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1 Introduction

Albert Einstein proposed his breakthrough theory of General Relativity (GR) in 1916. Since
then it has successfully resisted the largest variety of tests. GR triumphs in shaping our
current understanding of physics from millimeter length scales all the way up to cosmological
scales. Besides its remarkable successes, the theory suffers also from a number of confronta-
tions from both theoretical and observational perspectives on very large and small scales. The
unification of gravity with quantum mechanics beyond the validity of the effective field the-
ory description remains a fundamental open question over decades. Similarly, requiring the
unification of gravity with the standard model of particle physics indicates beyond doubt the
need for a modification of the theory in the UV. Furthermore, the unavoidability of cosmic
and black hole singularities signals that the theory in its original form might be inadequate
for gravitational phenomena at very high energies. On the other hand, the observational
confrontations at the other end of the energy spectrum, like Cosmological Constant (CC)
problem [1] and the recent accelerated expansion of the Universe [2–4] might be seen as an
indication of the breakdown of gravity on these large cosmological scales.

The aforementioned problems have initiated the study on modifications of gravity in the
IR and UV. The renormalization properties of GR can be improved by abandoning Lorentz
invariance at high energies as in Hořava-Lifshitz gravity [5–11] (see also references therein).
The existence of a preferred time foliation renders the gravitational theory power-counting
renormalizable due to addition of higher spatial derivatives without adding higher-order
time derivatives. Hořava-Lifshitz gravity could be an appropriate framework of constructing
a sensible theory of quantum gravity once the renormalizability has really been proven and
the relativistic low energy limit is successfully implemented. Similarly, the hope to find
a regularization scheme for the singularities in gravity led to considerations of Born-Infeld
inspired gravity models, which represent a specific infinite order higher curvature modification
of GR [12–20]. However, this type of modifications with higher order curvature terms usually
introduces additional degrees of freedom, which in turn lead to a loss of unitarity despite being
renormalizable. A possible rescue might come from formulating the theory à la Palatini,
which opens up some avenues to avoid the cosmological and black hole singularities [19–22].
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A promising infra-red modification of GR is the non-linear extension of massive grav-
ity proposed by de Rham-Gabadadze-Tolley (dRGT) [23, 24], which successfully extends
the unique mass term at the linear level, the Fierz-Pauli action [25, 26], and is given by a
very specific structure of a 2-parameter family interaction potential (for extensive reviews,
see [27, 28]). The form of the potential is designed such that the ghost-like sixth polar-
ization of graviton, which leads to the Boulware-Deser (BD) instability [29], is completely
removed. The absence of the BD ghost has been proven in a multitude of languages and for-
malisms [30–42]. The decoupling limit of the theory contains Galileon interactions [23, 43–45]
and shares the property of non-renormalization theorem [46–49]. The quantum behavior of
the theory has been further explored in [50–53]. There has been a flurry of investigations
concerning the phenomenological aspects of the dRGT massive gravity, specially its cosmo-
logical implications [44, 54–71]. From a technical stand point, the very specific potential
of this non-linear massive gravity theory was constructed by demanding that the vanishing
helicity-2 part (hµν = 0 ) of the interactions consists only of total derivatives for the helicity-0
field π. Hassan and Rosen realized that this criteria was automatically fulfilled by writing
the interactions in terms of a deformed determinant which, expressed in terms of the anti-
symmetric Levi-Civita tensor, guarantees the total derivative nature of the interactions for
the helicity-0 field [72]. Very soon they proposed the bimetric extension of massive gravity,
where the reference metric fµν becomes dynamical through the inclusion of the corresponding
kinetic term [73].

In massive (bi-)gravity the existence of two metrics (in bigravity both metrics are dy-
namical whereas in massive gravity the second metric is a non-dynamical reference metric)
comes hand in hand with the natural question of how to couple these two metrics in a con-
sistent way to the matter sector without causing the BD ghost to reappear [53, 74–85]. Once
this has been successfully constructed at the classical level, the same criteria needs to be
maintained at the quantum level. In the case where the matter sector couples minimally to
only one metric, the absence of BD ghost had been proven non-linearly at the classical level
already in [73]. Furthermore, in [53] it has been shown that this property remains true at
the quantum level since the quantum corrections do not destabilize the form of the potential
but rather gives rise to a cosmological constant. In bigravity there is nothing special about
the one metric versus the other one, therefore it might be tempting to consider the case in
which the matter field couples minimally to both metrics simultaneously. However, as shown
in [53] not only the BD ghost degree of freedom is present already at the classical level, the
quantum corrections detune the potential structure at an arbitrarily low scale. Moreover,
requiring that the specific ghost-free potential structure is maintained at the quantum level,
a new effective metric can be constructed through which the matter field can couple to both
metrics at the same time [53]. This composite effective metric is very special: once the matter
loops are integrated, the quantum corrections yield a contribution in the form of the allowed
potential in the dRGT action. Another complementary analysis yields the same conclusion
in [80]. In [53] it was shown that this specific coupling of the matter field to the effective
metric does not excite any ghost degree of freedom at the strong coupling scale and therefore
can be considered as an effective field theory with a cut-off above the strong coupling scale.

