an object E ∈ Db
c(Coh X̂), we define

Vk = R(pt)∗(E ⊗ Lk), (k = 0, 1)

where pt is a projection of X̂ to a point. Then the homomorphisms
s, z, w give a structure of a quiver representation. Conversely given
a complex of quiver representations, we define a double complex of

coherent sheaves on X̂ as

A :=
V0 ⊗ L1

⊕
V1 ⊗ L0

α−−−→ B :=
C2 ⊗ V0 ⊗ L0

⊕
C2 ⊗ V1 ⊗ L0

β−−−→ C :=
V0 ⊗ L0

⊕
V1 ⊗ L1

,

with α, β as in [25, (1.2)]. We assign the degree by degA = −2,
degB = −1, deg C = 0. Then the associated total complex is an object

in Db
c(Coh(X̂)). (For the reader familiar with [25]: We consider the

W = 0 case. So objects have proper supports, and hence implicitly
have the framing.)

Let us start the proof of this proposition. Suppose E is a perverse

coherent sheaf on X̂ with a proper support. The corresponding repre-
sentation satisfies

H i(V0) = H i(X̂, E), H i(V1) = H i(X̂, E(C)).

We have a spectral sequence H i(X̂,Hj(E)) =⇒ H i+j(X̂, E). Therefore
H i(V0) = 0 for i 6= 0 follow from the following vanishing results, which
are direct consequence of the definition of perverse coherent sheaves:

H0(X̂,H−1(E)) = H0(C2, R0p∗(H
−1(E))) = 0,

H1(X̂,H0(E)) = H0(C2, R1p∗(H
0(E))) = 0.

Next consider V1. We consider the exact sequence of vector bundles

0→ OX̂(C)
[ zw ]
−−→ O⊕2

X̂

[−w z ]−−−−→ OX̂(−C)→ 0.

This exact sequence is preserved under • ⊗ H−1(E) as OX̂(−C) is
locally-free. Therefore we get an exact sequence 0→ p∗(H

−1(E(C)))→
p∗(H

−1(E))⊕2. But the right hand side vanish by the assumption. This

implies H−1(V1) = 0 as above. We have H0(E) ∈ Per(X̂/X), and
hence we have R1p∗(H

0(E(C))) = 0 from Lemma 1.10. This gives
H1(V1) = 0. Vanishing of other cohomology groups is trivial.
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For the converse we check that the object E = {A → B → C} ∈
Db
c(Coh X̂) corresponding to a quiver representation satisfies the condi-

tions in Definition 1.1. The condition (1) follows from the injectivity of
α as argued in [25, §5.2]. The condition (2) follows from H i(V0) = 0 for
i 6= 0 by the above discussion. Let us consider the condition (3). Note
that H0(E) = Coker β. We also know that OC(−1)[1] corresponds to

the representation C0 = 0 // C
oo
oo by [25, Prop. 5.3]. Let us write the

corresponding complex as {A′ → B′ → C ′}. Then we apply the proof
of [25, Prop. 5.12] to show that (i) Hom(H0(E),OC(−1)) is isomorphic
to the space of homomorphisms between monads, where the complex
{A′ → B′ → C ′} is shifted by −1, and (ii) this space of homomorphisms
between monads vanishes. �

Let us give another proof of Lemma 1.7 based on the above result.
(1) If p∗(K) = 0, E := K[1] is a perverse coherent sheaf. Let us con-

sider the corresponding complex as above. Since K is a sheaf, we have
H0(E) = 0, which means β is surjective. By [25, Lem. 5.1] this is equiv-
alent to codimT1 > codimT0 or (T0, T1) = (V0, V1) for any subrepre-
sentation T = (T0, T1) of E. Taking the Harder-Narashimhan filtration
with respect to the slope θ(S0, S1) = (− dimS0 + dimS1)/(dimS0 +
dimS1), we get a filtration K = Y 0 ⊃ Y 1 ⊃ · · · ⊃ Y N−1 ⊃ Y N = 0
such that Y k/Y k+1 is θ-semistable and θ(Y 0/Y 1) < θ(Y 1/Y 2) < · · · <
θ(Y N−1/Y N). Taking (T0, T1) = Y 1, codimT1 > codimT0 means
θ(Y 0/Y 1) > 0. Therefore all θ(Y k/Y k+1) > 0. Looking at the clas-
sification of all stable representations in [25, Rem. 2.17], we find that
Y k/Y k+1 is (a direct sum of) Cm = OC(−m− 1) for m ≥ 0.

(2) If we further have Rp∗(K) = 0, we have V0 = 0 for the represen-
tation corresponding to E = K[1]. Then assertion is obvious.

2. Moduli spaces of semistable perverse coherent sheaves

We return to the general situation considered in §1.1, i.e. p : Y → X
is a birational morphism of projective varieties such that Rp∗(OY ) =
OX and dim p−1(x) ≤ 1 for all x ∈ X.

2.1. Stability. Let OX(1) be an ample line bundle on X. We also
denote the pull-back p∗(OX(1)) by OY (1).

LetM be a line bundle on Y . For E• ∈ Db(Y ), we define ai(E
•,M) ∈

Z by the coefficient of the Hilbert polynomial of E• with respect to M :

χ(E• ⊗M⊗m) =
dimY∑
i=0

ai(E
•,M)

(
m+ i

i

)
.
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We use the same notation for E ∈ Db(X) and a line bundle M on X
instead of Y .

If E• is a coherent sheaf of dimension d and M is ample, then
ai(E

•,M) = 0, i > d and ad(E
•,M) > 0. For a perverse coherent

sheaf E• ∈ Per(X/Y ), we denote ai(E
•,OX(1)) = ai(π∗(E

•),OY (1))
by ai(E

•) if there is no fear of confusion.
Recall that we say a coherent sheaf E of dimension d on X is

(semi)stable if

ad(E)χ(F (m))(≤)ad(F )χ(E(m)) for m� 0

for any proper subsheaf 0 6= F ( E. Here we adapt the convention
for the short-hand notation in [8]. The above means two assertions:
semistable if we have ‘≤’, and stable if we have ‘<’. If E is semistable,
then it is pure of dimension d: if 0 6= F ( E is of dimension < d, then
the right hand side is 0, while the left hand side is positive. Under
the assumption that E is pure, the above inequality is equivalent to
χ(F (m))/ad(F )(≤)χ(E(m))/ad(E), as we automatically has ad(F ) >
0.

We say E is µ-(semi)stable if it is purely d-dimensional and

ad−1(F )

ad(F )
(≤)

ad−1(E)

ad(E)

for any subsheaf 0 6= F ⊂ E with ad(F ) < ad(E).
If E is a d-dimensional coherent sheaf on X, then we have the fol-

lowing implications:

E is µ-stable =⇒ E is stable =⇒ E is semistable =⇒ E is µ-semistable.

Now we return to the situation p : Y → X. Let L0 an ample line
bundle on Y . We set Ll = L0(l).

We consider the following conditions on an object E• ∈ Per(Y/X):

dim p∗(E
•) > dimZ,(2.1a)

χ(E•(m)⊗ L⊗nl ) > 0 for n� 0.(2.1b)

Definition 2.2. Let E• ∈ Per(Y/X) be an object satisfying (2.1).
Then E• is (semi)stable if for any proper subobject F • ∈ Per(Y/X) of
E•, we have

(2.3) χ(F •(m))(≤)
χ(F •(m)⊗ L⊗nl )

χ(E•(m)⊗ L⊗nl )
χ(E•(m))

for all n� l� m� 0.

Remark 2.4. The above definition is suitable for perverse coherent
sheaves satisfying (2.1). On the other hand, it is also natural to expect
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that OC(−m− 1)[1] (in case of p : X̂ → X) is stable in some definition
in view of [25].

Note that for E• ∈ Per(Y/X) satisfying (2.1) with d := dim p∗(E
•),

E is (semi)stable if and only if H−1(E•) = 0 and for any subsheaf F
of E := H0(E•) in Coh(Y ) with F ∈ Per(Y/X),

χ(F (m)) <
ad(F,OY (1))

ad(E,OY (1))
χ(E(m))(1)

or 
χ(F (m)) =

ad(F,OY (1))

ad(E,OY (1))
χ(E(m)),

ad(F,OY (1)) <
ad(F,Ll)

ad(E,Ll)
ad(E,OY (1))

(2)

or



χ(F (m)) =
ad(F,OY (1))

ad(E,OY (1))
χ(E(m)),

ad(F,OY (1)) =
ad(F,Ll)

ad(E,Ll)
ad(E,OY (1)),

χ(F (m)⊗ L⊗nl )(≥)
ad(F,OY (1))

ad(E,OY (1))
χ(E(m)⊗ L⊗nl ) for n� l� m� 0.

(3)

Remark 2.5. If d = dimY , then ad is essentially the rank, so we have

ad(F,OY (1)) =
ad(F,Ll)

ad(E,Ll)
ad(E,OY (1)).

Therefore the second case (2) does not occur.

Lemma 2.6. Let E• ∈ Per(Y/X) be an object satisfying (2.1). Then
(1) If E• is semistable, then E• ∈ Coh(Y ).
(2) If E• is semistable, then p∗(E

•) is semistable.
(3) Suppose further E• = E ∈ Coh(Y ). Then E is (semi)stable if

and only if (2.3) holds for any proper subsheaf F • = F of E in Coh(Y )
which is also in Per(Y/X).

(4) Suppose further E• = E ∈ Coh(Y ) and p∗(E) is stable. Then E
is stable.

Proof. (1) First note that we have χ(E•(m) ⊗ L⊗nl ) > 0 for n � 0 by
(2.1b). On the other hand, as 0 6= Rp∗(E

•) ∈ Coh(X) from (2.1a) and
the perversity, we have χ(E•(m)) > 0 for m� 0.
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Next note that E• contains a subobject H−1(E•)[1]. Assume that
H−1(E•)[1] 6= 0. Then χ(H−1(E•)[1](m)) = χ(R1p∗(H

−1(E•))(m)) ≥
0 and χ(H−1(E•)[1](m)⊗ L⊗nl ) = −χ(H−1(E•)(m)⊗ L⊗nl ) < 0, which
means that E• is not semistable.

(2) Suppose F1 is a subsheaf of p∗(E). Note that we can apply
Lemma 1.6 to F1 ⊂ p∗(E) thanks to (1). Therefore p∗(p

∗(F1)) =
F1. Let α be the composition of p∗(F1) → p∗p∗(E) → E. We have
p∗(F1), E ∈ Per(Y/X) by Lemma 1.2(1) and the assumption respec-
tively. We have H−1(p∗(F1)) = H−1(E) = 0. We also have that
F1 = p∗(p

∗(F1)) → p∗(E) is injective by the assumption. There-
fore the homomorphism α is injective in the category Per(Y/X) by
Lemma 1.5(2). Therefore we have the inequality (2.3) for F • := p∗(F1).
It means that

χ(F1(m)) ≤ χ(p∗(F1)(m)⊗ L⊗nl )

χ(E•(m)⊗ L⊗nl )
χ(p∗(E)(m)).

From the note after Definition 2.2, we must have

χ(F1(m)) ≤ ad(p
∗(F1),OY (1))

ad(E•,OY (1))
χ(p∗(E)(m)).

Since ad(E
•,OY (1)) = ad(p∗(E

•),OX(1)), ad(p
∗(F1),OY (1)) = ad(F1,OX(1)),

this inequality says p∗(E
•) is semistable.

(3) The ‘only if’ part is clear: if F ⊂ E is a subsheaf, then E/F is
also in Per(Y/X) obviously from the definition. Therefore 0 → F →
E → E/F → 0 is also exact in Per(Y/X), hence F is a subobject of E
in Per(Y/X).

Let us show the ‘if’ part for the semistability. Suppose F • is a
subobject of E, and let E/F • be the quotient in Per(Y/X). Then we
have an exact sequence in Coh(Y ):

0 // H−1(F •) // H−1(E) = 0 // H−1(E/F •)

rr
H0(F •) // E // H0(E/F •) // 0,

Therefore we have H−1(F •) = 0 and an exact sequence in Coh(Y ):

0→ H−1(E/F •)→ H0(F •)→ F ′ → 0,

where F ′ = Im(H0(F •) → E). Note that F ′ ∈ Per(Y/X). Take the
direct image with respect to p to get

0→ p∗(H
0(F •))→ p∗(F

′)→ R1p∗(H
−1(E/F •))→ 0.
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Therefore we have

χ(F •(m)⊗ L⊗nl ) = χ(F ′(m)⊗ L⊗nl ) + χ(H−1(E/F •)(m)⊗ L⊗nl ))

≥ χ(F ′(m)⊗ L⊗nl ),

χ(p∗(F
′)(m)) = χ(p∗(H

0(F •))(m)) + χ(R1p∗(H
−1(E/F •))(m))

≥ χ(F •(m)).

(2.7)

So the inequality (2.3) for F ′ implies one for F •.
Finally show the ‘if’ part for the stability. Assume that the strict in-

equality in (2.3) holds for a proper subsheaf F . Suppose that the equal-
ity holds for a subobject F • ⊂ E in Per(Y/X). From the above discus-
sion, F ′ = E follows from the assumption. Therefore H0(E/F •) = 0.
Moreover the inequalities in (2.7) must be the equalities, so we must
have H−1(E/F •) = 0. Therefore E = F •.

(4) To test the stability of E, it is enough to check the inequality
for a subsheaf F ⊂ E such that F ∈ Per(Y/X) by (3). We have
p∗(F ) ⊂ p∗(E). We may assume p∗(F ) 6= 0 by Lemma 1.5(1). If
p∗(F ) 6= p∗(E), then the stability of p∗(E) implies the strict inequality
for (2.3). Here we have used (2.1a) so that the leading coefficient of
χ(E(m)⊗ L⊗nl ) is ad(E,OY ) = ad(p∗(E),OX).

