1 2		Tsuji et al. 1
- 3 4 5		
6 7 8	1	Effects of the physical characteristics of seeds on gastrointestinal passage time in
9 10 11	2	captive Japanese macaques
12 13 14	3	
15 16 17	4	Yamato Tsuji [*] , Mayumi Morimoto, and Kiyoaki Matsubayashi
18 19 20	5	Primate Research Institute, Kyoto University
21 22 23	6	
24 25 26	7	Short title: Seed characteristics and passage time of Japanese macaques
27 28 29	8	
30 31 32	9	*Correspondence should be addressed to: Yamato Tsuji, Primate Research Institute,
33 34 35 26	10	Kyoto University
37 38 30	11	Address: 484-8506, 42-2, Kanrin, Inuyama City, Aichi Prefecture, Japan.
40 41 42	12	E-mail: ytsuji@pri.kyoto-u.ac.jp
42 43 44 45 46 47 48	13	Tel / Fax: +81-568-63-0539

14 Abstract

The time it takes seeds to pass through the gut of vertebrates is an important aspect of endozoochorous seed dispersal because it influences seed dispersal distance. The physical characteristics of seeds (e.g., dry seed weight, volume, and specific gravity) vary among plant species, which might cause a difference in seed movement through the gastrointestinal system. We conducted feeding experiments with captive female Japanese macaques (*Macaca fuscata*) (n = 5) using eight different types of seeds to evaluate the effects of the physical characteristics of seeds on their passage time. Median seed recovery percentage for the real seeds was 35.5 % (range, 24%–78 %). Among three passage time variables examined, mean retention time (MRT) (37-54 hr) and time of last appearance of a seed (TLA) (53–109 hr) differed significantly among seed types, and the latter differed significantly among individuals. Transit time (TT) (22–35 hr) did not. The generalized linear models (GLM) selected dry seed weight as the most important factor affecting MRT, while specific gravity of seeds as the most important factor affecting TLA. This implies that 1) heavier seeds and (or) seeds with greater specific gravity remain in the gut longer and are likely to be dispersed farther from the parent plant, and 2) the lighter seeds and (or) seeds with lower specific gravity are dispersed nearer the parent. Our study demonstrated the importance of considering the effects of the physical

35 Key words: Japanese macaque, passage time, seed dispersal, seed size, specific gravity

36 Introduction

37	Endozoochory is the dispersal of seeds that pass unharmed through digestive tracts of
38	animals. According to Pollux et al. (2007), endozoochory depends on the following four
39	stages: 1) the probability that seeds are ingested by animals; 2) the time of seed retention
40	in the digestive system (i.e., passage time); 3) the resistance of seeds to digestion, and 4)
41	the viability and germination rate of seeds after passage through the gut.
42	Among these factors, passage time influences the dispersal distance of seeds (Link &
43	Di Fiore, 2006). In several plant species, seeds moved further away from the parent plants
44	have a greater chance of survival (Garber, 1986), though this may not be the case for all
45	plant species and (or) every season (Augspurger, 1984; Chapman & Chapman, 1996). To
46	date, the retention time of seeds in the primate gut has been studied particularly through
47	feeding experiments using particle markers that imitate real seeds (e.g., Dierenfeld,
48	Koontz & Goldstein, 1992; Maisels, 1993) and on a few occasions by direct observation
49	of wild primates (Garber, 1986; Julliot, 1996).
50	There are numerous variables which should affect the passage time: time of day,
51	health / age / sex of the animal, stress, quantity / quality of foods, etc. Among these
52	factors, our focus in this study is on the physical characteristics of seeds (e.g., seed size,
53	shape, coat hardness, and external structure). The physical characteristics of seeds differ

1 2		
3 4 5		
6 7 8	54	among pla
9 10 11	55	influence
12 13 14	56	example, L
15 16 17	57	between se
18 19 20	58	the pygmy
21 22 23	59	seeds woul
24 25 26	60	Clout & F
27 28 29	61	correlation
30 31 32	62	New Zeala
33 34 35	63	Garber (19
36 37 38	64	between th
39 40 41	65	monkeys,
42 43 44	66	found no c
45 46 47 48	67	time (emu
49 50 51	68	Pagh & Br
52 53 54	69	Varela & B
55 56 57	70	the relation
58 59 60	71	among ani