The FLRW solutions in dRGT are known to suffer from several problems: i) there is
no flat FLRW [54]; ii) open FLRW solutions do exist [86] but there are three instantaneous
modes at linear order [60], at least one of which becomes a ghost at non-linear order [55]; iii)
flat, closed and open FRW solutions can be obtained for a de Sitter reference metric [87], but
either the instantaneous modes are still present [60], or the linear Higuchi ghost appears at
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relevant scales [64]. If matter fields couple only to the dynamical metric, all of these issues
are independent of the matter content as they stem from the solutions to the Stückelberg
constraint. However, a new sector which only couples to the composite effective metric will
give rise to a modification of the constraint and can provide a remedy for the listed problems.

The present paper is devoted to the study of the cosmological perturbations in the
massive gravity theory with a special coupling to the matter sector through a new composite
effective metric. The FLRW dynamics were already studied in [53] where this interaction
was proposed for the first time. We aim to push forward these preliminary studies and
investigate in detail the behavior and stability of perturbations. After briefly reviewing the
dRGT massive gravity together with the new effective composite metric that the matter
sector couples to in section 2, we explore the background evolution on a homogeneous and
isotropic space-time in section 3. The new coupling establishes a framework in which the
no-go theorem for FLRW solutions can be avoided. Section 4 is consecrated to a detail study
of the stability of the perturbations. Finally, we summarize our results in section 5.

Throughout the paper, we will adapt to the units in which c = ~ = 1 and use the notation
MPl = 1/

√
8πG for the reduced Planck mass. Furthermore, we follow the mostly plus metric

signature convention. Some short-cut notations are used to denote the contractions of rank-2
tensors Kµ

µ = [K], Kµ
νKν

µ = [K2] = (Kµν)
2, Kµ

νKν
ρKρ

µ = [K3] = (Kµν)
3 etc. Greek indices

run form 0 to 3 while Latin indices from 1 to 3. With the latin indices we denote contractions
in the same way as for the Greek indices hijh

ij = (hij)
2, AiA

i = (Ai)
2 . . . etc.

2 dRGT massive gravity with doubly coupled matter

In this section we will first review the ghost-free interactions in the theory of massive gravity
and setup the framework in which we will perform our analysis of cosmological perturbations.
Our starting point is the action for massive gravity and the matter action where the ordinary
matter fields still couple minimally to the physical metric g and an additional scalar field χ
couples to the composite effective metric proposed in [53]

S =

∫

d4x

[

M2
Pl

2

√−g
(

R[g]− m2

2

∑

n

αnU [K] + Lmatter

)

+
√−geffLχ(geff , χ)

]

, (2.1)

where the potential interactions are given by [23, 24]

U2[K] = EµνρσEαβ
ρσKµαKνβ = 2

(

[K]2 −
[

K2
]

)

,

U3[K] = EµνρσEαβκ
σKµαKνβKρκ = [K]3 − 3[K]

[

K2
]

+ 2
[

K3
]

,

U3[K] = EµνρσEαβκγKµαKνβKρκKσγ = [K]4 − 6 [K]2
[

K2
]

+ 3
[

K2
]2

+ 8[K]
[

K3
]

− 6
[

K4
]

,
(2.2)

where E stands for the Levi-Cevita tensor. The tensor K has a very non-trivial structure in
form of a square root

Kµ
ν [g, f ] = δµν −

(

√

g−1f
)µ

ν
, (2.3)

The mass potentials in 2.1 breaks the diffeomorphism invariance completely. However, we can
restore it with the help of four Stückelberg fields φa by promoting the Minkowski reference
metric to the space-time tensor

fµν → ηab∂µφ
a∂νφ

b . (2.4)

– 3 –



J
C
A
P
0
2
(
2
0
1
5
)
0
2
2

In [53] a new effective composite coupling with a particular combination of the metrics
was proposed based on the question of which specific coupling would ensure that one-loop
corrections from virtual matter fields do not detune the special structure of the potential.
The matter Lagrangian Lχ thus needs to couple to the effective metric which was found to
have the following form

geffµν ≡ α2gµν + 2αβ gαµ

(

√

g−1f
)α

ν
+ β2fµν . (2.5)

With this choice, the BD degree of freedom is not generated thanks to the form of the volume
element for the effective metric

√−geff =
√−g det

(

α+ β
(

√

g−1f
)µ

ν

)

, (2.6)

which can be rewritten using the expansion of a deformed determinant [72] as

√−geff =
√−g

4
∑

n=0

(−β)n
n!

(α+ β)4−nUn[K] . (2.7)

In other words, the volume element itself can be written in terms of the allowed potentials
of dRGT theory. For sake of simplicity we will consider a scalar field χ with an arbitrary
potential that couples to this effective metric via

Lχ = −1

2
gµνeff ∂µχ∂νχ− V (χ) . (2.8)

In the following, we neglect the tadpole contribution U1 to the mass term by setting α1 = 0,
while the U0 term is absorbed into a bare cosmological constant

Lmatter = −M2
PlΛ . (2.9)

As was pointed out in [53], the existence of flat FLRW solutions strongly relies on the
existence of at least one matter field that couples to the effective metric geff . However,
for phenomenological viability one needs most of the standard matter fields to couple to
the standard metric gµν and therefore we include the cosmological constant to reflect this
point.Let us also emphasize that the matter field χ that we consider here is not a standard
matter field and we assume that it belongs to a dark sector and is not responsible for driving
the cosmic expansion of the Universe. Note also, that the recovery of General Relativity in
the m→ 0 limit works in the same way as in massive gravity with the standard coupling to
matter through the Vainshtein mechanism.