Therefore we may assume p∗(F ) = p∗(E). Let C be the cokernel
of F → E in Coh(Y ). Then C is perverse coherent and Rp∗(C) = 0.
Therefore C = 0 by Lemma 1.5(1). Hence F = E. �

If E• = E ∈ Per(Y/X)∩Coh(Y ), we have the following implications:

p∗(E) is stable =⇒ E is stable =⇒ E is semistable =⇒ p∗(E) is semistable.

Lemma 2.8. Suppose that Y is a nonsingular surface, dim p∗(E
•) = 2,

and E• = E ∈ Coh(Y ) ∩ Per(Y/X) satisfies the condition (2.1). Then
E is semistable if and only if the followings hold :

a) p∗(E
•) is semistable,

b)

(c1(F ), c1(L0)) ≥ rkF

rkE
(c1(E), c1(L0))

for any subsheaf F ⊂ E such that F ∈ Per(X/Y ) and χ(F (m)) =
rkFχ(E•(m))/rkE•.

Moreover, E is stable if and only if the followings hold :

c) p∗(E) is semistable,
d) p∗(E) is stable, or the strict inequality in above b) holds.

This is a consequence of the note after Definition 2.2 and Lemma 2.6.
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2.2. Construction of moduli spaces. Thanks to the discussion in
the previous subsection, we can work entirely in the category of coher-
ent sheaves.

For a perverse coherent sheaf E, let h(x, y) be the polynomial such
that χ(E(m) ⊗ L⊗n0 ) = h(m,n). Then χ(E(m) ⊗ L⊗nl ) = χ(E(m +
ln) ⊗ L⊗n0 ) = h(m + ln, n). We call h the Hilbert polynomial of the
perverse coherent sheaf E.

The following is the main result in this subsection.

Theorem 2.9. Let X → S be a flat family of projective schemes and
p : Y → X a family of birational maps over S such that dim p−1(x) ≤ 1
for all x ∈ X and Rp∗(OY) = OX . Let OX (1) be a relatively ample
line bundle on X/S and L0 a relatively ample line bundle on Y/S.
Then there is a coarse moduli scheme M

p

Y/X/S(h) parametrizing S-
equivalence classes of semistable perverse coherent sheaves E on Xs, s ∈
S with the Hilbert polynomial h. Moreover, M

p

Y/X/S(h) is a projective

scheme over S. There is an open subscheme Mp
Y/X/S(h) ⊂M

p

Y/X/S(h)

parametrizing isomorphism classes of stable perverse coherent sheaves.

For simplicity, we treat the absolute case p : Y → X.
Our construction of the moduli space of semistable perverse coherent

sheaves is a modification of that of usual moduli spaces by Simpson [26]
(see also [8, 15]). This idea was already appeared in [2]. However we
modify the arguments in many places, so we need to recall almost all
steps of the usual proof.

Definition 2.10. Let λ be a nonnegative rational number.
(1) Let E be a coherent sheaf of dimension d on X. Then E is of type

λ (with respect to the semi-stability), if the following two conditions
hold:

a) E is of pure dimension d,
b) For all subsheaf F of E we have

ad−1(F ) ≤ ad(F )

ad(E)
ad−1(E) + λ.

Note that this is equivalent to the µ-stability if λ = 0.
(2) For a perverse coherent sheaf E on Y with E ∈ Coh(Y ), E is of

type λ, if p∗(E) is of type λ.

Since the set of type λ coherent sheaves on X is bounded (see e.g.,
[8, 3.3.7]) and p∗(p∗(E))→ E is surjective for a perverse coherent sheaf
of type λ, we get the following.

Lemma 2.11. The set of type λ perverse coherent sheaves on X with
a fixed Hilbert polynomial is bounded.
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From Langer’s important result [11, Cor. 3.4] (see also [8, 3.3.1]), we
have the following estimate for the dimension of sections for F on X
of type λ:

(2.12)
h0(F )

ad(F )
≤ 1

d!

[
ad−1(F )

ad(F )
+ λ+ c

]d
+

,

where c depends only on (X,OX(1)), d, ad(F ) and [x]+ := max{x, 0}.

Definition 2.13. Let U ≡ U(λ, h) be the set of pairs (E ′ ⊂ E) such
that E is a perverse coherent sheaf of type λ with the Hilbert polyno-
mial h, E ′ ∈ Per(X/Y ), and E ′′ := E/E ′ satisfies

(2.14) χ(E(m))
ad(E

′′)

ad(E)
≥ χ(E ′′(m)) for m� 0.

The inequality means p∗(E
′) destabilizes p∗(E) in a weak sense (i.e.

‘=’ is allowed).
Since the set of E is bounded, by Grothendieck’s boundedness theo-

rem, the set U of such pairs (E ′ ⊂ E) is also bounded. Hence there is
an integer m(λ) which depends on h and λ such that if m ≥ m(λ) and
(E ′ ⊂ E) ∈ U ,

H0(E ′(m))⊗OY → E ′(m) is surjective and(2.15a)

H i(E ′(m)) = 0 for i > 0,(2.15b)

and for F ∈ Coh(X) of type λ

H0(F (m))⊗OX → F (m) is surjective and(2.16a)

H i(F (m)) = 0 for i > 0.(2.16b)

In particular, we apply (2.15) to (E = E) to have that the above two
conditions hold for E.

Furthermore, since the set of Hilbert polynomials of E ′ is finite, we
may assume that m(λ) satisfies also the followings: for all m ≥ m(λ),
we can choose sufficiently large integers l(m) and n(m) � l(m) such
that

χ(E(m))

χ(E(m)⊗ L⊗n(m)
l(m) )

≥ χ(E ′(m))

χ(E ′(m)⊗ L⊗n(m)
l(m) )

⇐⇒ χ(E(m))

χ(E(m)⊗ L⊗nl )
≥ χ(E ′(m))

χ(E ′(m)⊗ L⊗nl )
for all n� l� m,

(2.17a)

χ(E ′(m)⊗ L⊗n(m)
l(m) ) = h0(E ′(m)⊗ L⊗n(m)

l(m) )(2.17b)

hold for (E ′ ⊂ E) ∈ U .
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For m ≥ m(0) let Vm be a vector space of dimension h(m, 0). Let

Q := Quot
h[m]
Vm⊗OY /Y be the quot-scheme parametrizing all quotients

Vm ⊗ OY � F (in Coh(X)) with the Hilbert polynomial h[m], where

h[m](x, y) = h(m + x, y). Let Vm ⊗ OQ×Y � Ẽ(m) be the universal
quotient sheaf on Q×Y . Let Qss be the open subscheme of Q consisting
of quotients f : Vm ⊗OY → E(m) such that

(1) the canonical map Vm → H0(E(m)) is an isomorphism and
(2) E is a semi-stable sheaf.

Note that E(m) is automatically in Per(Y/X). Other conditions clearly
define the open subscheme.

By the above discussion all E appearing as (E ′ ⊂ E) ∈ U together
with a choice of basis of H0(E(m)) gives a closed point in Q if m ≥
m(λ). In particular, we can construct the moduli scheme as a quotient
of Qss.

In order to take the quotient via the GIT, we use a Grassmann
embedding of Q as follows. Let n � l � m. Set W := H0(L⊗nl ). Let
G(l, n) := Gr(Vm⊗W,h(m+ln, n)) be the Grassmannian parametrizing
h(m + ln, n)-dimensional quotient spaces of Vm ⊗W . For a quotient
(Vm ⊗OY → E(m)) ∈ Q its kernel F satisfies

(1) H0(F ⊗ L⊗nl )⊗OY → F ⊗ L⊗nl is surjective and
(2) H i(F ⊗ L⊗nl ) = 0, i > 0

for sufficiently large n. Hence we get a quotient vector space Vm⊗W →
H0(E(m) ⊗ L⊗nl ). Thus we get a morphism Q → G(l, n), which is a
closed immersion. This embedding depends on the choice of n � l �
m. We have a natural action of SL(Vm) on G(l, n). Let L := OG(l,n)(1)
be the tautological line bundle on G(l, n). Then L has an SL(Vm)-
linearization. We consider the GIT semi-stability with respect to L.
The following is well-known (cf. [8, 4.4.5])

Proposition 2.18. Let α : Vm ⊗W � A be a quotient corresponding
to a point of G(l, n). Then it is GIT (semi)stable with respect to L if
and only if

dim [α(V ′ ⊗W )]

dimV ′
(≥)

dim [α(Vm ⊗W )]

dimVm

for all non-zero proper subspaces V ′ of Vm.

We prepare several estimates in order to compare the semistability
of E and that of the corresponding point in the Grassmann variety.

Lemma 2.19. Let E be a d-dimensional sheaf with the Hilbert poly-
nomial h and E ′ a subsheaf of E. Then if we take a sufficiently large
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l� m depending on h, m, we have∣∣∣∣ad(E ′, Ll)ad(E,Ll)
− ad(E

′)

ad(E)

∣∣∣∣ ≤ 1

3h(m, 0)ad(E)!
.

In particular, we may suppose that l(m) in the above (2.17) satisfies
this condition.

Proof. We have ad(E) ≥ ad(E
′) ≥ 0 and ad(E/E

′, Ll) ≥ ldad(E/E
′).

Since ad(E/E
′, Ll) = ad(E,Ll) − ad(E ′, Ll) and ad(E/E

′) = ad(E) −
ad(E

′), we have ad(E,Ll)− ldad(E) ≥ ad(E
′, Ll)− ldad(E ′) ≥ 0. Hence

we have∣∣∣∣ad(E ′, Ll)ad(E,Ll)
− ad(E

′)

ad(E)

∣∣∣∣ ≤ ∣∣∣∣ad(E ′, Ll)− ldad(E ′)ad(E,Ll)

∣∣∣∣+

∣∣∣∣ ldad(E ′)ad(E,Ll)
− ad(E

′)

ad(E)

∣∣∣∣
≤ 2

∣∣∣∣1− ldad(E)

ad(E,Ll)

∣∣∣∣ .
If we take a sufficiently large l depending on h, this can be made

smaller than an arbitrary given number. �

We consider a set of pairs

F := {(Vm ⊗OY � E(m)) ∈ Q} × {V ′ ⊂ Vm}.
Let α : Vm ⊗ W � H0(E(m) ⊗ L⊗nl ) be the corresponding point in
G(l, n). We set E ′(m) := Im(V ′⊗OY → E(m)). Since F is a bounded
set, E ′(m) satisfies

α(V ′ ⊗W ) = H0(E ′(m)⊗ L⊗nl )(2.20a)

H i(E ′(m)⊗ L⊗nl ) = 0 for i > 0(2.20b)

for a sufficiently large n which depends on m and l. Then we have
dim[α(V ′ ⊗W )] = χ(E ′(m)⊗ L⊗nl ).

Lemma 2.21. (1) dimV ′ ≤ h0(E ′(m)).
(2) Take l � m as in Lemma 1.7. If we take n sufficiently large

depending on h, m, l, we have∣∣∣∣ dim[α(V ′ ⊗W )]

dim[α(Vm ⊗W )]
− ad(E

′)

ad(E)

∣∣∣∣ < 1

2 dimVm ad(E)!
.

Proof. (1) We have a natural homomorphism V ′ → H0(E ′(m)). If we
compose an injective homomorphism H0(E ′(m)) → H0(E(m)) = Vm,
it becomes equal to the given inclusion V ′ ⊂ Vm, so it is injective. The
assertion follows.

(2) We have∣∣∣∣χ(E ′(m)⊗ L⊗nl )

χ(E(m)⊗ L⊗nl )
− ad(E

′)

ad(E)

∣∣∣∣ < 1

2 dimVm ad(E)!
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for this sufficiently large n by Lemma 2.19. Thus the assertion follows
from the above conditions (1),(2). �

We replace n(m) � l(m) � m in (2.17) if necessary so that they
also satisfy the assertion in this lemma.

Proposition 2.22. There is an integer m1(≥ m(0)) such that for all
m ≥ m1, Qss is contained in G(l, n)ss, where l = l(m), n = n(m).

Proof. We first take m ≥ m(0).
Suppose E ∈ Qss, i.e. E is semistable, and take V ′ ⊂ Vm. From

Lemma 2.21(1),(2) we have

dimVm dim[α(V ′ ⊗W )]− dimV ′ dim[α(Vm ⊗W )]

≥ h0(E(m)) dim[α(V ′ ⊗W )]− h0(E ′(m)) dim[α(Vm ⊗W )]

≥
(
h0(E(m))

ad(E
′)

ad(E)
− h0(E ′(m))− 1

2ad(E)!

)
dim[α(Vm ⊗W )].

(2.23)

Since p∗(E) is semistable, in the same way as in [8, 4.4.1], we see
that there is an integer m3 which depends on h such that for m ≥ m3

and a subsheaf E ′ of E,

(2.24)
h0(E ′(m))

ad(E ′)
≤ h0(E(m))

ad(E)

and the equality holds, if and only if

(2.25)
χ(E ′(m+m′))

ad(E ′)
=
χ(E(m+m′))

ad(E)

for all m′. More precisely we apply the argument in [8, 4.4.1] to
p∗(E

′) ⊂ p∗(E).
We take m1 := max{m3,m(0)} so that both (2.23,2.24) hold for

m ≥ m1.
If the inequality in (2.24) is strict, the last expression of (2.23) is

positive. Therefore α is stable.
So we may assume the equality in (2.24) holds. Then p∗(E

′) is also
semistable by (2.25), and we may assume (2.15a,b) holds for E ′. So we
have h0(E ′(m)) = χ(E ′(m)). Therefore the middle expression of (2.23)
is equal to

χ(E(m))χ(E ′(m)⊗ L⊗nl )− χ(E ′(m))χ(E(m)⊗ L⊗nl ).

This is nonnegative by the semistability of E. Therefore our claim
holds. �
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Proposition 2.26. There is an integer m2 such that for all m ≥ m2,
Qss is a closed subscheme of G(l, n)ss, where n = n(m), l = l(m).