among plant species. These variations in seed characteristics may have an important
influence on the passage time in the gut of animal dispersers (Traveset, 1998). For
example, Leavy & Grajal (1991) and Schwarm et al. (2008) showed negative correlations
between seed size (mm) and passage time in cedar waxwings Bombycilla cedrorum and
the pygmy hippopotamus Hexaprotodon liberiensis, respectively. In such cases, smaller
seeds would be dispersed farther from parent plants. In contrast, Julliot (1996), Wotton,
Clout & Kelly (2008), and Schwarm et al. (2008) provided evidence of a positive
correlation between seed size and passage time in red howler monkeys Alouatta seniculus,
New Zealand pigeons Hemiphaga novaezeelandiae, and bantengs Bos javanicus. Finally,
Garber (1986) and Gardener, McIvor & Jansen (1993) showed a negative correlation
between the specific gravity of seeds and the passage time for two species of tamarin
monkeys, Saguinus mystax and S. fuscicollis and cattle Bos taurus. Other studies have
found no clear relationships between the physical characteristics of seeds and passage
time (emu Dromaius novaehollandiae: Wilson (1989); arctic fox Alopex lagopus: Graae,
Pagh & Bruun (2004); two species of fox <i>Pseudolopex gymnocerus</i> and <i>Cerdocyon thous</i> :
Varela & Bucher (2006); carp Cyprinus carpio: Pollux et al. (2007)). Thus, it appears that
the relationships between the physical characteristics of seeds and passage time vary
among animal species and may depend on difference in the size / morphology of the

digestive system and the digestive processes of the subject animals. Thus, this
relationship must be studied in individual species.
Primates commonly consume large amounts of fleshy fruit, and often void the intact
seeds while moving or during rest periods (*Alouatta seniculus* and *Lagothrix lagotricha*:

76 Yumoto, Kitamura & Nishimura, 1999; A. guariba and Brachyteles arachnoides: Martins,

77 2006; Macaca fascicularis: Lucas & Corlett, 1998; Papio anubis: Kunz & Linsenmair,

78 2008a; Cercopithecus spp. and Pan troglodytes: Lambert, 2002; Gorilla gorilla: Remis,

2000). Differences in the ranging patterns and dietary preference of individual primate
species, along with physical characteristics of seeds swallowed influence their passage
time through the digestive system. Since primates move from several hundred meters to

82 several kilometers daily (e.g., Raemakers, 1980), a difference in passage time can result

in marked difference of several hundred meters in seed dispersal distance. For example,

Link & Di Fiore (2006) reported that seed dispersal distances of 38 plant species averaged 443 m, with about 2 % of seeds retained in the gut for over 6 hours and dispersed more than 1250 m away from the parent plant. However, few studies thus far have considered the effects of the physical characteristics of seeds on primate gut passage time. A better

88 understanding of the effects of the physical characteristics of seeds on passage time is

89 necessary for evaluating the dispersal distance of seeds by primates.

3	
4	
5	
6	
0	
1	
8	
9	
10	
14	
11	
12	
13	
14	
15	
16	
17	
11	
18	
19	
20	
21	
22	
~~	
23	
24	
25	
26	
27	
21	
28	
29	
30	
31	
20	
32	
33	
34	
35	
36	
27	
37	
38	
39	
40	
Δ1	
40	
42	
43	
44	
45	
46	
47	
48	
10	
49	
50	
51	
52	
53	
50	
54	
55	
56	
57	
58	
50	
29	
60	

90 In the present study we conducted feeding experiments with captive Japanese macaques (Macaca fuscata), an important seed disperser in temperate forests of Japan 91 (Yumoto, Noma & Maruhashi, 1998; Otani & Shibata, 2000; Otani, 2003). We tested one 92 prediction: passage time through the macaque gut differed based on the physical 93 characteristics of the seeds. 94 95 Materials and methods 96 97 Our methodology complied with protocols approved by the guidelines (Guide for the 98 Care and Use of Laboratory Primates, Second Edition) of the Primate Research Institute, Kyoto University, Japan, and adhered to Japan's legal requirements. 99 100 Study animals and their housing conditions 101 Study animals were 5 adult (>10 years) female Japanese macaques housed at the Primate 102 Research Institute, Kyoto University, Japan (body weight: 6.7 – 10.5 kg). Each animal 103 was reared in an individual cage (W 760 mm × L 900 mm × H 850 mm) in an 104 air-conditioned (20°C) experimental room. All 5 animals were active and in good 105 condition. None were lactating or pregnant. Difference in the body weight of the monkeys 106