3 Background evolution

The original massive gravity theory without the effective coupling was subject to a no-go
theorem for flat FLRW solutions [54], arising from the fact that the equation of motion
for the Stückelberg field enforces the scale factor to be constant. However, the presence
of this effective metric through the matter coupling yields a significant modification of the
equation of motion for the Stückelberg field and hence allows exact FLRW solutions with
flat reference metric as pointed out in [53]. We would like to push this analysis further and
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study how perturbations behave on top of this FLRW background. Our starting Ansatz for
the dynamical metric is the homogeneous and isotropic flat FLRW

ds2g = −N2dt2 + a2δijdx
idxj , (3.1)

while the non-dynamical metric is the pull-back of the Minkowski metric in the Stückelberg
field space to the physical space-time, which we parametrize as

ds2f = fµνdx
µdxν = −ḟ2dt2 + a20δijdx

idxj . (3.2)

This corresponds to the choice φ0 = f(t), φi = a0x
i for the Stückelberg fields introduced

in (2.4). For the case f(t) = t and a0 = 1, this coincides with the unitary gauge φa = xa.
The advantages of this choice are i) the function f(t) reintroduces the time reparametrization
invariance and allows us to directly find the constraint implied by the Stückelberg fields, and
as we show shortly, it also makes the integration of the equation of motion trivial; ii) the
introduction of the second lapse function n ≡ ḟ allows us to identify any explicit dependence
on N which cannot be removed by changing the time coordinate; iii) the introduction of a0
makes the determination of the physical quantities which are independent of the scaling of
the coordinates manifest. In this background, the effective metric defined in equation (2.5)
corresponds to the line element

ds2eff = −N2
effdt

2 + a2effδijdx
idxj , (3.3)

where Neff and aeff are the effective lapse and scale factor respectively

Neff ≡ αN + β ḟ , aeff ≡ αa+ β a0 . (3.4)

Compatible with our above homogeneous and isotropic Ansatz we assume a χ field condensate
depending only on time χ = χ(t). For our convenience we introduce the following quantities

H ≡ ȧ

aN
, (3.5)

r ≡ ḟ/a0
N/a

, (3.6)

U(A) ≡ 6
4
∑

n=2

αn(1−A)n . (3.7)

where the ratio of the scale factors is denoted by A ≡ a0/a and H is the expansion rate of the
physical g metric, while r defines the speed of light propagating in the f metric in the units
of the one propagating in the g metric. Our action (2.1) in the mini-superspace becomes (up
to total derivatives):

S

V
= M2

Pl

∫

dt a3N

{

− Λ− 3H2 −m2

[

U(A) +
U,A

4
(r − 1)A

]

}

+

∫

dt a3effNeff

[

χ̇2

2N2
eff

− V (χ)

]

, (3.8)

where U,A = ∂AU . We are now ready to compute the background equations of motion by
varying the action (3.8) with respect to N , a, χ and f . We remark that the resulting system
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of equations of motion contains a redundant equation, as they are connected through the
contracted Bianchi identity,

∂

∂t

δS

δN
− ȧ

N

δS

δa
− χ̇

N

δS

δχ
− ḟ

N

δS

δf
= 0 . (3.9)

In the remainder of the paper, we use the following functions instead of the parameters αn

ρm(A) ≡ U(A)− A

4
U,A , J(A) ≡ 1

3
∂Aρm(A) , Q(A) ≡ 1

4
U,A . (3.10)

It will turn out that ρm denotes the dimensionless effective energy density from the mass
term. First of all, the Friedmann equation can be calculated by varying the action (3.8) with
respect to the lapse N , which yields

3H2 = Λ+m2ρm +
αa3eff
M2

Pl a
3

(

χ̇2

2N2
eff

+ V

)

, (3.11)

Similarly, the variation of the mini-superspace action (3.8) with respect to the scale factor a
and combining it with the Friedmann equation, gives rise to the acceleration equation

2 Ḣ

N
= m2 J A (r − 1)− αa3eff

M2
Pla

3

[(

1 +
Neff/aeff
N/a

)

χ̇2

2N2
eff

+

(

1− Neff/aeff
N/a

)

V

]

. (3.12)

Before moving on, a few comments are in order. From (2.5), we see that for α = 0, the χ field
couples only to the f metric. Indeed, in this case, equations (3.11) and (3.12) correspond
to their counterparts in dRGT theory. Conversely, in the β = 0 case, the χ field couples to
αgµν . Thus the terms containing the χ field in (3.11) and (3.12) correspond to a canonical
scalar field on massive gravity with coupling constant M2

Pl/α
4.The equation of motion for

the χ field is just the standard conservation equation for a field minimally coupled to the geff
metric, namely,

1

Neff

∂

∂t

(

χ̇

Neff

)

+ 3
ȧeff

aeff Neff

χ̇

Neff
+ V ′(χ) = 0 . (3.13)

Last but not least, the variation with respect to the Stückelberg field results in

m2M2
PlJ =

αβ a2eff
a2

(

χ̇2

2N2
eff

− V

)