We choose an m(≥ m1) so that h(m)/ad(h) > 1. We shall prove
that Qss → G(l, n)ss is proper. Let (R,m) be a discrete valuation
ring and its maximal ideal, and K the quotient field of R. We set
T := Spec(R) and U := Spec(K). Let U → Qss be a morphism such
that U → Qss → G(l, n)ss is extended to a morphism T → G(l, n)ss.
Since Q is a closed subscheme of G(l, n), there is a morphism T → Q,
i.e., there is a flat family of quotients:

Vm ⊗OY ⊗OT → E(m)→ 0.

Let α : Vm⊗W ⊗R→ pT∗(E(m)⊗L⊗n) be the quotient of Vm⊗W ⊗R
corresponding to the morphism T → G(l, n)ss. We set E := E ⊗R/m.

Claim 1. Vm → H0(E(m)) is injective.

Proof. We set V ′ := Ker(Vm → H0(E(m))). Then α(V ′ ⊗ W ) = 0.
Hence we get

0 ≤ dimVm dim[α(V ′ ⊗W )]− dimV ′ dim[α(Vm ⊗W )]

=− dimV ′ dim[α(Vm ⊗W )] ≤ 0.

Therefore V ′ = 0. �

Claim 2. There is a rational number λ which depends on h such that
E is of type λ.

Proof. By [26, Lem. 1.17] (see also [8, 4.4.2]) there is a purely d-
dimensional sheaf F with the Hilbert polynomial h(x, 0) and a ho-
momorphism p∗(E)→ F whose kernel is a coherent sheaf of dimension
less than d. Note that the assumption in [26, Lem. 1.17] that p∗(E)
can be deformed to a pure sheaf is satisfied by our definition of E. We
shall first check that F is of type λ. We need to check the inequality
in Definition 2.10(1b) for the maximal destabilizing subsheaf of F . Let
F → F ′′ be the corresponding quotient, which is semistable. We set
E ′ := Ker(p∗(E) → F ′′) and E ′′ := Im(p∗(E) → F ′′). Since F ′′ is
semistable, (2.12) gives

(2.27)
1

d!

[
m+

ad−1(F ′′)

ad(F ′′)
+ c

]d
+

≥ h0(F ′′(m)))

ad(F ′′)
≥ h0(E ′′(m))

ad(E ′′)
,

where we have used h0(E ′′(m)) ≤ h0(F ′′(m)) and ad(E
′′) = ad(F

′′) in
the second inequality.
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We note that Vm → H0(p∗(E)(m)) is injective by Claim 1. We set
V ′ := Vm ∩H0(E ′(m)). Then

(2.28) h0(E ′′(m)) ≥ dimVm − dimV ′.

Let E1(m) be the image of V ′ ⊗ OY → E(m). Then E1 comes from
(E, V ′) ∈ F . (We have denoted the corresponding sheaf by E ′ above,
but we change the notation as it is already used for a different sheaf.)
Since E ′′ is purely d-dimensional and (p∗(E1) +E ′)/E ′ is supported on
Z, we have p∗(E1) ⊂ E ′. Therefore

(2.29) ad(E1) ≤ ad(E
′) = ad(E)− ad(E ′′).

We write ε := 1/2h(m, 0) ad(E)! the constant appearing in Lemma 2.21(2)
for brevity. Then

h0(E ′′(m))

ad(E ′′)
≥ dimVm − dimV ′

ad(E ′′)
(by (2.28))

≥ dimVm
ad(E ′′)

(
1− dim[α(V ′ ⊗W )]

dim[α(Vm ⊗W )]

)
(by the semistability of α)

≥ dimVm
ad(E ′′)

(
1− ad(E1)

ad(E)
− ε
)

(by Lemma 2.21(2))

≥ dimVm
ad(E ′′)

(
ad(E

′′)

ad(E)
− ε
)

(by (2.29))

≥ dimVm

(
1

ad(E)
− ε
)

(as ad(E
′′) ≥ 1).

There is a rational number λ1 and an integer m4 ≥ λ1−ad−1(E)/ad(E)
which depend on h(x, 0) such that

dimVm

(
1

ad(E)
− ε
)

=
dimVm
ad(E)

− 1

2ad(E)!
≥ 1

d!

(
m+

ad−1(E)

ad(E)
− λ1

)d
for m ≥ m4. Combining this with the above inequality and (2.27), we
get

1

d!

(
m+

ad−1(F ′′)

ad(F ′′)
+ c

)
≥ 0

and

(2.30)
ad−1(E)

ad(E)
− λ1 ≤

ad−1(F ′′)

ad(F ′′)
+ c

for m ≥ m4. Hence F is of type λ := (λ1 + c)ad(E).
We set m2 := max{m4,m(λ)} and take m ≥ m2. We consider

Vm = H0(p∗(E)(m)) → H0(F (m)) and let V ′ be the kernel. Then
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J := Im(V ′ ⊗ OY → E(m)), restricted to Y \ p−1(Z), is of dimension
less than d. Hence we get ad(J) = 0. By Lemma 2.21(2) (applied to
E ′ := J) and Proposition 2.18, we have V ′ = 0. Thus H0(π∗(E)(m))→
H0(F (m)) is injective. But both have dimension equal to h(m, 0),
and hence they are isomorphic. Since H0(F (m)) ⊗ OX → F (m) is
surjective, p∗(E) → F must be surjective. As they have the same
Hilbert polynomials, they are isomorphic. Therefore p∗(E) is of pure
dimension d, of type λ and Vm → H0(E(m)) is an isomorphism. Thus
we complete the proof of Claim 2. �

Proof of Proposition 2.26. Finally we need to show that E is semistable.
Then it gives the lifting T → Qss and finish the proof that Qss →
G(l, n)ss is proper.

Assume that there is an exact sequence

0→ E1 → E → E2 → 0

such that E1 ∈ Per(X/Y ) and E1 destabilizes the semistability. Then
(2.14) is satisfied, so (E1 ⊂ E) ∈ U , so E1 satisfies (2.15). Since
α ∈ G(l, n) corresponding to E is semistable, we have the inequality in
Proposition 2.18 for V ′ := H0(E1(m)) ⊂ H0(E) = Vm. But by (2.20)
the inequality is equivalent to

χ(E1(m))

χ(E1(m)⊗ L⊗n(m)
l(m) )

≤ χ(E(m))

χ(E(m)⊗ L⊗n(m)
l(m) )

,

which means that E1 is not a destabilizing subsheaf. Therefore E is
semistable. �

By standard arguments, we see that SL(Vm)s, s ∈ Qss is a closed or-
bit if and only if the corresponding semistable perverse coherent sheaf E
is isomorphic to

⊕
iEi, where Ei are stable perverse coherent sheaves.

This completes the proof of Theorem 2.9.

3. Wall-crossing

Hereafter we only consider the case when p : Y = X̂ → X is the
blow-up of a point 0 in a nonsingular projective surface X. Let OX(1)

be an ample line bundle on X and let M̂m(c) be the moduli space of
objects E such that E(−mC) is stable perverse coherent with Chern

character c ∈ H∗(X̂). We say E is m-stable if this stability condition is
satisfied. When m = 0 this was denoted by Mp

Y/X/C(c) in Theorem 2.9.

We assume that r(c) > 0 and gcd ((c1, p
∗OX(1)), r(c)) = 1, then µ-

stability and µ-semistability (and hence also (semi)stability) are equiv-

alent. Then E is stable perverse coherent if and only if E ∈ Coh(X̂)∩
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Per(X̂/X) and p∗(E) is µ-stable by Lemma 2.6. In particular, we
have M

p

Y/X/C(c) = Mp
Y/X/C(c) in the notation in Theorem 2.9. This

assumption is essential to compare moduli spaces on X̂ and X. See
Lemma 2.8 that the relation of stabilities is delicate if we do not assume
the condition.

In case of framed sheaves on P̂2 = Ĉ2 ∪ `∞, moduli spaces corre-

sponding to M̂m(c) for various m are constructed by GIT quotients
of the common variety with respect to various choices of polarizations
in the quiver description. From a general construction by Thaddeus
[27], we can construct a diagram (∗) in Introduction, which induces a

flip M̂m(c) 99K M̂m+1(c) under some mild assumptions. Unfortunately

our spaces M̂m(c) and M̂m+1(c) are not quotients of a common space.

Therefore we must construct the space M̂m,m+1(c) and the diagram by
hand. This will be done in this section. We also study the fibers of ξm
and ξ+

m. Under a condition (= [27, (4.4)]) Thaddeus showed that fibers
are weighted projective spaces. This condition (even in the framed
case) is not satisfied, but we will show that the fibers are Grassmanns.

We have an isomorphism M̂m(c) ∼= M̂0(ce−m[C]) given by E 7→
E(−mC), twisting by the line bundle OX̂(−mC). Therefore we only

need to consider the case m = 0. But we also use M̂m(c) to simplify
the notation, and make the change of moduli spaces apparent.

3.1. A distinguished chamber – torsion free sheaves on blow-
down. As is explained above, we restrict ourselves to the case m = 0
in this subsection.

By the definition of M̂0(c) we have a morphism

(3.1)
ξ : M̂0(c) → MX(p∗(c))

E 7→ p∗(E),

where MX(p∗(c)) is the moduli space of µ-stable sheaves on X.
Here p∗(c) is defined so that it is compatible with the Riemann-

Roch formula. So it is twisted from the usual push-forward homo-

morphism as p∗(c) = pusual
∗ (c td X̂)(tdX)−1. In particular, we have

p∗(e) = p∗(ch(OC(−1))) = 0. This convention will be used throughout
this paper.

Lemma 3.2. Let E ∈ M̂0(c). Then we have Hom(E,OC(−1)) =
Ext2(E,OC(−1)) = 0 and Hom(OC , E) = Ext2(OC , E) = 0. In par-
ticular, χ(E,OC(−1)) = χ(OC , E) = −(c1(E), [C]) ≤ 0. (cf. [25,
Lem. 7.3]).
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Proof. By the Serre duality, we have Ext2(E,OC(−1)) = Hom(OC , E)∨

and Ext2(OC , E) = Hom(E,OC(−1))∨. Then the assertions follow
from the definition of stable perverse coherent sheaves. �

We first consider the case (c1, [C]) = 0.

Proposition 3.3 (cf. [25, Prop. 7.4]). The morphism ξ : M̂0(c) →
MX(p∗(c)) is an isomorphism if (c1, [C]) = 0.

Proof. We have dim Ext1(E,OC(−1)) = χ(E,OC(−1)) = −(c1(E), [C]) =
0. Therefore we have E = p∗p∗(E) by Proposition 1.9(2). �

Besides the morphism ξ : M̂0(c)→MX(p∗(c)), we have another nat-
ural morphism:

Lemma 3.4. We have a morphism

η : M̂0(c) → MX(p∗(c) + n pt))
E 7→ p∗(E(C)),

where n = (c1, [C]).

Proof. From Lemma 1.10 the direct image sheaf p∗(E(C)) has the
Chern character p∗(ch(E)e[C]) = p∗(ce

[C]) = p∗(c) + n pt. Therefore
it is enough to show that p∗(E(C)) is µ-stable.

As Hom(OC , E(C)) = Hom(OC(1), E) = 0 from Hom(OC , E) = 0,
p∗(E(C)) is torsion free by Lemma 1.11.

Consider p∗(E) → p∗(E(C)). This is an isomorphism outside the
point 0. Therefore the kernel is 0 since p∗(E) is torsion free by the as-
sumption. Since p∗(E) is µ-stable and p∗(E(C))/p∗(E) is 0-dimensional,
p∗(E(C)) is also µ-stable. �

3.2. The morphism to the Uhlenbeck compactification down-
stairs. LetMX

0 (p∗(c)) be the Uhlenbeck compactifiction, that is
⊔
MX

lf (p∗(c)+

m pt)×SmX, where MX
lf (p∗(c) +m pt) is the moduli space of µ-stable

locally free sheaves on X. Then J. Li [12] defined a scheme structure
which is projective, and there is a projective morphism π : MX(p∗(c))red →
MX

0 (p∗(c)) sending E to (E∨∨, Supp(E∨∨/E)). In [24, F.11] the authors
defined a projective morphism π̂ from the moduli space of torsion-free

sheaves on X̂ to MX
0 (p∗(c)). One of essential ingredients of the con-

struction was a morphism to MX(p∗(ce
−m[C])) for sufficiently large m.

Since we have the natural morphism M̂m(c) → MX(ce−m[C]) by the
construcion in the previous subsection, we can apply the same method
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to define a projective morphism
(3.5)

π̂ : M̂m(c)red → MX
0 (p∗(c))

E 7→ (p∗(E)∨∨, Supp(p∗(E)∨∨/p∗(E)) + Supp(R1p∗(E))) .

3.3. Smoothness.

Lemma 3.6. Let E ∈ M̂m(c). We have an injective homomorphism

Hom(E,E ⊗KX̂) ↪→ Hom(p∗(E)∨∨, p∗(E)∨∨ ⊗KX).

Proof. Since we have Hom(E,E ⊗KX̂) ∼= Hom(E(−mC), E(−mC)⊗
KX̂) and p∗(E)∨∨ ∼= p∗(E(−mC))∨∨, we may assume m = 0.

If E is perverse coherent, Lemma 1.2(3) implies that the natural
homomorphism p∗p∗(E)→ E induces an injection

Hom(E,E⊗KX̂) ↪→ Hom(p∗p∗(E), E⊗KX̂) ∼= Hom(p∗(E), p∗(E(C))⊗KX)).