107 before and after the experiments were not significant (paired *t*-test, df = 4, t = 1.18, P >

108 0.05

The monkeys were fed 100 g of monkey chow twice a day (10:00 and 14:00). They were also fed 35 g of sweet potatoes for morning meals three times per week. These are high quality foods relative to many of the foods consumed by Japanese macaques in the wild (Mori, 1979; Nakagawa et al. 1996). We alone entered the experimental room as a health precaution and to minimize any stress to the animals that might affect gut retention times. Seed administration Eight experimental trials were conducted from June to September 2008 (Table 1). We did not change the macaques' housing conditions or diet composition during the experiments, except that the sweet potatoes were replaced by chunks of banana (ca. 100g) in which we inserted experimental seeds (see below). During each experiment, we continued to feed the chunks of banana without seeds three times per week. A trial consisted of providing the monkeys with nontoxic plastic seeds (two sizes of white plastic beads) or real seeds (six types of commercial seeds) with varied dimensions (Table 1). We used commercial seeds to assure similar-sized seeds. Before the experiment we measured the length, width, and height of each seed (n = 10) with a vernier caliper

(THS-30, Niigata Seiki Co., Japan) to the nearest 0.05 mm. We also weighed dry seeds on
an electric balance (UX4200H, Shimadzu Co., Japan) to the nearest 0.01 mg. We
estimated seed volume based on the following formula suggested by Garber (1986):

129
$$V = \pi R^2 \left(L - \frac{2}{3} R \right),$$

130 where R = (seed width + height)/4, and L = seed length. The specific gravity of the seed 131 (mg·mm⁻³) was calculated as (dry seed weight/seed volume).

We inserted both plastic and real seeds into chunks of banana and fed them to the monkeys. We adjusted the number of seeds inserted into the banana to total approximately 400–500 mm³ to eliminate the effect of total seed volume on the passage time (Table 1). Each animal was fed seed-loaded bananas once during the morning meal (10:00). Single type of seeds was fed to a given animal for each experiment, and same type of seeds was fed to all macaques on a given experiment. We visited the experimental room at least every two hours from 6:00 to 18:00 to determine whether the monkeys had defecated. Since we did not observe defecating behavior, the passage time was estimated at two-hour intervals. Though we did not observe the monkeys during the night (18:00–6:00), this would not affect the results because the monkeys rarely (only twice) defecated during this time. Each fecal sample collected was washed and screened by a sieve (mesh size, 0.5 mm) to determine whether seeds were present. If we found seeds,

the time of the sample collection and the number of seeds were recorded. We ended an experimental session when no new seed was found in the feces within 24 hours from the last seed appearance. We started the next experimental session after at least a one-day interval from the previous experiment.

From the obtained data we calculated time of first appearance of a seed: transit time (*TT*), time of last appearance of a seed (*TLA*), and mean retention time (*MRT*). The *MRT* was calculated according to the following formula (Lambert, 2002):

 $MRT = \sum_{i=1}^{n} m_i t_i \left/ \sum_{i=1}^{n} m_i \right)$

152 where m_i = the number of seeds excreted at the *i*th defecation at time t_i (hr) after ingestion.

154 Statistical analyses

We tested the effects of the seed type (plastic and real) on the percentage of seed recovery and on the three variables associated with passage time (*TT*, *MRT*, and *TLA*), and the effects of individual macaque on the passage times. For these analyses, we calculated the median instead of the mean and standard deviation, and employed Friedman's two-way ANOVAs since our data were not normally distributed (tested by Shapiro-Wilk normality test, P < 0.05). We tested correlations between the percentage of seed recovery and physical dimensions of seeds, and correlations among the three passage time variables

Tsuji et al. 11

using Spearman's correlation analyses. Significance levels were set at 5% for these analyses. We examined the effects of the physical characteristics of seeds (dry weight, volume, and specific gravity) on the passage time using the generalized linear models (GLM). We assumed gamma distributions for the three variables associated with passage time. Then the best model was determined by removing independent variables that did not improve Akaike's information criterion (AIC) compared to that for the full model. All data analyses were carried out using the statistical software R version 2.4.1 (R Development Core Team, 2006). ez C **Results** Administration and recovery of seeds The monkeys readily and immediately consumed the real and plastic seeds concealed in chunks of banana. Spitting out was rarely observed for the real seeds (n = 5, mean \pm SD = $2.8 \pm 6.4 \%$ of seeds in a banana (six types mean)), while for the plastic seeds relatively many of the seeds were spat out (29.0 \pm 17.6 % of larger and 10.5 \pm 12.1 %

177 of smaller seeds) (Table 1).