. (3.14)

The above equation is the key property of this model. It provides a constraint on the
background evolution, and can be interpreted as an algebraic relation to determine N , Neff ,
r, ḟ . Note also, that it is a quadratic equation with two solutions. On the other hand, since
the same combination χ̇2/N2

eff appears in the Friedmann equation, the above constraint can
be used without ambiguity on (3.11) to obtain:

3H2 = Λ+m2

[

ρm + J

(

A+
α

β

)]

+
2αa3eff
a3

V

M2
Pl

. (3.15)

Moreover, the mini-superspace action (3.8) depends only on the first derivative of the tem-
poral Stückelberg field f , hence we can trivially integrate equation (3.14) once to obtain:

m2M2
Pl a

3Q+ βa3eff

(

χ̇2

2N2
eff

+ V

)

= a30m
2M2

Plκ , (3.16)
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where κ is a dimensionless integration constant, independent of the normalization of the scale
factor. By combining this with the Friedmann equation (3.11), we get

3H2 = Λ+m2

[

ρm − α

β

(

Q− κA3
)

]

. (3.17)

We would like to emphasize that the contributions coming from the mass term and the χ field
on the right hand side of the above equation, contain terms up to A3, i.e. with the fastest
redshift being a−3. We also remark that we did not assume any approximation in order to
obtain the above equation, however the resulting Friedmann equation does depend on the
information of initial conditions, encoded in the integration constant κ. Furthermore, one
can remove the explicit χ dependent part in the acceleration equation (3.12): upon using the
equations (3.14) and (3.16) to eliminate the kinetic and potential terms for the χ field, it reads

2 Ḣ

N
= −m2

[

J A− α

β

(

Q− κA3 − J
)

]

. (3.18)

Note that this equation is nothing else but the time derivative of equation (3.17) (up to a
factor of 3H N). This can be easily checked once the following relations have been used

ρ̇m = −3N H J A , Q̇ = 3N H (J −Q) , Ȧ = −N H A . (3.19)

Any χ dependence in the further steps can be removed by using equations (3.14), (3.16) and
their derivatives. It is straightforward to verify that these equations and their derivatives are
already consistent with the χ field equation of motion (3.13), through the contracted Bianchi
identity (3.9).We end this discussion with an example, namely the minimal model with pa-
rameters α2 = 1, α3 = α4 = 0 and m2 > 0. In this case, the Friedmann equation becomes

3H2 = Λ+ 3m2(A− 1)

(

A− 2− α

β

)

+
m2ακA3

β
(3.20)

At late times, A ≪ 1, the universe is dominated by the effective cosmological constant
Λeff ≡ Λ + 3m2(α + 2β)/β. Conversely, at early times, we have A ≫ 1 and the integration
constant term dominates the expansion, mimicking pressureless dust. Requiring positive
effective energy density imposes ακ/β > 0.At this stage a remark is in order. If one removes
the explicit dependence of the energy density and the pressure of the matter field, one needs
to be careful with taking the β = 0 limit. In this limit the constraints give J = 0 and
a3Q − a30κ = 0, which always accompany the 1/β terms in the background equations. In
order to properly take the β = 0 limit, one first needs to solve for J and Q, which will
depend linearly on β, thus removing the offending 1/β parts. Then for the limit β → 0,
the background equations manifestly reduce to the minimally coupled matter case.Note also
that the problems listed in the introduction in the standard dRGT theory with the minimal
coupling between the matter field and the dynamical metric g, comes from the fact that the
constraint equation enforces J = 0. In the presence of the double coupling through geff the
constraint equation is modified to (3.14) with a contribution of the same order as from the
mass term. Regardless of the dominant contribution in the expansion, the function J , which
is a dimensionless quantity, is generically forced by the constraint (3.14) to be non-zero.

– 7 –
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4 Stability of the perturbations

In the previous section we have analyzed the theory on a flat FLRW space-time and saw
that the new coupling of the matter sector with the effective metric circumvents the no-go
theorem for the existence of flat FLRW solutions in the massive gravity theory. Of course
the original no-go theorem is not a failure for massive gravity. In fact one can construct
cosmological solutions that are inhomogeneous and/or anisotropic on very large scales but
mimic arbitrarily close FLRW solutions within distances smaller than horizon [54]. However,
if one insists on flat FLRW solutions on all scales, the new effective composite metric enables
us to accommodate such solutions. In [53] it has been explicitly shown, that the Boulware-
Deser ghost is absent around these exact FLRW solutions. An additional analysis in the
decoupling limit has indicated that on scales below the strong coupling scale Λ3

3 = MPlm
2

the theory avoids the Boulware-Deser ghost and hence can be considered as a perfectly valid
effective field theory. Beyond the strong coupling scale the theory admits a Boulware-Deser
ghost whose existence was proven perturbatively in [53] but also in a more general setup
non-perturbatively in [88]. Nevertheless, the absence of the ghost at the very least till the
strong coupling scale makes the theory still very attractive for phenomenological studies as
long as one remains within the regime of validity of the effective field theory. The action with
the effective matter coupling 2.1 consist of an infinite number of operators some of which
enter at the scale Λ3

3, some of which enter at the cutoff scale Λcut−off and some of which enter
in between these two scales. The operators below Λcut−off are just fine whereas the ones
entering at and above Λcut−off are not to be trusted as they contain a ghost. For any solution
whose physical scales (all the fields and their derivatives) are smaller than the cut-off, it is
simply impossible that this solution would have excited the operators which are at or above
the cut-off, meaning that these solutions would not rely on the ghost. Let us emphasize
again, that the FLRW solutions found in [53] do not excite the Boulware-Deser ghost, i.e. all
the ghostly-like operators disappear, giving rise to a healthy theory on that background.