We compose it with the induced homomorphism from p∗(E(C)) ↪→
p∗(E(C))∨∨ = p∗(E)∨∨ to replace the right most term by Hom(p∗(E), p∗(E)∨∨⊗
KX). Let us consider the exact sequence 0→ p∗(E)→ p∗(E)∨∨ → Q→
0. Since p∗(E)∨∨ is torsion free, we have Hom(Q, p∗(E)∨∨ ⊗KX) = 0.
We have Ext1(Q, p∗(E)∨∨ ⊗ KX) ∼= Ext1(p∗(E)∨∨∨, Q)∨ = 0 as Q is
0-dimensional. Therefore we have

Hom(p∗(E)∨∨, p∗(E)∨∨ ⊗KX) ∼= Hom(p∗(E), p∗(E)∨∨ ⊗KX). �

Corollary 3.7. If (OX(1), KX) < 0, then M̂m(c) is nonsingular of
dimension 2r∆(c) − (r2 − 1)χ(OX) + h1(OX), where ∆(c) :=

∫
X̂
c2 −

(r − 1)/(2r)c2
1.

In general, the number 2r∆(c)−(r2−1)χ(OX)+h1(OX) is called the

expected dimension of M̂m(c), and denoted by exp dim M̂m(c). If any ir-

reducible component of M̂m(c) has dimension equal to exp dim M̂m(c),

then we say M̂m(c) has the expected dimension. By the results of
Donaldson, Zuo, Gieseker-Li, O’Grady (see [8, §9]) there exists a con-
stant ∆0 depending only on X, OX(1) and r(c) such that MX(c) is
irreducible, normal, locally of complete intersection, and of expected

dimension for ∆(c) ≥ ∆0. The argument is applicable to M̂m(c).

Proposition 3.8. There exists a constant ∆0 such that M̂m(c) is ir-
reducible, normal and of expected dimension if ∆(c) ≥ ∆0.
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3.4. Evaluation homomorphisms. This subsection is the technical
heart of this paper. Starting from a stable perverse coherent sheaf and
a vector subspace in the space of homomorphisms from OC(−1) or to
OC , we construct a new stable perverse coherent sheaf. It will become
a key to analyze the change of stability conditions.

Lemma 3.9. (1) Let E ∈ Per(X̂/X) ∩ Coh(X̂) such that p∗(E) is
torsion free, and let V ⊂ Hom(OC(−1), E) be a subspace. Then the
evaluation homomorphism induces an exact sequence (in the category

Coh(X̂))

(3.10) 0→ V ⊗OC(−1)
ev−→ E → E ′ := Coker(ev)→ 0,

and Coker(ev) ∈ Per(X̂/X)(∩Coh(X̂)).

(2) Let E ′ ∈ Per(X̂/X)∩Coh(X̂) and let V ′ ⊂ Ext1(E ′,OC(−1)) be

a subspace. Then the associated extension (in Coh(X̂))

0→ (V ′)∨ ⊗OC(−1)→ E → E ′ → 0

defines E ∈ Per(X̂/X)(∩Coh(X̂)).

(3) Let F ∈ Per(X̂/X)∩Coh(X̂) and let U ⊂ Hom(F,OC) be a sub-
space. Then the evaluation homomorphism induces an exact sequence

(in Coh(X̂))

(3.11) 0→ F ′ := Ker(ev)→ F
ev−→ U∨ ⊗OC → 0,

and F ′ ∈ Per(X̂/X)(∩Coh(X̂)).

(4) Let F ′ ∈ Per(X̂/X) ∩ Coh(X̂) and let U ′ ⊂ Ext1(OC , F ′) be a

subspace. The associated extension (in Coh(X̂))

0→ F ′ → F → U ′ ⊗OC → 0

defines F ∈ Per(X̂/X)(∩Coh(X̂)) satisfying Hom(OC , F ) ∼= Hom(OC , F ′).

In (1) we have an exact sequence in Per(X̂/X):

0→ E → E ′ → V ⊗OC(−1)[1]→ 0.

This corresponds to the inclusion V ⊂ Hom(OC(−1), E) ∼= Ext1(OC(−1)[1], E).
This makes sense without the assumption that p∗(E) is torsion free, but
E ′ may not be a sheaf in general. Similarly in (2) we have an exact

sequence in Per(X̂/X):

0→ E → E ′ → (V ′)∨ ⊗OC(−1)[1]→ 0

corresponding to the inclusion V ′ ⊂ Ext1(E ′,OC(−1)) = Hom(E ′,OC(−1)[1]).

In (3), (4), the natural exact sequences in Coh(X̂) are also exact se-

quences in Per(X̂/X).
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In the following there are two ways to prove the assertion. One is

working in the category Coh(X̂) and check the condition in Proposi-
tion 1.9(1) to show that sheaves are perverse coherent. The other is

working in the category Per(X̂/X) and check the condition H−1( ) = 0
to show that objects are, in fact, sheaves. We will give proofs of (2),(3)
in the first way, and ones of (1),(4) in the second way. We leave other
proofs as an exercise for a reader.

Proof of Lemma 3.9. (1) Let 0 → E → E ′ → V ⊗ OC(−1)[1] → 0 be

the extension in Per(X̂/X) corresponding to V ⊂ Ext1(OC(−1)[1], E).
Then we have Rp∗(E) ∼= Rp∗(E

′). Applying Rp∗( ) to an exact se-

quence 0 → H−1(E ′)[1] → E ′ → H0(E ′) → 0 in Per(X̂/X), we get
an injective homomorphism R1p∗(H

−1(E ′)) → Rp∗(E
′) ∼= Rp∗(E) ∼=

p∗(E). But R1p∗(H
−1(E ′)) is a torsion, so we have R1p∗(H

−1(E ′)) = 0
from our assumption that p∗(E) is torsion free. Therefore H−1(E ′) ∼=
OC(−1)⊕s by Lemma 1.7(2).

From the first exact sequence, we get a long exact sequence

0→ Hom(OC(−1)[1], E)→ Hom(OC(−1)[1], E ′)→ V → Ext1(OC(−1)[1], E ′)

The first term is 0 as it is Ext−1(OC(−1), E). The right most arrow is
injective by our choice. Therfore Hom(OC(−1)[1], E ′) = 0. Therefore
s must be 0. This shows E ′ is a sheaf.

(2) Applying Hom(•,OC(−1)) to the given exact sequence, we get

0→ Hom(E,OC(−1))→ V ′ → Ext1(E ′,OC(−1)).

By the construction the right most arrow is injective. Hence Hom(E,OC(−1)) =

0. Therefore E ∈ Per(X̂/X).

(3) We consider the following exact sequences in Coh(X̂):

(3.12)
0→ Ker(ev)→ F → Im(ev)→ 0,

0→ Im(ev)→ U∨ ⊗OC → Coker(ev)→ 0.

Applying Rp∗(OX̂(C) ⊗ •) to the second exact sequence, we have
Rp∗(Im(ev)⊗OX̂(C)) = 0,Rp∗(Coker(ev)⊗OX̂(C)) = 0. By Lemma 1.7(2),

we have Im(ev) ∼= O⊕aC , Coker(ev) ∼= O⊕bC for some a, b ∈ Z≥0.
Applying Hom(•,OC) to (3.12), we get

0→ Hom(Im(ev),OC)→ Hom(F,OC),

0→ Hom(Coker(ev),OC)→ U → Hom(Im(ev),OC).

As the composition of U → Hom(Im(ev),OC) → Hom(F,OC) is the
natural inclusion, the left homomorphism is injective. So Hom(Coker(ev),OC) =
0. But as we already observed Coker(ev) = O⊕bC , this means Coker(ev) =
0. Hence ev is surjective.
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Applying R Hom(•,OC(−1)) to the first exact sequence of (3.12),
we get

0→ Hom(Ker(ev),OC(−1))→ Ext1(Im(ev),OC(−1)).

But as Im(ev) ∼= U∨⊗OC , the latter space is 0, hence Hom(Ker(ev),OC(−1)) =

0. Therefore Ker(ev) ∈ Per(X̂/X).

(4) Noticing OC ∈ Per(X̂/X), we consider the extension in the cat-

egory Per(X̂/X) instead of Coh(X̂). Then H−1(F ) = 0 as H−1(F ′) =

0 = H−1(OC ⊗U). Therefore F ∈ Coh(X̂). So the extension is also an

exact sequence in Coh(X̂). �

Lemma 3.13. In the following (a) (a = 1, 2, 3, 4) we suppose E, E ′,
F , F ′ are as in the corresponding Lemma 3.9(a).

(1) If E is stable, then so is E ′.
(2) If E ′ is stable, then so is E.
(3) If F is stable, then so is F ′.
(4) If F ′ is stable, then so is F .

Proof. (1) As p∗(E) ∼= p∗(E
′) from the exact sequence (3.10) and

Rp∗(OC(−1)) = 0, the assertion is clear.
(2) The same argument as in (1).
(3) From the exact sequence 0→ F ′ := Ker(ev)→ F → U∨⊗OC →

0 we get an exact sequence

(3.14) 0→ p∗(F
′)→ p∗(F )→ U∨ ⊗ C0 → 0.

As p∗(F ) is torsion free, so is p∗(F
′). Note that p∗(F

′) and p∗(F ) have
the same µ, as they differ only at 0. Therefore p∗(F

′) is also µ-stable,
and hence F ′ is stable.

(4) Since F ′ is stable, p∗(F
′) is torsion free, so we have Hom(OC , F ′) =

0 by Lemma 1.11. Therefore Hom(OC , F ) = 0 by the last assertion in
Lemma 3.9(4), so p∗(F ) is also torsion free. We have the exact sequence
(3.14). Then by the same argument as in Lemma 3.4, the µ-stability
of p∗(F

′) and the torsion freeness of p∗(F ) implies the µ-stability of
p∗(F ). �

3.5. Stable sheaves becoming unstable after the wall-crossing.
Note that

E ∈ M̂0(c) =⇒ Hom(E,OC(−1)) = 0, Hom(OC , E) = 0,

E ∈ M̂1(c) =⇒ Hom(E,OC(−2)) = 0, Hom(OC(−1), E) = 0.
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Note also that

Hom(E,OC(−1)) = 0 =⇒ Hom(E,OC(−2)) = 0,

Hom(OC(−1), E) = 0 =⇒ Hom(OC , E) = 0.

The following proposition says that these are the only conditions
which are altered under the wall-crossing.

Proposition 3.15. (1) Suppose E− is 0-stable, but not 1-stable, i.e.
E− is stable perverse coherent, but E−(−C) is not. Then V := Hom(OC(−1), E−) 6=
0 and the evaluation homomorphism gives rise an exact sequence

0→ V ⊗OC(−1)→ E− → E ′ → 0

such that E ′ is both 0-stable and 1-stable. Moreover the induced homo-
morphism V → Ext1(E ′,OC(−1)) is injective.

Conversely if E ′ is both 0 and 1-stable and E− is the extension cor-
responding to a nonzero subspace V of Ext1(E ′,OC(−1)) as above.
Then E− is 0-stable, but not 1-stable, and V is naturally identified
with Hom(OC(−1), E−).

These give a bijection

{E− ∈ M̂0(c) \ M̂1(c) | dim Hom(OC(−1), E−) = i}

←→ {(E ′, V ) | E ′ ∈ M̂0(c−ie)∩M̂1(c−ie), V ∈ Gr(i,Ext1(E ′,OC(−1))}.

(2) Suppose E+ ∈ M̂1(c)\M̂0(c). Then U := Hom(E+,OC(−1)) 6= 0
and the evaluation homomorphism gives rise an exact sequence

0→ E ′ → E+ → U∨ ⊗OC(−1)→ 0

such that E ′ is both 0-stable and 1-stable. Moreover it induces an in-
jection U∨ → Ext1(OC(−1), E ′).

Conversely if E ′ is both 0 and 1-stable and E+ is the extension
corresponding to a nonzero subspace U∨ of Ext1(OC(−1), E ′). Then
E+ is 1-stable, but not 0-stable, and U∨ is naturally identified with
Hom(E+,OC(−1))∨.

These give a bijection

{E+ ∈ M̂1(c) \ M̂0(c) | dim Hom(E+,OC(−1)) = i}

←→ {(E ′, U∨) | E ′ ∈ M̂0(c−ie)∩M̂1(c−ie), U∨ ∈ Gr(i,Ext1(OC(−1), E ′)}.

Proof. (1) By Lemma 3.9(1) we can consruct the exact sequence as in
the statement. Then E ′ is stable by Lemma 3.13(1). Note also that we
have Hom(OC(−1), E ′) = 0 from the exact sequence and our choice of
V . Therefore p∗(E

′(−C)) is torsion free by Lemma 1.11.
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Next consider 0 → V ⊗ OC → E−(−C) → E ′(−C) → 0. We have
an injective homomorphism

0→ Hom(E ′(−C),OC(−1))→ Hom(E−(−C),OC(−1)) ∼= Hom(E−,OC(−2)).

But Hom(E−,OC(−2)) = 0 as Hom(E−,OC(−1)) = 0 from the as-

sumption. Therefore E ′(−C) ∈ Per(X̂/X). Since p∗(E
′) is µ-stable

and p∗(E
′)/p∗(E

′(−C)) is 0-dimensional, p∗(E
′(−C)) is also µ-stable.

This shows E ′(−C) is stable, and hence E ′ is both 0 and 1-stable. As
E(−C) is not stable by the assumption, we have V 6= 0. The injection
V → Ext1(E ′,OC(−1)) comes from the long exact sequence associated
with the given exact sequence, together with Hom(E−,OC(−1)) = 0.

Let us show the converse. From Lemma 3.13(2), E− is stable. As
Hom(OC(−1), E−) 6= 0, E− is not 1-stable. Moreover we have a natural
isomorphism V ∼= Hom(OC(−1), E−) induced from the given exact
sequence together with Hom(OC(−1), E ′) = 0.

It is also clear that these constructions give a bijection.

(2) As E+(−C) is stable by the assumption, E+(−C) ∈ Per(X̂/X).
Therefore we can apply Lemma 3.13(3) for F = E+(−C) with U =
Hom(F,OC) ∼= Hom(E+,OC(−1)). Then the corresponding exact se-
quence 0 → E ′ → E+ → U∨ ⊗ OC(−1) → 0 defines E ′ such that
E ′(−C) is stable, i.e. E ′ is 1-stable.