Among eight feeding trials, the median of seed recovery percentage for the real seeds per individual monkey was 35.5 % (range, 24%–78 %). The median percentage of

180	plastic seeds recovered was 81.5 % (range, 65%–86 %) (Table 1). The percentage of seed
181	recovery varied significantly among the real seed types (Friedman's two-way ANOVA,
182	$\chi^2 = 18.94$, $df = 5$, $P < 0.01$), although none of the physical dimensions of the real seeds
183	correlated with the percentage of recovery (Spearman's correlation analyses, $df = 5$, dry
184	seed weight: $r_s = 0.26$, $P = 0.658$; seed volume: $r_s = 0.03$, $P = 1.000$; specific gravity of
185	seed: $r_s = 0.60, P = 0.242$).
186	
187	Gut passage time and physical characteristics of seeds
188	The passage rates measured by TT, MRT, and TLA were 22–35 hr (Fig. 1a), 37–54 hr (Fig.
189	1b), and 53–109 hr (Fig. 1c), respectively. We treated the three passage time variables as
190	independent of each other because there were no correlations among them (Spearman's
191	correlation analyses, $df = 7$, TT vs MRT : $r_s = 0.68$, $P = 0.062$; TT vs TLA : $r_s = 0.24$, $P =$
192	0.568; <i>MRT</i> vs <i>TLA</i> : $r_s = 0.70$, $P = 0.069$). Among these variables, <i>MRT</i> (median: 44.7 hr)
193	and TLA (median: 70.0 hr) differed significantly among the seed types (Friedman's
194	two-way ANOVA, $df = 7$, MRT: $\chi^2 = 14.58$, $P = 0.042$; TLA: $\chi^2 = 21.32$, $P = 0.003$). TT
195	(median: 24.0 hr), however, did not differ significantly among the seed types ($\chi^2 = 11.63$,
196	P = 0.114). On the other hand, <i>MRT</i> differed significantly among individual macaques
197	(Friedman's two-way ANOVA, $df = 4$, $\chi^2 = 11.66$, $P = 0.020$), while <i>TT</i> and <i>TLA</i> did not

(*TT*: $\chi^2 = 1.60, P = 0.809; TLA: \chi^2 = 8.94, P = 0.062$). When we omitted the plastic beads from the analysis, only TLA differed significantly among the real seed types (Friedman's two-way ANOVA, df = 5, TT: $\chi^2 = 8.43$, P = 0.634; MRT: $\chi^2 = 6.91$, P = 0.243; TLA: χ 2 = 20.24, P = 0.001). In this case, TLA also differed significantly among individual macaques (Friedman's two-way ANOVA, df = 4, $\chi^2 = 10.40$, P = 0.034), while TT and *MRT* did not (*TT*: $\chi^2 = 2.48$, *P* = 0.648; *MRT*: $\chi^2 = 8.48$, *P* = 0.076). The GLM selected dry seed weight as a factor affecting MRT (positive effect), and specific gravity as a factor affecting *TLA* (positive effect) (Table 2). When we omitted the plastic beads from the analysis of the TLA, the GLM again selected specific gravity as the sole factor (positive) (Table 2). Discussion The median percentage of real seeds recovered per individual monkey was 36 %. This result is probably due to the fact that the Japanese macaques act both as seed dispersers and as seed predators (Yumoto et al., 1998; Otani and Shibata, 2000; Otani, 2003). Otani (2003), for example, found some cracked seeds of relatively large-seeded species (e.g., Akebia trifoliata (mean cubic diameter: 3.6 mm) and Berchemia racemosa (3.2 mm)) with their intact seeds in macaque feces. Percent seed recovery was not significantly