The central goal of this work is to determine the stability of perturbations around these
solutions. For this purpose, let us consider the following perturbations for the dynamical
metric gµν

δg00 = −2N2Φ ,

δg0i = N a (∂iB +Bi) ,

δgij = a2
[

2 δijψ +

(

∂i∂j −
δij
3
∂k∂k

)

E + ∂(iEj) + hij

]

. (4.1)

where all perturbations are functions of time and space and accord to the transformations
under spatial rotations. Note that δijhij = ∂ihij = ∂iEi = ∂iBi = 0. Furthermore, we
choose to keep the Stückelberg fields purely background, thus fixing the gauge freedom com-
pletely. The perturbed reference metric is thus still given by (3.2). We perturb the scalar
field χ as follows

χ = χ0(t) +MPlδχ . (4.2)

In this setup, the action in 2.1 contains näıvely counted eleven degrees of freedom (dof) two
of which are traceless symmetric spatial tensor fields (hij), four of which are divergence-free
spatial vector fields (Bi, Ei) and the remaining five dof are scalars (Φ, B, ψ, E, δχ) with
no remaining gauge symmetries. However, out of these dof two of the scalar fields (Φ, B)
and two of the vector fields (Bi) are non-dynamical. Furthermore, since the Boulware-Deser
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ghost is absent in this configuration as shown in [53], the dRGT tuning along with the
specific coupling of the χ field will allow us to integrate out one more combination. At the
end, we will be left with two tensor, two vector and two scalar dof. These correspond to
the five polarizations of the massive spin-2 field and the matter field χ perturbations. In
the following we will present the analysis of the perturbations for each sector independently.
We will investigate the question of whether or not the perturbations contain ghost and/or
Laplacian instability. A ghost is a field with negative kinetic energy, i.e with the wrong
sign kinetic term. On the other hand Laplacian instability indicates the presence of negative
squared propagation speed. Additionally, a tachyon represents an instability in the potential.

4.1 Tensor perturbations

Tensor perturbations are the transverse traceless part of the metric fluctuations and are the
only sources of gravitational waves in GR. When a plane gravitational wave perturbations
passes through space-time, it stretches the space in a way that a circle in the plane is distorted
into an ellipse. Even if their direct detection is still lacking an indirect evidence for their
existence is provided by pulsar binary system [89]. A general modified gravity model comes
hand in hand with two potential effects on the equation for these gravitational waves. First of
all, the propagation speed of the gravitational wave can be different from the speed of light. In
this respect, we will demand the absence of Laplacian instability. Of course the propagation
speed of light can be sub- (super-) luminal even though observational constraints will pin
down large discrepancies to the speed of light. Second of all the modification of gravity
will alter the friction term in the equation for the tensor perturbations. Needless to say
that all these modifications will give rise to potential differences in the observations and the
parameters of the theory have to be constrained in a way that do not contradict the real
observations. In order to study the stability of the tensor perturbations we will decompose
the tensor field in Fourier modes with respect to the spatial coordinates since we are working
on a homogeneous background metric with no spatial curvature

hij =

∫

d3k

(2π)3/2
h
ij,~k

(t) exp
(

i~k · ~x
)

+ c.c. . (4.3)

After plugging our Ansatz 4.1 for the metric perturbations into our Lagrangian 2.1, decom-
posing the tensor field as in 4.3 and using the background equations, the action quadratic in
the tensor perturbations becomes (up to boundary terms)

S
(2)
tensor =

M2
Pl

8

∫

d3k dtN a3
[

1

N2
ḣ⋆
ij,~k
ḣij~k

−
(

k2

a2
+m2

T

)

h⋆
ij,~k
hij~k

]

, (4.4)

where the mass of the tensor perturbations is given by

m2
T ≡ m2A (r − 1)

A− 1

[

JA2 a

aeff

(

α

A2
+ 2

(α+ β)

A
+ β

)

− Q+A2 ρm
(A− 1)2

]

. (4.5)

The tensor modes have already the right sign for the kinetic term. Similarly, they do not
exhibit gradient instabilities either. The only concern might come from the fact that for
m2

T < 0, there will be a tachyonic instability. However, the time-scale of the instability is of
the order of inverse graviton mass, meaning that for a graviton mass of order of H today, it
takes the age of the universe to develop such a tachyonic instability.
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4.2 Vector perturbations

The discovery of the alignment of the low multipoles of the CMB and the hemispherical
asymmetry could indicate the existence of a privileged direction in the universe. This has
motivated the exploration of cosmic vector fields. They naturally arise in modified gravity,
like in massive gravity. In this subsection, we will study the stability conditions of the
vector perturbations after integrating over the non-dynamical vector modes. In a similar
way as for the tensor perturbations, we will decompose the vector modes Ei and Bi in their
Fourier modes