Note Hom(E ′,OC(−1)) = 0 from the exact sequence and our choice

of U . Then E ′ ∈ Per(X̂/X) by Proposition 1.9(1). By Lemma 3.4
we have p∗(E

′) is µ-stable, as E ′(−C) is stable. Therefore E ′ is also
0-stable. The injection U∨ → Ext1(OC(−1), E ′) is induced from the
given exact sequence and Hom(OC(−1), E+) = 0.

Let us show the converse. From Lemma 3.13(4) applied to F ′ :=
E ′(−C) with U ′ := Ext1(OC , E ′(−C)), E+(−C) is stable, i.e. E+ is
1-stable. A natural isomorphism U∨ ∼= Hom(E+,OC(−1))∨ is induced
from the given exact sequence and Hom(E ′,OC(−1)) = 0. �

Proposition 3.16. Let E− ∈ M̂m(c) (resp. E+ ∈ M̂m+1(c)) and sup-
pose that its image under π̂ in (3.5) has the multiplicity N at 0 in its
symmetric product part. If m > N , then E− (resp. E+) is (m+1)-stable
(resp. m-stable).

Proof. Suppose that E− is m-stable, but not (m + 1)-stable for some
m ≥ 0. From Proposition 3.15(1) i := dim Hom(OC(−m− 1), E−) > 0
and we have an exact sequence

0→ p∗(E
−)→ p∗(E

′)→ C⊕im0 → R1p∗(E
−)→ R1p∗(E

′)→ 0.

As E−, E ′ arem-stable, and hence Hom(OC(−m), E ′), Hom(OC(−m), E−)
are 0. Therefore we have Hom(OC , E−) = 0 = Hom(OC , E ′). By
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Lemma 1.11 p∗(E
−), p∗(E

′) are torsion free. Therefore p∗(E
−) →

p∗(E
−)∨∨, p∗(E

′) → p∗(E
′)∨∨ are injective. From the above exact se-

quence, we have p∗(E
−)∨∨ ∼= p∗(E

′)∨∨. Therefore we have an exact
sequence

0→ p∗(E
′)/p∗(E

−)→ p∗(E
−)∨∨/p∗(E

−)→ p∗(E
′)∨∨/p∗(E

′)→ 0.

We get

len0(p∗(E
−)∨∨/p∗(E

−)) ≥ len0(p∗(E
′)∨∨/p∗(E

′)) + im− len0(R1p∗(E
−))

≥ m− len0(R1p∗(E
−)),

where len0 is the length of the stalk at 0. This inequality is impossible
if m > len0(p∗(E

−)∨∨/p∗(E
−)) + len0(R1p∗(E

−)). From the definition
of π̂, we get the assertion. The proof for E+ is the same. �

3.6. Brill-Noether locus and moduli of coherent systems. Mo-
tivated by Proposition 3.15, we introduce the Brill-Noether locus:

Definition 3.17 (Brill-Noether locus). We set

M̂m(c)i := {E− ∈ M̂m(c) | dim Hom(OC(−m− 1), E−) = i},

M̂m+1(c)i := {E+ ∈ M̂m+1(c) | dim Hom(E+,OC(−m− 1)) = i},

When we replace ’= i’ by ’≥ i’ in the right hand side, the correspond-
ing moduli spaces are denoted by the left hand side with ’i’ replaced
by ’≥ i’.

The scheme structures on M̂m(c)i, M̂
m+1(c)i are defined as in [14,

5.5] (cf. [1, Ch. IV]). Let us briefly explain an essential point. Let E−
be a universal family over X̂ × M̂m(c) and let f be the projection to

M̂m(c). Then we construct an exact sequence
(3.18)

0→ Homf (OC(−m−1), E−)→ F0
ρ−→ F1 → Ext1

f (OC(−m−1), E−)→ 0

such that F0, F1 are vector bundles. Then we define M̂m(c)≥i to be

the zero locus of
∧rkF0+1−iρ. Moreover M̂m(c)i is the open subscheme

M̂m(c)≥i \ M̂m(c)≥i+1 of M̂m(c)≥i.

In Proposition 3.15 we have E− ∈ M̂0(c)i, E
+ ∈ M̂1(c)i. Therefore

Proposition 3.15 says that when we change the stability condition from

0 to 1, M̂0(c)≥1 is replaced by M̂1(c)≥1, and M̂0(c)0
∼= M̂0(c)∩M̂1(c) ∼=

M̂1(c)0 is preserved. We have a set-theoretical diagram

(3.19)
M̂0(c)

**

M̂1(c)
tt⊔

i M̂
0(c− ie)0

∼=
⊔
i M̂

1(c− ie)0
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and fibers over E ′ ∈ M̂0(c − ie)0 of the left and right arrows are
Grassmann Gr(i,Ext1(E ′,OC(−1))) and Gr(i,Ext1(OC(−1), E ′)) re-
spectively. This is similar to (∗), but we need to endow the target⊔
i M̂

0(c− ie)0 with a scheme structure.
Let us introduce moduli spaces of coherent systems in order to study

Brill-Noether loci more closely.

Definition 3.20. Let M̂(c, n) be the moduli space of coherent systems
(E,

V ⊂ Hom(OC(−1), E)) such that E ∈ M̂0(c) and dimV = n.

The construction is standard: M̂(c, n) is constructed as a closed

subscheme of a suitable Grassmannian bundle over M̂0(c). We have a

natural morphism q1 : M̂(c, n) → M̂0(c). We have a universal family
V which is a rank n vector subbundle of q∗1(F0) contained in Ker(q∗1ρ),
where F1 and ρ are as in (3.18).

For (E, V ) ∈ M̂(c, n), we set E ′ := Coker(ev : V ⊗ OC(−1) → E).

By Lemma 3.13(1), we have E ′ ∈ M̂0(c−ne). Thus we get a morphism

q2 : M̂(c, n)→ M̂0(c− ne).
Therefore we have the following diagram:

(3.21)
M̂(c, n)

q1
vv

q2
))

M̂0(c) M̂0(c− ne)

Conversely suppose that E ′ ∈ M̂0(c − ne) and an n-dimensional
subspace V ∨ ⊂ Ext1(E ′,OC(−1)) are given. Then we can consider
the corresponding extension (3.10). By Lemma 3.13(2), we have E ∈
M̂0(c). Moreover, the exact sequence (3.10) induces an injection V →
Hom(OC(−1), E). Thus (E, V ) ∈ M̂(c, n). This gives an isomorphism

from M̂(c, n) to the moduli space of ‘dual’ coherent systems (E ′, V ∨ ⊂
Ext1(E ′,OC(−1))) such that E ′ ∈ M̂0(c− ne), dimV ∨ = n.

Note Hom(E ′,OC(−1)) = 0 = Ext2(E ′,OC(−1)) and dim Ext1(E ′,OC(−1))
= (c1, [C]) + n by Lemma 3.2. This is a constant independent of

E ′ ∈ M̂0(c − ne). Let E ′ be an universal family over X̂ × M̂0(c − ne)
and let f be the projection to M̂0(c − ne). By the above observation

Ext1
f (E ′,OC(−1)) is a vector bundle of rank (c1, [C])+n over M̂0(c−ne).

Therefore

Lemma 3.22. The projection q2 identifies M̂(c, n) with the Grassmann
bundle Gr(n,Ext1

f (E ′,OC(−1))) of n-dimensional subspaces associated
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with the vector bundle Ext1
f (E ′,OC(−1)) over M̂0(c−ne). In particular,

we have

dim M̂(c, n) = dim M̂0(c− ne) + n(c1, [C]),

exp dim M̂(c, n) = exp dim M̂0(c)− n(n+ r + (c1, [C])).

If (OX(1), KX) < 0, then M̂(c, n) is smooth and of expected dimension,
provided it is nonempty.

Proposition 3.23. Let us consider the diagram in (3.21).

(1) The image of q1 : M̂(c, n) → M̂0(c) is the Brill-Noether locus

M̂0(c)≥n.

(2) The morphism q1 : M̂(c, n)→ M̂0(c)≥n becomes an isomorphism

if we restrict it to the open subscheme q−1
1 (M̂0(c)n).

(3) M̂0(c)n is a Gr(n, n+ (c1, [C]))-bundle over M̂0(c− ne)0 via the
restriction of q2.

(4) Suppose M̂0(c− ne) is irreducible. Then M̂0(c)n = M̂0(c)≥n.

(5) Suppose that M̂0(c) and M̂0(c−ne) are irreducible and of expected

dimension. Suppose further that M̂0(c−ne) is normal. Then the Brill-

Noether locus M̂0(c)≥n = M̂0(c)n is Cohen-Macauley and normal.

Proof. (1) is clear.

(2) We use the following facts: (i) M̂(c, n) → M̂0(c) is projective,
(ii) we have an exact sequence

C→ V ∨ ⊗ V g→ Ext1(E ′, E)→Ext1(E,E),

with V = Hom(OC(−1), E), (iii) the Zariski tangent space of M̂(c, n)
at (E, V ) is coker g = Ext1(E ′, E)/(V ∨ ⊗ V ). (See [7].)

(3) follows from Lemma 3.22 and (1).

(4) From the assumption and Lemma 3.22 M̂(c, n) is irreducible.
Then the assertion follows from (1).

(5) From the assumption M̂0(c) is a local complete intersection ([8,
Th. 4.5.8]), and hence Cohen-Macauley. Since the determinantal sub-

variety M̂0(c)≥n has the correct codimension codimM̂0(c)(M̂
0(c)≥n) =

n(n+r+(c1, C)), it is also Cohen-Macauley. From the assumption and

Lemma 3.22 M̂(c, n) is normal. Therefore M̂0(c)≥n is also normal. �

Remark 3.24. If we take ∆(c − ne) ≥ ∆0, where ∆0 is as in Proposi-

tion 3.8, M̂0(c), M̂0(c − ne), are irreducible, normal and of expected
dimension.
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Lemma 3.25. Suppose (OX(1), KX) < 0. If 2(c1, [C]) > 2r∆ − r −
1− (r2 − 1)χ(OX) + h1(OX), then M̂0(c)≥1 = ∅.

Proof. We may asume that (c1, [C]) ≥ 0.

Suppose that M̂0(c− ne) 6= ∅ for n > 0. Then

0 ≤ dim M̂0(c− ne)
= 2r∆(c)− n(n+ r + 2(c1, [C]))− (r2 − 1)χ(OX) + h1(OX)

≤ 2r∆(c)− (1 + r + 2(c1, [C]))− (r2 − 1)χ(OX) + h1(OX).

The result follows. �

Next we consider the corresponding study for another Brill-Noether

locus M̂1(c)i appearing in the other side of the wall.

Definition 3.26. Let N̂(c, n) be the moduli of coherent systems (E,U ⊂
Hom(E,OC(−1))) such that E ∈ M̂1(c) and dimU = n.

We have a natural morphism q′1 : N̂(c, n)→ M̂1(c).

For (E,U) ∈ N̂(c, n), we set E ′ := Ker(E → U∨ ⊗ OC(−1)). By

Lemma 3.13(3), we have E ′ ∈ M̂1(c− ne). We thus have the diagram:

(3.27)
N̂(c, n)

q′1
vv

q′2
))

M̂1(c) M̂1(c− ne).

Conversely suppose that E ′ ∈ M̂1(c − ne) and an n-dimensional
subspace U∨ ⊂ Ext1(OC(−1), E ′) are given. Then we can consider the
associated exact sequence

(3.28) 0→ E ′ → E → U∨ ⊗OC(−1)→ 0

by Lemma 3.13(4), we have E ∈ M̂1(c). Moreover (3.28) induces an

injection U ⊂ Hom(E,OC(−1)). Therefore (E,U) ∈ N̂(c, n).
Note Hom(OC(−1), E ′) = 0 = Ext2(OC(−1), E ′) and dim Ext1(OC(−1), E ′)

= (c1(E ′), [C]) + rkE ′ by Lemma 3.2. If E ′ denotes an universal sheaf

over M̂1(c − ne), then Ext1
f (OC(−1), E ′) is a vector bundle of rank

(c1, [C]) + n+ r over M̂1(c− ne).
We have

Lemma 3.29. The projection q′2 identifies N̂(c, n) with the Grassmann
bundle Gr(n,Ext1

f (OC(−1), E ′)) of n-dimensional subspaces associated

with the vector bundle Ext1
f (OC(−1), E ′) over M̂1(c−ne). In particular,
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we have

dim N̂(c, n) = dim M̂1(c− ne) + n(r + (c1, [C])),

exp dim N̂(c, n) = exp dim M̂1(c)− n(n+ (c1, [C])).

If ((OX(1), KX) < 0, then N̂(c, n) is smooth and of expected dimension,
provided it is nonempty.

We have the statements corresponding to Proposition 3.23. Since
they are very similar, we omit them.

Remark 3.30. As already mentioned in the introduction, a similar
Grassmann bundle structure has been observed in the contexts of quiver
varieties [18] and an exceptional bundle on K3 [29, 14] (see also [22]
for an exposition). The moduli spaces of coherent systems in [29] and
Hecke correspondences [18] play the same role connecting two moduli
spaces with different Chern classes. However, there is a sharp distinc-
tion between the above blowup case and the other cases, which can be
considered as the (−2)-curve. Namely the Grassmann bundle is defined
only on a Brill-Noether locus, as both Hom and Ext survive in general
for the other cases.

3.7. Contraction of the Brill-Noether locus. Consider M̂0(c) and
set n := (c1, [C]), e := ch(OC(−1)), c⊥ := c + ne. Then we have

(c⊥, [C]) = 0. Therefore we have M̂0(c⊥) ∼= MX(p∗(c⊥)) = MX(p∗(c))

by Proposition 3.3. Therefore ξ in (3.1) can be considered as ξ : M̂0(c)→
M̂0(c⊥). Explicitly it is given by ξ(E) = p∗(p∗(E)).