216	correlated with dry seed weight, volume, or specific gravity. Kunz & Linsenmair (2008a)
217	also reported the absence of a linear correlation between seed size and that of seed
218	damage in their study of olive baboons Papio anubis. It is possible that characteristics of
219	seeds, such as hardness or shape, may help to explain the low seed recovery rate of
220	several seed types reported in our study. Corlett & Lucas (1990) reported that captive
221	studies exaggerate seed predation, and this might also be the case in our study. Seed
222	spitting is another handling behavior in cercopithecine monkeys, including macaques
223	(Corlett & Lucas, 1990; Lucas & Corlett, 1998). For Japanese macaques in our study,
224	however, spitting out of the seeds was rarely observed (3%), though the plastic beads
225	were spat out more (29%) (Table 1). Small seed size might contribute to the lower
226	percentage of seed spitting (Lucas & Corlett, 1998).
227	Measurements of the transit time (TT) and the mean retention time (MRT) in the
228	female Japanese macaques in our study (TT, 22–35 hr, MRT, 37–54 hr) (Fig. 1a, 1b) were
229	similar to those found in previous studies of cercopithecine monkeys (TT, 20 hr for
230	Cercopithecus ascanius, 17 hr for C. mitis, 21 hr for C. neglectus (Lambert, 2002), and 23
231	hr for Lophocebus albigena (Maisels, 1993); MRT, 27 hr for C. ascanius, 25 hr for C.
232	mitis, 34 hr for C. neglectus (Lambert, 2002), 38 hr for L. albigena (Maisels, 1993), and
233	39 hr for Macaca fuscata (Otani, 2004)). In general, seed passage time of Old World

3
4
5
6
7
8
0
9
10
11
12
13
14
15
16
17
17
18
19
20
21
22
23
24
25
20
20
27
28
29
30
31
32
33
34
25
30
30
37
38
39
40
41
42
43
10
44
40
46
47
48
49
50
51
52
52
55
04 55
55
56
57
58
59
60

monkeys is considerably longer than that reported for most species of New World 234 monkeys (Lambert, 1998; Chapman & Russo, 2007). Further, when the effects of body 235 size were removed, the passage time of Old World monkeys also is significantly greater 236 than that of apes (Lambert, 2002). Relatively long retention time is one of physiological 237 traits of cercopithecine monkeys, including Japanese macaques, and this might facilitate 238 more efficient consumption of a high fiber non-fruit diet and parts while maintaining a 239 240 greater capacity to detoxify secondary metabolites (Lambert, 2002). Among the three variables of the passage time of seeds treated in this study, TT did 241 242 not differ among seed types used in the feeding experiments and among individual macaques (P > 0.05). In contrast, MRT and TLA of a seed differed significantly among 243 seed types, and, for the latter, among individuals (P < 0.05): dry seed weight showed a 244 positive effect on MRT, while specific gravity of seeds showed a positive effect on TLA 245 (Table 2). Furthermore, it is noteworthy that the positive effect of the specific gravity on 246 *TLA* was irrelevant to the plastic beads, which had a quite high specific gravity. Our study 247 is the first to demonstrate the effect of the physical characteristics of seeds on the passage 248 time in cercopithecine monkeys, though we should consider the effect of the individual 249 250 variation in the passage times, too. Our results imply that 1) (at least) seeds with higher specific gravity and (or) heavier seeds will be dispersed farther from the parent plants, 251

2
3
4
5
6
7
8
9
10
11
10
12
13
14
15
16
17
18
19
20
21
22
22
20
24
25
26
27
28
29
30
31
32
33
24
34
35
36
37
38
39
40
41
42
43
44
-1-1 /5
40
40
4/
48
49
50
51
52
53
54
55
55
0C
5/
58
59
60

1

and 2) (at least) seeds with lower specific gravity and (or) the lighter seeds will be 252 dispersed nearer the parent. Interestingly, the effect of specific gravity of seeds on the 253 passage time was opposite to Garbers' (1986) result which suggested that the specific 254 255 gravity of seeds was negatively correlated with passage time through the gut of two callitrichid species. The difference in the effect of specific gravity of seeds between the 256 macaques and tamarins would be attributed to the difference in relative gut volume and 257 digestive systems (Strier, 2000; Lambert, 1998), or due to the difference in metabolism 258 between them. 259 On the basis of present results, testing the relationship between dispersal distribution 260 of seeds and their performance (e.g., germination and growth of seedling) in the field is 261 needed to draw conclusions about the adaptive significance of the effects of physical 262 characteristics of the seeds on gut passage time. 263 264 Acknowledgements 265 We thank the staffs of the Center for Human Evolution Modeling Research of the Primate 266

267 Research Institute, Kyoto University for their cooperation in our feeding experiments,

- and Dr. P. A. Garber and the staff of the Department of Ecology and Social Behavior of
- the Primate Research Institute, Kyoto University, for their constructive comments.