Ei =

∫

d3k

(2π)3/2
E

i,~k
(t)ei

~k·~x + c.c. , Bi =

∫

d3k

(2π)3/2
B

i,~k
(t)ei

~k·~x + c.c. . (4.6)

We will then expand the action up to second order in the vector perturbations, which yields

S
(2)
vector =

M2
Pl

16

∫

d3k N dt k2a3
[

1

N2
Ė⋆

i,~k
Ėi
~k
− 2

aN

(

Ė⋆
i,~k
Bi
~k
+B⋆

i,~k
Ėi
~k

)

−m2
TE

⋆
i,~k
Ei
~k
+

4

a2
m2

V B
⋆
i,~k
Bi
~k

]

, (4.7)

where we defined for convenience the shortcut notation

m2
V ≡ 1 +

[

4β a4A2

k2 a2eff(1 + r)A

(

Neff

N(r + 1)
+
aeff
a

)

(

−Ḣ
N

)]−1

. (4.8)

As we mentioned above, the vector fieldsBi are non-dynamical dof. We can therefore compute
the equation of motion with respect to Bi and integrate them out. By doing so we obtain
for the non-dynamical degree Bi

B
i,~k

=
a

2m2
V

Ė
i,~k

N
, (4.9)

We can plug this back into the action 4.7, which results in

S
(2)
vector =

M2
Pl

16

∫

d3k dt k2a3
[

m2
V Ė

⋆
i,~k
Ėi
~k
−m2

TE
⋆
i,~k
Ei
~k

]

. (4.10)

In order to avoid ghost instability we have to require that the kinetic term has the right
sign. This is guaranteed if we impose m2

V > 0. Assuming that the effective contribution
of the mass term and the χ field on the expansion is not equivalent to something exotic, it
is reasonable to expect Ḣ < 0. In that case, from eq. (4.8), this condition can be satisfied
if β > 0. Similarly as for the tensor perturbations the absence of gradient and tachyonic
instability requires m2

T > 0.

4.3 Scalar perturbations

Scalar fields have been traditionally used as promising candidates for an alternative to the
cosmological constant to explain the accelerated expansion of the universe. They natu-
rally appear in gravitational theories beyond GR and high energy physics. Moreover, their
existence does not break isotropy. In massive gravity, the helicity-0 degree of freedom of
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the massive graviton corresponds to a scalar field which might bring along interesting phe-
nomenology. Here we will be concentrating on the stability of the scalar perturbations in our
massive gravity model with the effective coupling. As we mentioned above, five dof appear
in form of a scalar field Φ, B, ψ, E, δχ, from which two (Φ and B) are non-dynamical and
will be integrated out. We first calculate the action quadratic in scalar perturbations and
introduce their Fourier modes

Φ =

∫

d3k

(2π)3/2
Φ~k

(t)ei
~k·~x + c.c. , B =

∫

d3k

(2π)3/2
B~k

(t)ei
~k·~x + c.c. .

ψ =

∫

d3k

(2π)3/2
ψ~k (t)ei

~k·~x + c.c. , E =

∫

d3k

(2π)3/2
E~k

(t)ei
~k·~x + c.c. .

δχ =

∫

d3k

(2π)3/2
δχ~k (t)ei

~k·~x + c.c. (4.11)

First of all, the scalar fields Φ and B do not carry any time derivatives on them. Hence, we
can compute the equations of motion with respect to Φ

H

(

k2B~k

a
− 3H Φ~k

+
3 ψ̇~k
N

)

− Ḣ

N

(

αΦ~k
N

Neff
+

3β aAψ~k
aeff

)

+
k2

a2

(

ψ~k +
k2

6
E~k

)

− αa3eff
2MPl a3

(

V,χ δχ~k +
χ̇0 δχ̇~k
N2

eff

)

= 0 , (4.12)

and similarly with respect to B

1

N

(

ψ̇~k +
k2

6
Ė~k

)

+
β a2AḢ

(r + 1) aeff N

(

1 +
aNeff

(r + 1) aeffN

)

B~k

−H Φ~k
+

α r a2eff χ̇0

2MPl a2Neff(r + 1)

(

1 +
aNeff

r aeff N

)

δχ~k = 0 . (4.13)

and solve them for B and Φ. After plugging back the solutions for B and Φ the resulting
action depends only on the remaining three scalar fields ψ, E and δχ. As we mentioned
above, in [53] it has been explicitly shown that the Boulware-Deser ghost is absent in these
exact FLRW solutions, hence we should be able to integrate out one more degree of freedom,
which would otherwise correspond to the Boulware-Deser ghost. This becomes manifest after
performing the field redefinition

π
1,~k

≡ MPlH Neff

α χ̇
δχ~k − ψ~k , π

2,~k
≡ E~k

k2
. (4.14)

In term of these new field variables, the remaining degree ψ becomes non-dynamical and can
be integrated out using its equation of motion. Furthermore, the χ dependence is completely
removed by the normalization of the π1 field. The resulting action can be expressed in the
following form

S
(2)
scalar =

M2
Pl

2

∫

d3k dt a3
(

Π̇† K̂ Π̇ + Π̇† N̂ Π−Π† N̂ Π̇−Π† M̂ Π
)