Proposition 3.31. Suppose n := (c1, [C]) ≥ 0. Let ξ be as in (3.1).

(1) ξ(M̂0(c)) is identified with the Brill-Noether locus M̂0(c⊥)≥n via

the above isomorphism. In particular, ξ(M̂0(c)) is a Cohen-Macauley

and normal subscheme of MX(p∗(c)), provided M̂0(c⊥), M̂0(c) are ir-

reducible and of expected dimension, and M̂0(c) is normal.

(2) ξ is an immersion on M̂0(c)0.

(3) Each Brill-Noether stratum M̂0(c⊥)n+i is isomorphic to M̂0(c−
ie)0, so M̂0(c⊥)≥n can be considered as a scheme structure on

⊔
i M̂

0(c−
ie)0 requested in (3.19).

(4) ξ maps M̂0(c)i to M̂0(c⊥)n+i, and it can be identified with the

Grassmann bundle M̂0(c)i → M̂0(c− ie)0 in (3.19) under the isomor-
phism in (3).
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Proof. We consider the following diagram:

M̂(c⊥, n)
q1
uu

q2

))

M̂0(c⊥)

∼=
))

M̂0(c)

ξ
uu

MX(p∗(c))

By Lemma 3.22 q2 is the Grassmann bundle of n-planes in a vector
bundle of rank (c1, [C]) = n. Therefore q2 is an isomorphism. Therefore
the image of ξ is identified with the image of q1. Hence (1) follows from
Proposition 3.23(1).

Moreover q1 is an immersion over q−1
1 (M̂0(c⊥)n) by Proposition 3.23(1).

Via the isomorphism q2 it is identified with M̂0(c)0. Hence we get (2).

(3) is also proved in a similar way. We consider M̂(c⊥, n+ i) and the
diagram

M̂(c⊥, n+ i)
q1

tt

q2
**

M̂0(c⊥) M̂0(c− ie)

Then q2 is again an isomorphism in this case also, and we have M̂0(c⊥)n+i
∼=

M̂(c⊥, n+ i)0
∼= M̂0(c− ie)0.

�

Let us constract the contraction in the other side of the wall. We
consider the diagram with a yet undefined morphism ξ+:

N̂(c⊥e
[C], n′)q′1

ss
q′2

))

M̂0(c⊥) ∼= M̂1(c⊥e
[C]) M̂1(c)

ξ+
tt

MX(p∗(c))
**∼=

where n′ = (c1, [C])+r, which is equal to the rank of the vector bundle

Ext1
f (OC(−1), E ′) over M̂1(c). Therefore q′2 is an isomorphism. Hence

we can define ξ+ so that the diagram commutes.

Proposition 3.32. Suppose n′ := (c1, [C]) + r ≥ 0.

(1) ξ+(M̂1(c)) is identified with the Brill-Noether locus M̂0(c⊥)≥n
′

via

the above isomorphism. In particular, ξ+(M̂1(c)) is a Cohen-Macauley

and normal subscheme of MX(p∗(c)), provided M̂0(c⊥), M̂1(c) are ir-

reducible and of expected dimension, and M̂1(c) is normal.

(2) ξ+ is an immersion on M̂1(c)0.
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(3) Each Brill-Noether stratum M̂0(c⊥)n
′+i is isomorphic to M̂1(c−

ie)0, so M̂0(c⊥)≥n
′

can be considered as a scheme structure on
⊔
i M̂

1(c−
ie)0 requested in (3.19).

(4) ξ+ maps M̂1(c)i to M̂0(c⊥)n
′+i, and it can be identified with the

Grassmann bundle M̂1(c)i → M̂1(c− ie)0 in (3.19) under the isomor-
phism in (3).

The proof is the same as one for Proposition 3.31, as we have the

commutative diagram. We just describe how E ∈ M̂1(c) is mapped
under the diagram:

(0→ E → E ′ → U∨ ⊗OC(−1)→ 0)&

rr

�
∼= ,,E ′(−C)←→ E ′ E'

ssp∗(E
′(−C))

,,∼=

�

We finally need to show that the targets of ξ and ξ+ are the same.

Proposition 3.33. Suppose that (c1(c⊥), [C]) = 0. Then M̂0(c⊥)≥n+r =

M̂0(c⊥)≥n. In fact, the both Brill-Noether loci are identified with

{F ∈MX(p∗(c⊥)) | dim Hom(F,C0) ≥ n+ r}

under the isomorphism M̂0(c⊥) ∼= MX(p∗(c⊥)).

Proof. Let F be a universal family over X ×MX(p∗(c⊥)). Let 0 →
V →W → F → 0 be a locally free resolution.

Then M̂0(c⊥)≥n is defined by the zero locus of
∧−χ(OC(−1),p∗(V))+1−nρ,

where

0 // Homf (OC(−1), p∗(F))

qq

Ext1
f (OC(−1), p∗(V)) ρ

// Ext1
f (OC(−1), p∗(W)) // Ext1

f (OC(−1), p∗(F))

qq0.

On the other hand, M̂0(c⊥)≥n+r is defined by the zero locus of∧−χ(p∗(W),OC)+1−n−rρ′, where

0 // Homf (p
∗(F),OC) // Homf (p

∗(W),OC)
ρ′
// Homf (p

∗(V),OC)

qq

Ext1
f (p
∗(F),OC) // 0

The transpose of ρ is given by

Ext1
f (p
∗(W),OC(−2))→ Ext1

f (p
∗(V),OC(−2)),



40 HIRAKU NAKAJIMA AND KŌTA YOSHIOKA

which is naturally isomorphic to ρ′. Moreover, the projection formula
shows that ρ′ is equal to

Homf (W ,C0)→ Homf (V ,C0),

which implies the isomorphisms among Brill-Noether loci as in the
assertion. �

3.8. Ample line bundles on moduli spaces. If both M̂m(c) and

M̂m+1(c) would be GIT quotients of a common variety for the sta-
bility conditions separated by a single wall, they are flip provided

ξm : M̂m(c) → M̂m,m+1(c) would be a small contraction ([27]). As
we do not know how to construct this picture in our setting, we prove
this statement directly. Moreover the smallness condition is related
to the dimension of the moduli spaces, and hence we do not expect
such a result unless we assume (OX(1), KX) < 0 or c2 is sufficiently
large. Instead of assuming these kinds of conditions, we produce a

line bundle which is relatively ample on M̂m(c), but not on M̂m+1(c),
where we consider the spaces relative to the Uhlenbeck compactifica-
tion MX

0 (p∗(c)).
We continue to assume gcd(r, (c1, p

∗OX(1))) = 1. For d ∈ K(X)
with rk(d) = r and c1(d) = c1(p∗(c)), there is a class αd ∈ K(X) such
that rkαd = 0 and χ(d⊗ αd) = 1.

Let pX , pM be the projections from X × MX(d) to the first and
second factors respectively. If we twist a universal bundle E by a line
bundle L over the moduli space MX(d), we have det pM !(E ⊗ p∗ML ⊗
p∗Xα) = det pM !(E ⊗ p∗Xα) ⊗ L⊗χ(d⊗α) for α ∈ K(X). Therefore for
α = αd we can normalize a universal family Ed on X ×MX(d) so that
det pM !(Ed ⊗ p∗Xα) = OMX(d).

Lemma 3.34. Let β ∈ K(X) be a class with rk β = −1. Then
det pM !(Ed ⊗ p∗Xβ) is relatively ample over MX

0 (d).

Remark 3.35. For β′ := β − χ(d⊗ β)αd, we have χ(d⊗ β′) = 0, which
means that det pM !(E ⊗ β′) does not depend on the choice of the uni-
versal family E .

Proof. By Simpson’s construction of the moduli space, NE := det pM !(E(n+
m))χ(d(n))⊗det pM !(E(m))−χ(d(n+m)) is ample for n� m� 0, where E is
a universal family. Since N does not depend on the choice of the univer-
sal family, we may assume that NE = NEd . We set γ := χ(d(n))OX(n+
m)− χ(d(n + m))OX(m). Then rk γ < 0 and β ∈ Q>0γ + Qh + Qαd,
where h ∈ K(X) is a class such that det pM !(E⊗h) descends to a deter-
minant line bundle on MX

0 (d). (See [8, §8.2].) Therefore det pM !(Ed⊗β)
is relatively ample over MX

0 (d). �
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Suppose d = p∗(c) and take β with rk β = −1 as above, and we
normalize the universal family as above.

Proposition 3.36. We set Lt := det pM̂ ! (E ⊗ p∗X(β + tOC(−1))) .
(1) If m− 1 < t < m, then Lt is relatively ample over MX

0 (d).

(2) Assume that M̂m(c) 6= M̂m+1(c). Then Lt is not relatively ample
over MX

0 (d) for t ≥ m.

(3) Assume that M̂m(c) 6= M̂m−1(c). Then Lt is not relatively ample
over MX

0 (d) for t ≤ m− 1.

Proof. (1) We note that OX̂(−mC) = OX̂ − mOC(−1) − m(m+1)
2

Cp,
where p is a point in C. Hence c ⊗ (β + mOC(−1))) = c(−mC) ⊗
(β − m(m+1)

2
Cp). Since p∗(E(−mC)) ∈ MX(d − rm(m+1)

2
C0) for E ∈

M̂m(c), Lm is the pull-back of a relatively ample line bundle on MX(d−
rm(m+1)

2
C0) by the previous lemma. In the same way, we see that

Lm−1 also the pull-back of a relatively ample line bundle on MX(d −
rm(m−1)

2
C0). Since M̂m(c)→MX(d−rm(m+1)

2
C0)×MX(d−rm(m−1)

2
C0)

is an embedding, aLm + bLm−1 is relatively ample for a, b > 0.

(2) By M̂m(c)→MX(d− rm(m+1)
2

C0) the Grassmann bundle struc-

tures of the Brill-Noether loci M̂m(c)i are contracted. From the as-

sumption, the Brill-Noether locus M̂m(c)≥1 is nonempty, so Lm is not
relatively ample. The proof of (3) is the same. �

This completes our construction of the diagram (∗) in the introduc-
tion.

3.9. Another distinguished chamber – torsion free sheaves on
blow-up.

Proposition 3.37 (cf. [25, Prop. 7.1]). Fix c ∈ H∗(X̂). There exists

m0 such that if m ≥ m0, M̂m(c) is the moduli space of (p∗H−εC)-stable

torsion free sheaves on X̂ for sufficiently small ε > 0.
If (OX(1), KX) < 0, then we can take

m0 = −(c1, [C]) + r∆− 1

2
(r + 1 + (r2 − 1)χ(OX)− h1(OX)) + 1.

Proof. Consider the projective morphism π̂ : M̂m(c) → MX
0 (p∗(c)) in

(3.5), where MX
0 (p∗(c)) is the Uhlenbeck compactification on X. From

Proposition 3.16, there exists m0 such that if m ≥ m0 and E ∈ M̂m(c),

we have E ∈ M̂m+1(c), i.e. M̂m(c) ∼= M̂m+1(c) ∼= M̂m+2(c) ∼= · · · . If
(OX(1), KX) < 0, then m0 can be explicitly given by Lemma 3.25.

Suppose thatE is torsion free and (p∗H−εC)-stable. Then p∗(E(−mC))
is µ-stable for sufficiently large m. The torsion freeness of E implies
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Hom(OC(−mC), E) = 0 for any m. On the other hand, we have
Hom(E(−mC),OC) is zero for m� 0, as OX̂(−C) is relatively ample

with respect to p : X̂ → X. Therefore E is m-stable for sufficiently
large m. From the above discussion, E is m0-stable.

Conversely suppose that E is m0-stable. Then E is m-stable for any
m ≥ m0. In particular, Hom(OC , E(−mC)) = 0 for m ≥ m0. Suppose
that E is not torsion free, and let 0 6= T ⊂ E be its torsion part. Then
as OX̂(−C) is relatively ample, we have p∗(T (−mC)) 6= 0 for m � 0.
Since p∗(T (−mC)) is supported at 0, we have

0 6= Hom(C0, p∗(T (−mC))) = Hom(OC , T (−mC)) ⊂ Hom(OC , E(−mC)).

This is a contradiction. Therefore E is torsion free. Since p∗(E(−mC))
is µ-stable for any m ≥ m0, E is (p∗H−εC)-stable for sufficiently small
ε. �

3.10. The distinguished chamber – revisited. In this subsection

we assume 0 ≥ (c1, [C]) > −r and study moduli spaces M̂1(c) under
this assumption. We can twist sheaves by a line bundle O(C), and this
condition is satisfied. But it also changes the stability condition, so

studying only M̂1(c) means that we are choosing a certain chamber.
The case (c1, [C]) = 0 was already discussed in §3.1. (Strictly speak-

ing we studied M̂0(c).) So we consider the case 0 > (c1, [C]) > −r.

Proposition 3.38. Suppose 0 < n := −(c1, [C]) < r. We have a
diagram

N̂(c, n)
q′1
vv

q′2
))

M̂1(c) M̂1(c− ne)

such that (i) M̂1(c) = M̂1(c)≥n, (ii) q′1 is surjective and isomorphism

over the open subscheme M̂1(c)n, (iii) q′2 is a Gr(n, r)-bundle.

If M̂1(c), M̂1(c−ne) are irreducible and of expected dimension, then
q′1 is birational.

We have (c1(c− ne), [C]) = (c1, [C]) + n = 0. Therefore M̂1(c− ne)
becomes MX(p∗(c)) after crossing a single wall.

Proof. Let E ∈ M̂1(c). We have χ(E,OC(−1)) = −(c1, [C]) = n > 0
by our assumption. As Ext2(E,OC(−1)) = Hom(OC , E)∨ = 0 by the
stability of E, we have dim Hom(E,OC(−1)) ≥ n. This shows (i).