1 2 3		Tsuji et al. 17
4 5 6 7 8	270	
9 10 11	271	References
12 13 14	272	Augspurger, C.K. (1984). Seedling survival of tropical tree species: interactions of
15 16 17	273	dispersal distance, light-gaps, and pathogens. Ecology 65, 1705-1712.
18 19 20	274	Chapman, C.A. & Chapman, L.J. (1996). Frugivory and the fate of dispersed and
21 22 23	275	non-dispersed seeds of six African tree species. J. Trop. Ecol. 12, 491-504.
24 25 26	276	Chapman, C.A. & Russo, S.E. (2007). Primate seed dispersal. In <i>Primate in Perspective</i> :
27 28 29	277	510-525. Campbell, C.J., Fuentes, A., MacKinnon, K.C., Pager, M. & Boarder, S.K.
30 31 32	278	(Eds.). Oxford: Oxford University Press.
33 34 35	279	Corlett, R.T. & Lucas, P.W. (1990). Alternative seed-handling strategies in primates:
36 37 38	280	seed-spitting by long-tailed macaques (Macaca fascicularis). Oecologia 82,
39 40 41 42	281	166-171.
42 43 44 45	282	Direnfeld, E.S., Koontz, F.W. & Goldstein, R.S. (1992). Feed intake, digestion and
45 46 47 48	283	passage of the proboscis monkey (Nasalis larvatus) in captivity. Primates 33,
49 50	284	399-405.
52 53 54	285	Garber, P.A. (1986). The ecology of seed dispersal in two species of Callitrichidae
55 56 57	286	primates (Saguinus mystax and Saguinus fuscicollis). Am. J. Primatol. 10, 155-170.
58 59 60	287	Gardener, C.J., McIvor, J.G. & Jansen, A. (1993). Passage of legume and grass seeds

1
2
2
4
4
5
6
7
8
q
10
10
11
12
13
14
15
16
17
17
10 10
19
20
21
22
23
20
24
25
26
27
28
29
30
21
31
32
33
34
35
36
37
38
30
39
40
41
42
43
44
45
46
40
47
48
49
50
51
52
52
55
54 55
55
56
57
58
59
60

288	through the digestive tract of cattle and their survival in feces. J. Appl. Ecol. 30,
289	63-74.
290	Graae, B.J., Pagh, S. & Bruun, H.H. (2004). An experimental evaluation of the arctic fox
291	(Alopex lagopus) as a seed disperser. Arc. Antarc. Alpine. Res. 36, 468-473.
292	Julliot, C. (1996). Seed dispersal by red howling monkeys (Alouatta seniculus) in the
293	tropical rain forest of French Guiana. Int. J. Primatol. 17, 239-258.
294	Kaplin, B.A. & Moermond, T.C. (1998). Variation in seed handling by two species of
295	forest monkeys in Rwanda. Am. J. Primatol. 45, 83-101.
296	Kunz, B.K. & Linsenmair, K.E. (2008a). The role of the olive baboon (Papio anubis,
297	Cercopithecidae) as seed disperser in a savanna-forest mosaic of West Africa. J.
298	<i>Trop. Ecol.</i> 24 , 235-246.
299	Kunz, B.K. & Linsenmair, K.E. (2008b). Seed size selection by olive baboons. Primates
300	49 , 239-245.
301	Lambert, J.E. (1998). Primate digestion: interactions among anatomy, physiology, and
302	feeding ecology. Evol. Anthropol. 7, 8-20.
303	Lambert, J.E. (2001). Red-tailed guenons (Cercopithecus ascanius) and Strychnos mitis:
304	evidence for plant benefits beyond seed dispersal. Int. J. Primatol. 22, 189-201.
305	Lambert, J.E. (2002). Digestive retention times in forest guenons (Cercopithecus spp.)