, (4.15)

where Π denotes Π = {π
1,~k
, π

2,~k
}and K̂, M̂ and N̂ are 2 × 2 real, time-dependent matrices

with the properties K̂T = K̂, M̂T = M̂ and N̂ T = −N̂ . In terms of the new variables (4.14)
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we have non-vanishing off-diagonal components, which are not suitable for presentation.
Nevertheless, we can diagonalize the kinetic term through the following field redefinition

Ẑ = R̂−1Π , (4.16)

with the rotation matrix

R̂ =

(

1 0

− K̂12

K̂22
1

)

. (4.17)

In this new basis the kinetic matrix becomes diagonal

R̂T K̂ R̂ = diag

(

det K̂

K̂22

, K̂22

)

. (4.18)

Despite the cumbersome mathematical expressions involved, we can further simplify det K̂
and det K̂/K̂22 and impose from their positivity also the positivity of K̂22

det K̂

K̂22

= −6

[

1 +
3H2Neff

α Ḣ
− 1

3β AY1

(Y2
2 (r − 1)Neff

NY3
− k2(1 + r)2a2effN

a4 Ḣ

)]−1

,

det K̂ = −
[

1 +
3H2Neff

α Ḣ
− Neff (r − 1)

3β Y1 Y3AN

(

Y2
2 − k4a2effN

2
eff

a6H4N2

(

3H2Neff

α Ḣ
− 1

))

+
k2(1 + r)2a2effNeff

Y3 a4Ḣ

(

9(r − 1)− Y3H
2N

αβ AY1 Ḣ

)

]−1

, (4.19)

where we introduced the following definitions for the sake of clarity of the cumbersome
expressions

Y1 ≡ Neff

N
+
aeff
a

(1 + r) ,

Y2 ≡ aeffNeff

aN

k2

a2H2
+ 9β AY1 ,

Y3 ≡ (r − 1)Ḣ a2effNeff

H2a2N2

(

k2

a2H2
+

9αβ a2N AY1

a2eff Neff

)

+ 3Y1
m2

T a
2
eff

H2a2
. (4.20)

In the following we will investigate the positivity of the kinetic terms in the UV and IR
regime. First of all, in the UV the two kinetic terms are

det K̂

K̂22

= − 18β a2AḢ

N k2(α r + β A)
+O(k−4) , K̂22 = − α Ḣ

18H2Neff
+O(k−2) . (4.21)

By construction, the scale factors and the lapses of f and g metrics are positive. Thus, in
order to have both kinetic terms simultaneously positive at high energies, we need to impose
α > 0 and β > 0. On the other hand, at low energies we have

det K̂

K̂22

= 6



−1 +

(

1 +
α Ḣ

3NeffH2
+
α2β a2(r − 1)AḢ2

a2effH
2N Neff m

2
T

)−1


+O(k2) , K̂22 =
1

6
+O(k2) .

(4.22)
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Clearly, the second mode is not a ghost at low energies. The first mode however imposes some
condition. Assuming α > 0, β > 0,m2

T > 0 and Ḣ < 0, we find an upper bound on r, given by

r < 1 +
m2

T a
2
eff

3αβ a2A
(

− Ḣ
N

) . (4.23)

5 Conclusions

In massive (bi-) gravity, the two metrics are put on equal footing and therefore it is a natural
question to ask how the matter fields would couple to these two metrics. One immediate
possibility would be to minimally couple each metric to its own separate matter sector. This
form of coupling is free of the Boulware-Deser ghost at all scales and maintains this property
also at the quantum level. The integration over matter loops generates quantum corrections
in form of two cosmological constants for each metric respectively. Another obvious possibility
would be to couple the matter sector to both metrics simultaneously. Nevertheless a generic
coupling of this type reintroduces the Boulware-Deser ghost already at the classical level and
the quantum corrections detune the potential structure with a scale arbitrarily below the
strong coupling scale. A third possibility consists of the first type of coupling but with an
interaction between the different matter sectors. However, the quantum corrections would
again yield a detuning with a resulting Boulware-Deser ghost at an unacceptable low scale.
Similarly one could also try to couple parts of the matter sector to two different metrics,
for instance the kinetic term would couple to one metric whereas the potential to the other
metric. However, it has been shown that also in this case the coupling has disastrous effects
at the quantum level and consequently destroying the validity of the classical theory. Last
but not least, another promising coupling between the matter sector and an effective metric
composed of the two metric was proposed and it was shown that in this case the theory
is free of the Boulware-Deser ghost below the strong coupling scale at both classical and
quantum levels.