We consider q′1 : N̂(c, n) → M̂1(c) as in (3.27). From the above ob-

servation, it is surjective. Moreover it is an isomorphism over M̂1(c)n.
(ii) follows.
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We have q′2 : N̂(c, n)→ M̂0(c− n ch(OC)). By Lemma 3.29 it is the
Grassmann bundle Gr(n,Ext1

f (OC , E ′)) of n-dimensional subspaces in

Ext1
f (OC , E ′) over M̂0(c − n ch(OC)), which is of rank (c1(E ′), [C]) =

(c1, [C]) + n = r. Therefore we have (iii). �

4. Moduli spaces as incidence varieties

Recall that we have a morphism

ξ × η : M̂0(c) → MX(p∗(c))×MX(p∗(c) + n pt)
E 7→ (p∗(E), p∗(E(C))),

where n = (c1, [C]). (See §3.1.)
The purpose of this section is to prove the following:

Theorem 4.1. The morphism ξ×η identifies M̂0(c) with the incidence
variety L(p∗(c) + n pt, n) with n = (c1, [C]), where

L(c′, n) := {(F,U) | F ∈MX(c′), U ⊂ Hom(F,C0), dimU = n}
for c′ ∈ H∗(X).

Remark 4.2. If c′ = 1 − N pt, n = 1, then L(c′, 1) = {(I, U) | I ∈
X [N ], U ⊂ Hom(I,C0), dimU = 1} ⊂ X [N+1]×X [N ] is called the nested
Hilbert scheme, and has been studied by various people. Here X [N ] is
the Hilbert scheme of N points in X.

The variety L(c′,m) is the quotient of the moduli of framed sheaves
(F, F → C⊕m0 ) by the action of GL(m). We have a projective morphism
σ : L(c′,m) → MX(c′) by sending (F,U) to F . For (F,U) ∈ L(c′,m),
we set F ′ := Ker(F → U∨ ⊗ C0). It is easy to see that F → U∨ ⊗ C0

is surjective. Moreover F ′ is a µ-stable sheaf. Thus we also have a
morphism ς : L(c′, n) → MX(c′ − n pt) by sending (F,U) to F ′. By

the same argument as in the case of M̂(c, n), we have an isomorphism
from L(c′, n) to the moduli space of ‘dual’ coherent system (F ′, U∨ ⊂
Ext1(C0, F

′)) with F ′ ∈MX(c′ − n pt), dimU∨ = n.
Consider

σ × ς : L(c′, n) → MX(c′)×MX(c′ − n pt)
(F,U) 7→ (F, F ′).

Lemma 4.3. The morphism σ × ς is a closed immersion.

For this purpose, it is sufficient to prove that

(1) σ × ς is injective and
(2) d(σ × ς)∗ is injective.

From the µ-stability of F , F ′ and µ(F ) = µ(F ′), the following holds
from a standard argument.
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Lemma 4.4. Hom(F, F ) ∼= Hom(F ′, F ′) ∼= Hom(F ′, F ) ∼= C.

Proof of (1). Assume that (F1, U1), (F2, U2) ∈ L(c′,m) satisfy F1
∼= F2

and F ′1
∼= F ′2, where F ′α := Ker(Fα → Uα

∨ ⊗ C0) for α = 1, 2. Since
Hom(F ′1, F

′
2) ∼= Hom(F ′1, F2) ∼= Hom(F1, F2) by the previous lemma,

we have the following diagram:

0 −−−→ F ′1 −−−→ F1 −−−→ U∨1 ⊗ C0 −−−→ 0y y y
0 −−−→ F ′2 −−−→ F2 −−−→ U∨2 ⊗ C0 −−−→ 0

Hence (F1, U1) ∼= (F2, U2). �

Proof of (2). The Zariski tangent space of L(c′, n) at (F,U) is

Ext1(F, F ′)/End(U)

and the obstruction for an infinitesimal lifting belongs to

Ext2(F, F ′) ∼= Hom(F ′, F ⊗KY )∨,

where End(U)→ Ext1(F, F ′) is the homomorphism given by the com-
position of End(U) → U∨ ⊗ Hom(F,C0) = Hom(F,U∨ ⊗ C0) and
Hom(F,U∨ ⊗ C0)→ Ext1(F, F ′). Therefore the assertion follows from
the following lemma. �

Lemma 4.5.

d(σ × ς)∗ : Ext1(F, F ′)/End(U)→ Ext1(F ′, F ′)⊕ Ext1(F, F )

is injective.

Proof. We have the following exact and commutative diagram:

0y
U∨ ⊗ Hom(F,C0)/End(U) −−−→ Ext1(F, F ′)/End(U) −−−→ Ext1(F, F )y y

Hom(F ′, U∨ ⊗ C0)
α−−−→ Ext1(F ′, F ′)

Since Hom(F ′, F ′) → Hom(F ′, F ) is isomorphic, α is injective, which
implies the assertion. �

Obviously we have an isomorphism

L(c′, n)
∼=−→ N(p∗(c′)e[C], n)

(F,U) 7→ (p∗(F )(C), U),
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where N(p∗(c′)e[C], n) is as in Definition 3.26 and we have used Propo-
sition 3.3.

We also have a morphism

N(p∗(c′)e[C], n)
∼=−→ M̂0(p∗(c′)− n ch(OC))

(E(C), U) 7→ E ′ := Ker(E → U∨ ⊗OC),

which is essentially q′2 in (3.27). As rk Ext1(OC , E ′) = n by Lemma 3.2,
this morphism is an isomorphism by Lemma 3.29.

As p∗(c′)− n ch(OC) = c, this completes the proof of Theorem 4.1.

Remark 4.6. If n � dimMp
H(p∗(c) − nOC), then we also have an em-

bedding Mp
H(p∗(c)− nOC)→ L(c, n)→MH(c− n pt).

5. Betti numbers

In this section, we prove the formula (∗∗) in the introduction and its
higher rank generalization.

5.1. Framed moduli spaces. We consider p : P̂2 → P2 the blow-up
of the projective plane at 0 = [1 : 0 : 0]. Let `∞ = {[0 : z1 : z2]}
and denote its inverse image p−1(`∞) by the same notation `∞ for
brevity. Following [25] we consider the framed moduli space of framed

coherent sheaves (E,Φ) on P̂2 = Ĉ2 ∪ `∞ with ch(E) = c, where E is
assumed to be locally free along `∞, the framing Φ is a trivialization

Φ: E|`∞
∼=−→ O⊕r`∞ over `∞, and finally E satisfies

Hom(E,OC(−m− 1)) = 0, Hom(OC(−m), E) = 0.

This space was written as M̂ζ(r, k, n) in [25], where r(c) = r, (c1(c), [C]) =
−k, ∆(c) :=

∫
P̂2 c2(c) − (r − 1)c1(c)2/(2r) = n, and the parameter

ζ = (ζ0, ζ1) ∈ R2 satisfying 0 > mζ0 + (m + 1)ζ1 � −1. But we

use the same notation M̂m(c) as in the ordinary moduli space for
brevity. We hope this does not make any confusion. Also we set

X = C2, X̂ = Ĉ2. This convention applies to the other moduli spaces:
MX(c′) denotes the framed moduli space of torsion free sheaves on
P2 = C2 ∪ `∞, MX

0 (c′) denotes the Uhlenbeck partial compactification,
i.e. MX

0 (c′) = MX
lf (c′)tMX

lf (c′+pt)×C2tMX
lf (c′+2 pt)×S2(C2)t· · · ,

where MX
lf (c′) denotes the framed moduli space of locally free sheaves

on P2.
A modification of the construction of the moduli space in §2 to the

framed moduli space is standard, and is omitted. Otherwise, we can
use the quiver description in [25] to construct the framed moduli space.

We also have a projective morphism π̂ : M̂m(c)→M0(p∗(c)), where M0
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denote the Uhlenbeck partial compactification of the framed moduli
space on P2. (See [20, Chapters 2, 3] or [24, §3].)

As is mentioned in the beginning of §3, we may assume m = 0 for
most purposes.

5.2. Universality of the blow-up formula. We consider the framed
moduli spaces and ordinary moduli spaces of m-stable sheaves simul-

taneously. So p : X̂ → X be the blowup of either a projective surface

or C2 at the point 0. We define a stratification of MX(c), M̂m(c) as in
[24, F.4]: Let ι : X \ {0} → X be the inclusion. We define

MX(c)k := {E ∈MX(c) | ∆(ι∗(E|X\{0})) = ∆(c)− k},

M̂m(c)k := {E ∈ M̂m(c) | ∆(ι∗(E|X̂\C)) = ∆(c)− k},

where we identified X̂ \ C with X \ {0}. Then [24, Cor. F.22] shows
that we have the following equalities in the Grothendieck group of C-
varieties when m =∞:∑

c′

[MX(c′)]q∆(c′) =
(∑

c′

[MX(c′)0]q∆(c′)
)(∑

n

[Q(r, n)]qn
)
,∑

c

[M̂m(c)]q∆(c) =
(∑

c′

[MX(c′)0]q∆(c′)
)(∑

n

[Q̂m(r, k, n)]qn
)
,

where c′, c runs over all H∗(X), c ∈ H∗(X̂) with fixed r(c) = r(c′) = r

and c1(c) = c1, c1(c′) = p∗c+k[C]. Here Q(r, n), Q̂m=∞(r, k, n) are cer-
tain quot-schemes, which are independent of surfaces. Moreover they
are the same for framed moduli spaces and ordinary moduli spaces.
These equalities in the Grothendieck group of C-varieties imply the
corresponding equalities for virtual Hodge polynomials. If varieties are
smooth and projective (e.g. the rank 1 case or (OX(1), KX) < 0), then
virtual Hodge polynomials are equal to Hodge polynomials.

From the proof of [24, Cor. F.22], the same result holds for finite
m. In particular, in order to prove the formula (∗∗) or its higher rank
generalization, it is enough to prove it for framed moduli spaces. So
we only consider framed moduli spaces in the rest of this section.

5.3. A combinatorial description of fixed points. We have an

(r+ 2)-dimensional torus T̃ = T r× (C∗)2 action on M̂0(c), MX(p∗(c)).
The first factor T r acts by the change of framing, and the second factor
(C∗)2 acts via the action on the base space P2 given by

[z0 : z1 : z2] 7→ [z0 : t1z1 : t2z2],

and the induced action on P̂2.
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The purpose of this subsection is to classify the fixed points in M̂0(c).

As in the case of M̂m(c) for m � 0 and MX(c) ([23] or [24, §3]),
a framed sheaf (E,Φ) is fixed by the first factor T r if and only if it
decomposes into a direct sum E = E1 ⊕ · · · ⊕ Er into rank 1 sheaves.

So we first assume that the rank r is 1, and T̃ = C∗ × (C∗)2, but the
first factor C∗ acts trivially. By Theorem 4.1 we have

M̂0(c) ∼= L(p∗(c) + n pt, n)

= {(F,Φ, U) | (F,Φ) ∈MX(p∗(c) + n pt), U ⊂ Hom(F,C0), dimU = n}

with n = (c1, [C]), and it is an incidence variety in MX(p∗(c) +n pt)×
MX(p∗(c)). As we are assuming that the rank is 1, it is the product
X [N+n] × X [N ] of Hilbert scheme of points in X = C2, where p∗(c) +
n pt = 1−N pt. Also recall X [N ] is the set of all ideals in the polynomial
ring C[x, y] such that dimC[x, y]/I = N . So we have

M̂0(c)

∼= {(I ′, I) ∈ X [N+n] ×X [N ] | I ′ ⊂ I ⊂ C[x, y] a flag of ideals, I/I ′ ∼= Cn},

where Cn is the n-dimensional vector space with the trivial C[x, y]-
module structure.

As the isomorphism is T̃ -equivariant, a fixed point is mapped to a
fixed point. The torus fixed points in X [N ] are monomial ideals I in
C[x, y], and are in bijection to Young diagrams with N boxes as in [20,
Chap. 5]. Moreover, the box at the coordinate (a, b) corresponds to the
1-dimensional weight space Cxayb (mod I) of weight t−a1 t−b2 .

Therefore the fixed points in M̂0(c) correspond to pairs (I, I ′) of
monomial ideals such that I/I ′ ∼= Cn. Let Y be the Young diagram
corresponding to I ′. Its boxes correspond to weight spaces of C[x, y]/I ′.
Then I/I ′ ⊂ C[x, y]/I ′ is a direct sum of weight spaces, so corresponds
to a subset S of boxes in Y . Moreover, as I/I ′ must be the trivial
C[x, y]-module, so it must be contained in

Ker [ xy ] : C[x, y]/I ′ → C2 ⊗C C[x, y]/I ′.

Therefore S must be consisting of removable boxes. Here recall a box
in a Young diagram Y at the coordinate (a, b) is removable if there
are no boxes above and right of (a, b). In terms of a monomial ideal
I ′ corresponding to Y , removable boxes correspond to weight spaces
contained in Ker [ xy ] .

Conversely if (Y, S) is given, then we set I, I ′ be the monomial ideals
corresponding to Y \S, Y respectively. Then I ′ ⊂ I, and I/I ′ is a trivial
C[x, y]-module.
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For an arbitrary rank case we have r-tuples of such pairs (Yα, Sα)
corresponding to each factor Eα (α = 1, . . . , r).

Lemma 5.1. The torus fixed points in M̂0(c) are in bijection to r-
tuples of pairs (Yα, Sα) of a Young diagram Yα and a set Sα con-
sisting of removable boxes such that

∑
α #Sα = (c1, [C]),

∑
α |Yα| =

−
∫
X̂

ch2 +1
2
(c1, [C]).

We mark a box in Sα and call it a marked box. (See Figure 1.)

As fixed points are isolated, so the class of M̂m(c) in the Grothen-
dieck group of C-varieties is a polynomial in the class of C. In par-
ticular, it is determined by its Poincaré polynomial. Therefore we will
discuss only on Poincaré polynomials hereafter.