4		
5 6 7 8	306	with reference to chimpanzees (Pan troglodytes). Int. J. Primatol. 23, 1169-1185.
9 10 11	307	Leavy, D.J. & Grajal, A. (1991). Evolutionary implications of fruit-processing limitation
12 13 14	308	in cedar wax wings. Am. Nat. 138, 171-189.
15 16 17	309	Link, A. & Di Fiore, A. (2006). Seed dispersal by spider monkeys and its importance in
18 19 20	310	the maintenance of Neotropical rain-forest diversity. J. Trop. Ecol. 22, 235-246.
21 22 23	311	Lucas, P.W. & Corlett, R.T. (1998). Seed dispersal by long-tailed macaques. Am. J.
24 25 26	312	Primatol. 45, 29-44.
27 28 29	313	Maisels, F. (1993). Gut passage rate in guenons and mangabeys: another indicator of a
30 31 32	314	flexible feeding niche? Folia Primatol. 61, 35-37.
33 34 35	315	Martins, M.M. (2006). Comparative seed dispersal effectiveness of sympatric Alouatta
36 37 38	316	guariba and Brachyteles arachnoids in Southeastern Brazil. Biotropica 38, 57-63.
39 40 41	317	Mori, A. (1979). An experiment on the relation between the feeding speed and the caloric
42 43 44	318	intake through leaf eating in Japanese monkeys. <i>Primates</i> 20 , 185-195.
45 46 47	319	Nakagawa, N., Iwamoto, T., Yokota, N. & Soumah, A.G. (1996). Inter-regional and
48 49 50	320	inter-seasonal variation of food quality in Japanese macaques: with reference to the
51 52 53	321	constraints of digestive volume and feeding time. In Evolution and Ecology of
54 55 56	322	Macaque <i>species</i> : 207-234. Fa, J.E. & Lindberg, D.G. (Eds.). Cambridge:
57 58 59	323	Cambridge University Press.
60		

2
3
4
5
6
7
8
g
10
10
10
12
13
14
15
10
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
70 /0
50
50
50
52 52
55
04 55
00 50
00 57
5/ 50
58
59
60

Otani, T. & Shibata, E. (2000). Seed dispersal and predation by Yakushima macaques, 324 Macaca fuscata yakui, in a warm temperate forest of Yakushima Island, southern 325 Japan. Ecol. Res. 15, 133-144. 326 Otani, T. (2003). Seed dispersal and predation of fleshy-fruited plants by Japanese 327 macaques in the cool temperate zone of northern Japan. Mamm Study 28, 153-156. 328 Otani, T. (2004). Effects of macaque ingestion on seed destruction and germination of a 329 fleshy-fruited tree, Eurya emarginata. Ecol. Res. 19, 495-501. 330 Pollux, B.J.A., Ouborg, N.J., van Groenendael, J.M. & Klaassen, M. (2007). 331 332 Consequences of intraspecific seed-size variation in Sparganium emersum for dispersal by fish. Func. Ecol. 21, 1084-1091. 333 334 Raemakers, J. (1980). Causes of variation in the distance traveled daily by gibbons. Folia *Primatol.* **23**, 46-60. 335 R Development Core Team. (2006). R: A language and environment for statistical 336 computing. Version 2.4.1. Vienna, Austria, R Foundation for Statistical Computing. 337 Remis, M.J. (2000). Initial studies on the contributions of body size and gastrointestinal 338 passage rates to dietary flexibility among gorillas. Am. J. Phys. Anthropol. 112, 339 340 171-180.

341 Schwarm, A., Ortmann, S., Wolf, C., Streich, W.J. & Clauss, M. (2008). Excretion

1		Tsuji et al. 21
2		
4		
5 6 7	342	patterns of fluid and different sized particle passage markers in banteng (Bos
8 9 10 11	343	javanicus) and pygmy hippopotamus (Hexaprotodon liberiensis): two functionally
12 13 14	344	different foregut fermenters. Comp. Biochem. Physiol. A. 150, 32-39.
15 16 17	345	Strier, K.B. (2000). Primate Behavioral Ecology. 1st edn. Boston: Allyn & Bacon.
18 19 20	346	Traveset, A. (1998). Effect of seed passage through vertebrate frugivores' guts on
21 22 23	347	germination: a review. Persp. Plant Ecol. Evol. Syst. 1/2, 151-190.
24 25 26 27	348	Varela, O. & Bucher, E.H. (2006). Passage time, viability, and germination of seeds
28 29 30	349	ingested by foxes. J. Arid. Environ. 67, 566-578.
31 32 33	350	Wilson, M.F. (1989). Gut retention times of experimental pseudoseeds by emus.
34 35 36	351	<i>Biotropica</i> 21 , 210-213.
37 38 39	352	Wotton, D.M., Clout, M.N. & Kelly, D. (2008). Seed retention times in the New Zealand
40 41 42	353	pigeon (<i>Hemiphaga novaezeelandiae novaeseelandiae</i>). NZ. J. Ecol. 32 , 1-6.
43 44 45	354	Yumoto, T., Noma, N. & Maruhashi, T. (1998). Cheek-pouch dispersal of seeds by
46 47 48	355	Japanese monkeys (Macaca fuscata yakui) on Yakushima Island, Japan. Primates 39,
49 50 51	356	325-338.
52 53 54 55	357	Yumoto, T., Kimura, K. & Nishimura, A. (1999). Estimation of the retention times and
56 57 58	358	distances of seed dispersed by two monkey species, Alouatta seniculus and
59 60	359	Lagothrix lagotricha, in a Colombian forest. Ecol. Res. 14, 179-191.