The presence of this new effective metric opens up new directions of investigation for
phenomenology. First of all, the no-go theorem for flat FLRW solutions can be circumvented
with this composite metric. This work goes along this line and was dedicated to the analysis of
cosmological perturbations in the context of non-linear massive gravity with this very specific
effective coupling to the matter fields. After studying in detail the background evolution for
the flat FLRW, we considered perturbations on top of this background. We studied the
stability of tensor, vector and scalar perturbations and put constraints on the parameters
of the theory coming from the requirement of absence of ghost and gradient instabilities.
Because of the non-derivative nature of the dRGT mass term, the kinetic and gradient
terms of the tensor perturbations are unchanged with respect to GR. We commented on the
possibility of a tachyonic instability form2

T < 0 and estimated the time scale within which the
instability would be negligible. Concerning the vector perturbations, we first had to integrate
out the non-dynamical vector modes, after which the kinetic term obtained the correct sign
upon imposing the conditions Ḣ < 0 and β > 0. The absence of tachyonic instability requires
m2

T > 0. The analysis of the scalar perturbations is more involved. Out of the five scalar
variables we first eliminated the two non-dynamical fields Φ and B. In a more suitable basis
of fields we were also able to integrate out the would-be Boulware-Deser ghost and obtained
the final action for the two dynamical scalar fields. We studied the kinetic terms of the two
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remaining scalar fields in the UV and IR regime and the correct sign for the kinetic terms
requires α > 0 and β > 0 for the two parameters in the effective matter coupling.

The new matter coupling evades not only the no-go result for the flat FLRW background
but also yet another no-go found in [55]. While the former no-go could be circumvented by
self-accelerating open FLRW solutions [86], the latter no-go tells that perturbations around
the self-accelerating background exhibit ghost instability at nonlinear order, if the matter
coupling is minimal. This is due to the fact that the quadratic kinetic terms of three among
five physical degrees of freedom are proportional to the background Stückelberg equation
of motion, thus vanish [60] and that they acquire non-vanishing kinetic terms only at cubic
order [90]. On the other hand, with the new matter coupling, all five physical degrees of
freedom have non-vanishing kinetic terms already at the quadratic order, on both flat and
open FLRW backgrounds. In this way, the new matter coupling helps evading the two
previous no-go results that have been obstacles for massive gravity cosmology.
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[16] J.H.C. Scargill, M. Bañados and P.G. Ferreira, Cosmology with Eddington-inspired Gravity,
Phys. Rev. D 86 (2012) 103533 [arXiv:1210.1521] [INSPIRE].

[17] G.J. Olmo, D. Rubiera-Garcia and H. Sanchis-Alepuz, Geonic black holes and remnants in
Eddington-inspired Born-Infeld gravity, Eur. Phys. J. C 74 (2014) 2804 [arXiv:1311.0815]
[INSPIRE].

[18] S.D. Odintsov, G.J. Olmo and D. Rubiera-Garcia, Born-Infeld gravity and its functional
extensions, Phys. Rev. D 90 (2014) 044003 [arXiv:1406.1205] [INSPIRE].

[19] M. Komada and S. Nojiri, Palatini-Born-Infeld Gravity and Black Hole Formation,
arXiv:1409.1663 [INSPIRE].
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[55] A. De Felice, A.E. Gümrükçüoğlu and S. Mukohyama, Massive gravity: nonlinear instability of
the homogeneous and isotropic universe, Phys. Rev. Lett. 109 (2012) 171101
[arXiv:1206.2080] [INSPIRE].

[56] C. de Rham and L. Heisenberg, Cosmology of the Galileon from Massive Gravity,
Phys. Rev. D 84 (2011) 043503 [arXiv:1106.3312] [INSPIRE].

[57] A.H. Chamseddine and M.S. Volkov, Cosmological solutions with massive gravitons,
Phys. Lett. B 704 (2011) 652 [arXiv:1107.5504] [INSPIRE].

[58] K. Koyama, G. Niz and G. Tasinato, Analytic solutions in non-linear massive gravity,
Phys. Rev. Lett. 107 (2011) 131101 [arXiv:1103.4708] [INSPIRE].

[59] K. Koyama, G. Niz and G. Tasinato, The Self-Accelerating Universe with Vectors in Massive
Gravity, JHEP 12 (2011) 065 [arXiv:1110.2618] [INSPIRE].

[60] A.E. Gumrukcuoglu, C. Lin and S. Mukohyama, Cosmological perturbations of self-accelerating
universe in nonlinear massive gravity, JCAP 03 (2012) 006 [arXiv:1111.4107] [INSPIRE].

[61] P. Gratia, W. Hu and M. Wyman, Self-accelerating Massive Gravity: Exact solutions for any
isotropic matter distribution, Phys. Rev. D 86 (2012) 061504 [arXiv:1205.4241] [INSPIRE].

[62] B. Vakili and N. Khosravi, Classical and quantum massive cosmology for the open FRW
universe, Phys. Rev. D 85 (2012) 083529 [arXiv:1204.1456] [INSPIRE].

[63] T. Kobayashi, M. Siino, M. Yamaguchi and D. Yoshida, New Cosmological Solutions in
Massive Gravity, Phys. Rev. D 86 (2012) 061505 [arXiv:1205.4938] [INSPIRE].

[64] M. Fasiello and A.J. Tolley, Cosmological perturbations in Massive Gravity and the Higuchi
bound, JCAP 11 (2012) 035 [arXiv:1206.3852] [INSPIRE].

[65] M.S. Volkov, Exact self-accelerating cosmologies in the ghost-free massive gravity — the
detailed derivation, Phys. Rev. D 86 (2012) 104022 [arXiv:1207.3723] [INSPIRE].

[66] G. Tasinato, K. Koyama and G. Niz, Vector instabilities and self-acceleration in the decoupling
limit of massive gravity, Phys. Rev. D 87 (2013) 064029 [arXiv:1210.3627] [INSPIRE].
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