♥
♥

♥

Figure 1. Young diagram and marked removable boxes

5.4. Tangent space – rank 1 case. We first state the weight decom-
position of the tangent space in the rank 1 case.

Let (Y, S) be a pair of a Young diagram and marked removable boxes

corresponding to a torus fixed point (E,Φ) in M̂0(c). We call a box in
Y irrelevant if

a) the upmost box in the column is marked, and
b) the rightmost box in the row is marked.

In Figure 2 the boxes with ♥ are marked removable boxes, and the
boxes with ♥ or ♠ are irrelevant boxes. We call a box relevant if it is
not irrelevant. Then

Proposition 5.2. We have

chT(E,Φ)M̂
0(c) =

∑
s

(
t
−lY (s)
1 t

aY \S(s)+1

2 + t
lY \S(s)+1

1 t
−aY (s)
2

)
,

where the summation runs over all relevant boxes s in Y , and Y \ S is
the Young diagram obtained by removing all marked boxes from Y .

The proof will be given in more general higher rank cases in Propo-
sition 5.5.

We have M̂0(ce−m[C]) ∼= M̂m(c), so we may assume c1 = 0. Then
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♥
♠ ♥
♠ ♠ ♥ ←→

 ,


Figure 2. Marked removable boxes ♥ and a pair of
Young diagrams

Corollary 5.3. Let cN = 1 − N pt. The Poincaré polynomial of

M̂m(cN) is given by ∑
t2(N+m−l(Y ))

where the summation runs over all Young diagrams with m marked
removable boxes with |Y | = N + m(m + 1)/2, and l(Y ) is the number
of columns in Y .

Proof. By the same argument as in [20, Cor. 5.10], it is enough to
count the dimension of sum of weight spaces which satisfy either of the
followings:

(1) the weight of t2 is negative,
(2) the weight of t2 is 0 and the weight of t1 is negative.

The second possibility cannot happen. Therefore it is number of rele-
vant boxes with aY (s) > 0. This is equal to |Y |−m(m−1)/2− l(Y ) =
N +m− l(Y ). �

5.5. A combinatorial bijection. In [23, §3] we parametrized torus

fixed points in the Hilbert schemes of points on the blowup Ĉ2 via a
pair of partitions. The parametrization in the previous subsection must
be related to this parametrization in the limit m → ∞. This will be
done in this subsection.

Let us consider two sets A, B consisting of

(1) pairs of Young diagrams Y and sets S of m marked removable
boxes such that |Y | −m(m+ 1)/2 = N ,

(2) pairs of Young diagrams (Y 1, Y 2) such that Y 2 has at most m
columns and |Y 1|+ |Y 2| = N

respectively. Note that m is fixed here, so it must be included in the
set B if we move it. We construct a bijection between A and B.

Take a Young diagram with marked boxes from A. We define a
Young diagram Y 1 by removing all columns containing marked boxes
from Y . (And we shift columns to the left to fill out empty columns.)
We define another Young diagram Y 2 as follows. We first define a
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Young diagram Y ′ consisting of columns removed from Y when we got
Y 1. Then we remove all the irrelevant boxes from Y ′. (And we move
boxes to down to fill out empty spots.) Call the resulted Young diagram
Y 2. See Figure 2 where the boxes with ♥ are marked removable boxes,
and the boxes with ♥ or ♠ are irrelevant boxes. This Y 2 is a Young
diagram which has at most m columns and |Y 1|+ |Y 2| = N . Thus we
have a map from A to B.

Conversely from (Y 1, Y 2) ∈ B we can construct a Young diagram
Y with marked removable boxes by the reverse procedure. Namely we
add m boxes to the first (=leftmost) column of Y 2, m− 1 boxes to the
second column, ... Put markings on the top box in each column of Y 2.
Then merge two Young diagrams to Y keeping columns.

Corollary 5.4. Let CN = 1 − N pt. The Poincaré polynomial of

M̂m(cN) is given by

Pt(M̂
m(cN)) =

∑
t2(|Y 1|+|Y 2|−l(Y 1)),

where the summation runs over all pairs of Young diagrams (Y 1, Y 2) ∈
B. Therefore its generating function is

∞∑
N=0

Pt(M̂
m(cN))qN =

(
∞∏
d=1

1

1− t2d−2qd

)(
m∏
d=1

1

1− t2dqd

)
.

Let m→∞. Then M̂m(cN) becomes the Hilbert schemes (Ĉ2)[N ] of

points on Ĉ2 by Proposition 3.37 for m� 0. From the above formula
we get∑

N

Pt((Ĉ2)[N ])qN =

(
∞∏
d=1

1

1− t2d−2qd

)(
∞∏
d=1

1

1− t2dqd

)
.

This is nothing but Göttsche’s formula for Betti numbers of (Ĉ2)[N ].
(See e.g., [20].)

5.6. Tangent space – general case. We consider general case. Let
(Yα, Sα), (Yβ, Sβ) be two pairs of Young diagrams and marked remov-
able boxes. Let (Eα,Φα), (Eβ,Φβ) be the corresponding framed per-
verse coherent sheaves of rank 1.

For a given pair (s, s′) ∈ Sα × Sβ, we consider the box u (resp. u′)
which is the same row as in s (resp. s′) and the same column as in s′

(resp. s). We have

(1) If a′(s) ≤ a′(s′) (i.e., s′ sits higher than or equal to s), then
u ∈ Yβ, u′ /∈ Yα \ Sα.
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(2) If a′(s) > a′(s′) (i.e., s′ sits lower than s), then u /∈ Yβ, u′ ∈
Yα \ Sα.

We say u or u′ is irrelevant accordingly. We say a box (in Yα \ Sα or
Yβ) is relevant otherwise.

u′ s′

s u

u s

s′ u′

Figure 3. The irrelevant box is u in the first case, and
u′ in the second case.

Proposition 5.5. We have

ch Ext1(Eα, Eβ(−`∞)) =
∑′

s∈Yα\Sα

t
−lYβ (s)

1 t
aYα\Sα (s)+1

2 +
∑′

t∈Yβ

t
lYα\Sα (t)+1

1 t
−aYβ (t)

2 ,

where the summation runs over all relevant boxes s ∈ Yα \ Sα, t ∈ Yβ.

Proof. The space Ext1(Eα, Eβ(−`∞)) is a weight space of the tangent

space of M̂0(c) at a T̃ -fixed point (E,Φ) ∼= (E1,Φ1) ⊕ · · · ⊕ (Er,Φr).

Since M̂0(c) and L(c′, n) are isomorphic by Theorem 4.1, the tangent

space Ext1(E,E(−∞)) of M̂0(c) at (E,Φ) is isomorphic to the tangent
space of L(c′, n) at ((F,Φ), U) corresponding to (E,Φ). In the genuine
moduli space of sheaves case, the latter was given Ext1(F, F ′)/End(U)
where F ′ := Ker(F → U∨ ⊗ C0). (See the proof of Lemma 4.3(1).) In
the framed case, it is modified as Ext1(F, F ′(−`∞))/End(U). Since the

isomorphism M̂0(c) ∼= L(c′, n) is T̃ -equivariant, the weight spaces at
fixed points must be respected, so
Ext1(Eα, Eβ(−`∞)) is isomorphic to Ext1(Fα, F

′
β(−`∞))/Hom(Uα, Uβ),

where (Fα, Uα) corresponds to the summand Eα.
If (Fα, Uα) corresponds to a marked Young diagram (Yα, Sα), then

the T 2-character of Ext1(Fα, F
′
β(−`∞)) was computed in [23, §2]:

ch Ext1(Fα, F
′
β(−`∞)) =

∑
s∈Yα\Sα

t
−lYβ (s)

1 t
aYα\Sα (s)+1

2 +
∑
t∈Yβ

t
lYα\Sα (t)+1

1 t
−aYβ (t)

2 ,

where we should notice that Fα corresponds to the Young diagram
Yα \ Sα, while F ′β corresponds to Yβ.

On the other hand, we have

ch Hom(Sα, Sβ) =
∑

s∈Sα, s′∈Sβ

t
l′(s)−l′(s′)
1 t

a′(s)−a′(s′)
2 .
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For a given pair (s, s′) ∈ Sα × Sβ, we consider the boxes u and u′

explained as above. Then we have

lYα\Sα(u) + 1 = l′(s)− l′(s′), −aYβ(u) = a′(s)− a′(s′),
−lYβ(u′) = l′(s)− l′(s′), aYα\Sα(u′) + 1 = a′(s)− a′(s′).

Therefore we substract the box u from Yβ, or u′ from Yα \Sα according
to u ∈ Yβ or u′ ∈ Yα \ Sα to get the assertion. �

Corollary 5.6. The Poincaré polynomial of M̂0(c) is given by

Pt(M̂
0(c)) =

∑
(~m, ~Y 1, ~Y 2)

r∏
α=1

t2(r|Y 1
α |+r|Y 2

α |−αl(Y 1
α ))
∏
α<β

t(mα−mβ)(mα−mβ−1),

where the summation runs over r-tuples (~m, ~Y 1, ~Y 2) = ((m1, Y
1

1 , Y
2

1 ), . . . ,
(mr, Y

1
r , Y

2
r )) of triples of nonnegative integers and two Young diagrams

such that
∑

αmα = (c1, [C]), the number of columns of Y 2
α is at most

mα (α = 1, . . . , r), and
∑

α |Y 1
α |+|Y 2

α | = ∆(c)−1/(4r)
∑

α,β(mα−mβ)2.

Here ∆(c) =
∫
X̂

[− ch2 +1/(2r) c2
1].

And their generating function (for fixed r, c1) is given by∑
c

Pt(M̂
0(c))q∆(c) =

∑
mα≥0∑

mα=(c1,[C])

r∏
α=1

(
∞∏
d=1

1

1− t2(rd−α)qd
×

mα∏
d=1

1

1− t2rdqd

)

× t−2〈~m,ρ〉(t2rq)(~m,~m)/2,

where 〈~m, ρ〉 =
∑

α<β(mα −mβ)/2, (~m, ~m) = 1/(2r)
∑

α,β(mα −mβ)2.

Proof. The torus fixed points in M̂0(c) is parametrized by r-tuples
((Y1, S1), . . . , (Yr, Sr)) of pairs of Young diagrams with marked remov-
able boxes with

∑
α |Sα| = (c1, [C]),

∑
α |Yα| = −

∫
X̂

ch2 +1
2
(c1, [C]).

Moreover such r-tuples correspond to r-tuples of triples of nonnegative
intergers and two Young diagrams ((m1, Y

1
1 , Y

2
1 ), . . . , (mr, Y

1
r , Y

2
r )) as

above by §5.5, where mα = |Sα|.
As in [24, Th. 3.8] we take a one parameter subgroup λ : C∗ → T̃

with
λ(t) = (tN1 , tN2 , tn1 , . . . , tnr)

and
N2 � n1 > n2 > · · · > nr � N1 > 0.

Then we compute the dimension of negative weight spaces of the tan-
gent space at each fixed point. Thus we count those weight spaces such
that

(1) weight of t2 is negative,
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(2) weight of t2 is zero and weight of e1 is negative,
(3) weight of t2, e1 are zero and weight of e2 is negative,
(4) weight of t2, e1, e2 are zero and weight of e3 is negative,
· · ·
(r + 1) weight of t2, e1, e2, . . . , er−1 are zero and weight of er is

negative,
(r + 2) weight of t2, e1, e2, . . . , er are zero and weight of t1 is

negative.

We have decomposition of the tangent space

T(E,Φ)M̂
0 =

⊕
α,β

Ext1(Eα, Eβ(−`∞)).

The T r-weight of the summand Ext1(Eα, Eβ(−`∞)) is given by eβe
−1
α .

Therefore in the summand α = β, the total dimension of negative
weight spaces is 2(|Y 1

α |+ |Y 2
α |− l(Y 1

α )) as in the rank 1 case (see Corol-
lary 5.4). In the summand α < β, we compute the total dimension of
weight spaces whose t2-weight is nonpositive. It is given by

2 [|Yβ| −#{(s, s′) ∈ Sα × Sβ | a′(s) ≤ a′(s′)}]
by the same argument as in Corollary 5.3. In the summand α > β, we
get

2 [|Yβ| − l(Yβ)−#{(s, s′) ∈ Sα × Sβ | a′(s) < a′(s′)}] .
We combine the last term for α < β and the corresponding term for
α↔ β to have

#{(s, s′) ∈ Sα×Sβ | a′(s) ≤ a′(s′)}+#{(s′, s) ∈ Sβ×Sα | a′(s′) < a′(s)}
= mαmβ.

We also note

|Yβ| = |Y 1
β |+ |Y 2

β |+
1

2
mβ(mβ + 1), l(Yβ) = l(Y 1

β ) +mβ.

So in total we have

2
r∑

α=1

[
r(|Y 1

α |+ |Y 2
α |)− αl(Y 1

α ) +
r − 1

2
mα(mα + 1)

]
− 2

∑
α<β

(mα +mαmβ)

= 2
r∑

α=1

[
r(|Y 1

α |+ |Y 2
α |)− αl(Y 1

α )
]

+
∑
α<β

(mα −mβ)(mα −mβ − 1).

From this we get the formula. �

For general M̂m(c), we just need to apply the formula for M̂0(ce−m[C])
and replace mα by m+ kα:
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Corollary 5.7.∑
c : r, (c1, [C]) fixed

Pt(M̂
m(c))q∆(c)

=
∑

kα≥−m
k1+···+kr=(c1,[C])

r∏
α=1

(
∞∏
d=1

1

1− t2(rd−α)qd
×
m+kα∏
d=1

1

1− t2rdqd

)

× t−2〈~k,ρ〉(t2rq)(~k,~k)/2.

In the limit m→∞, we recover the formula [24, Cor. 3.10].
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