360 FIGURE LEGENDS

- 361 Figure 1. Relationships between the seed type (eight types) and the passage time
- 362 variables: a) transit time (TT), b) mean retention time (MRT), and c) time of last
- 363 appearance of a seed (*TLA*). Filled circles show mean values and bars show standard

364 deviations (SD).

- - 366 The English in this document has been checked by at least two professional editors,
 - 367 both native speakers of English. For a certificate, see:
 - 368 http://www.textcheck.com/certificate/U4tGOG

Table 1. The physical characteristics of seeds used in feeding experiments and their fate.

	Physical characteristics of seeds						Dose		Fate of seeds (# of seeds, mean ± SD)						
	Size (mm, mean ± SD)			Dry weight Volume ^{a)}	Specific gravity ^{b)}	No. of seeds in a	Total volume	Defecated		Spitted out		Destructed			
Seed type	Length	Width	Height	(mg, mean ± SD)	(mm ³)	(mg·mm ⁻³)	banana	(mm ³)	Deletated Spritter out						
Small beads	2.10 ± 0.09	2.12 ± 0.09	1.45 ± 0.12	9.60 ± 0.46	3.75	3.33	110	412.5	94.6 ±	18.2	11.6	± 13.3	4.0	±	5.2
Large beads	2.84 ± 0.11	2.76 ± 0.14	1.88 ± 0.13	25.70 ± 6.58	8.72	2.95	40	348.8	25.8 ±	11.1	11.6	± 7.1	2.6	±	4.7
Radish	4.14 ± 0.21	3.26 ± 0.21	2.53 ± 0.28	18.20 ± 2.78	20.84	0.87	20	416.8	7.2 ±	3.0	0.0	± 0.0	12.8	±	3.0
Eggplant	3.45 ± 0.17	2.89 ± 0.27	0.93 ± 0.12	4.04 ± 0.47	8.03	0.50	50	401.5	39.0 ±	6.9	0.2	± 0.5	10.8	±	6.8
Spinach	3.84 ± 0.40	3.23 ± 0.29	2.31 ± 0.30	11.35 ± 1.97	17.58	0.65	25	439.5	6.0 ±	2.9	0.4	± 0.6	18.6	±	2.5
Melon	6.24 ± 0.59	3.22 ± 0.16	0.99 ± 0.15	8.67 ^{c)}	19.21	0.45	20	384.2	9.4 ±	3.9	1.0	± 2.2	9.6	±	3.8
Potherb Mustard	1.62 ± 0.18	1.43 ± 0.12	1.43 ± 0.12	1.74 ± 0.35	1.83	0.95	230	420.9	56.0 ±	13.4	12.2	± 27.3	161.8	±	40.3
Bermuda grass	1.38 ± 0.09	0.71 ± 0.11	0.68 ± 0.11	0.19^{d} ± 0.02	0.44	0.44	1300	572.0	538.0 ±	247.9	0.0	± 0.0	762.0	±	247.9

The sample number of seed measurements was ten for each species.

^{a)} Seed volume was calculated by using the following formula: $V = \pi R^2 (L - 2/3R)$; V = volume, R = (width + height) / 4, L = length. Here $\pi \mathbf{K} = \pi \mathbf{K} + \omega \exp(\mathbf{r} + \mathbf{v})$

b) Calculated as dry weight / volume.

^{c)} Dry seed weight was measured only once.

^{d)} Dry seed weight was measured five times.

	Dependent variable					
	MRT	TLA	$\frac{TLA \text{ (without beads)}}{\text{Estimate } \pm \text{SE}}$ $3.915 \pm 0.199^{***}$			
Independent variable	Estimate ± SE	Estimate ± SE				
Intercept	$3.736 \pm 0.062^{***}$	$4.071 \pm 0.072^{***}$				
Dry weight	0.011 ± 0.005	—	—			
Volume	—	—	—			
Specific gravity	40.	$0.167 \pm 0.043^{**}$	0.416 ± 0.294			

Table 2. Selected physical characteristics of seeds affecting passage time variables by GLM: mean retention time (MRT) and time of last appearance (TLA).

Seed type