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Abstract 

The laboratory rat has been widely used as an animal model in biomedical science for more 

than 150 years. Applying zinc-finger nucleases or transcription activator-like effector 

nucleases to rat embryos via microinjection is an efficient genome editing tool for 

generating targeted knockout rats. Recently, clustered regularly interspaced short 

palindromic repeats (CRISPR)/CRISPR-associated endonucleases have been used as an 

effective tool for precise and multiplex genome editing in mice and rats. In this review, the 

advantages and disadvantages of these site-specific nuclease technologies for genetic 

analysis and manipulation in rats are discussed. 

 

Key words: clustered regularly interspaced short palindromic repeats, genome-editing, rats, 
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Introduction 

Genetically modified animals that have been altered using gene targeting technologies are 

used as experimental models to perform functional analyses or various tests in biomedical 

research. In particular, knockout (KO) animals can help in understanding how a specific 

gene functions in vivo. The gene targeting technologies used to produce KO mice using 

embryonic stem (ES) cells were developed prior to 1990 (Mansour et al., 1988, Capecchi, 

1989a). Since then, KO mice have become major tools for functional gene analysis. 

Causative genes for specific human diseases have also been disrupted in mice to mimic 

human genetic disorders (Capecchi, 1989b, Smithies, 1993). In the post-genome era, the 

International Knockout Mouse Consortium (IKMC), which aims to comprehensively 

disrupt all protein-coding genes in the mouse genome using gene targeting technologies, is 

now progressing (Skarnes et al., 2004, Nord et al., 2006, Ayadi et al., 2012). Furthermore, 

knock-in (KI) mice, in which genes are added or modified, or conditional knockout mice 

with spatial or temporal control of genetic inactivation, are widely used. Gene targeting 

technologies have become critical tools for understanding gene functions including the 

genetic basis of human diseases. 

Until recently it was difficult to produce mammalian KO animals other than mice 

using gene targeting technologies, as germline-competent ES cells were available only for 

mice. However, this situation changed with the availability of newly developed gene 

targeting technologies, called engineered nucleases or “gene scissors”. These engineered 

nucleases, such as zinc finger nucleases (ZFNs) or transcription activator-like effector 

nucleases (TALENs), are very effective, as shown when treating embryos via 

microinjection to generate targeted KO mice and rats (Geurts et al., 2009, Carbery et al., 

2010, Mashimo et al., 2010, Meyer et al., 2010, Urnov et al., 2010, Cui et al., 2011, Tesson 
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et al., 2011, Mashimo et al., 2013, Sung et al., 2013). In addition to rodents, sea urchins 

(Ochiai et al., 2010), Drosophila (Beumer et al., 2006, Beumer et al., 2008), crickets (Watanabe et al., 

2012), killifish (Ansai et al., 2012, Ansai et al., 2013), and zebrafish (Doyon et al., 2008, Meng 

et al., 2008, Huang et al., 2011, Sander et al., 2011), as well as larger animals such as rabbits 

(Flisikowska et al., 2011, Song et al., 2013), and pigs (Watanabe et al., 2010, Hauschild et al., 

2011, Carlson et al., 2012), and monkeys, have been successfully modified using these 

enzymes. In this review, the advantages and disadvantages of these site-specific nuclease 

technologies are discussed in relation to genetic analysis and manipulation in animals, 

especially in rats.  

 

Zinc-finger nucleases 

ZFNs are chimeric proteins that consist of a specific DNA-binding domain that is made of 

tandem zinc finger-binding motifs fused to a non-specific cleavage domain of the restriction 

endonuclease FokI (Bibikova et al., 2001, Porteus & Carroll, 2005, Wu et al., 2007) (Fig. 1). 

As one zinc finger unit binds with 3-bp of DNA, 9–18 bp sequences can be specifically 

recognized by combining 3–6 different zinc finger units. By designing two zinc finger 

motifs on either side of 5–6 bp spacer sequences at a target region, the FokI nuclease 

combined with the zinc finger can introduce a double-strand break (DSB) within the 5–6 bp 

spacer sequences. Although the DSB is usually repaired via non-homologous end joining 

(NHEJ), an arbitrary deletion or deletion of base pairs often occurs during the repair process. 

Consequently, repair by NHEJ is mutagenic and mostly results in a loss-of-function 

mutation. Moreover, if DNA fragments homologous to the targeted sequences are 

co-injected with the nucleases, homologous recombination (HR) can occur, enabling 

insertion of a transgene or replacement of the homologous sequences at the targeted region, 
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which results in KI mutations. Therefore, artificially designed ZFNs can be used to generate 

KO or KI alleles at the targeted sequences via NHEJ or HR repair, respectively. 

A summary of how to generate targeted KO rats using ZFNs is given in Fig. 1. 

Briefly, two ZFNs are designed across the spacer domain to recognize the targeted DNA 

sequences. Messenger RNAs are then transcribed in vitro from the two ZFN plasmids and 

injected into the male pronuclei of rat zygotes. Pronuclear stage embryos are collected from 

female rats that were superovulated by equine chorionic gonadotropin and human chorionic 

gonadotropin injection. The ZFN-injected embryos that differentiate into two cells are then 

transferred to the oviduct of pseudopregnant females. This method is based on a similar 

technique used to produce conventional transgenic animals (Palmiter et al., 1982, Palmiter 

et al., 1983, Mullins et al., 1990), except that mRNA is used. The procedure for the 

micromanipulation of embryos is the same for all nucleases, including the below-mentioned 

TALEN and clustered regularly interspaced short palindromic repeats (CRISPR) enzymes. 

The ZFN technology was first reported in the 1990s (Kim et al., 1996, 

Chandrasegaran & Smith, 1999). From the 2000s, ZFNs have been developed for various 

mammalian cells (Bibikova et al., 2001, Bibikova et al., 2003, Porteus & Baltimore, 2003, 

Urnov et al., 2005, Hockemeyer et al., 2009), with nematode and zebrafish ZFNs 

developed in 2006 (Morton et al., 2006) and 2008 (Doyon et al., 2008, Meng et al., 2008) 

respectively. The first genetic modification (KO) in rats was reported in 2009 (Geurts et al., 

2009). In model organisms where ES cells could not be used for gene modifications, this 

technology has been widely applied for generating genetically modified animals, especially 

in laboratory animals other than mice. Using this ZFN technology, we developed an 

interleukin-2 receptor gamma chain (Il2rg) KO rat (X-SCID) to investigate human X-linked 

severe combined immunodeficiency (X-SCID) (Mashimo et al., 2010). SCID rats that are 
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deficient in the Prkdc gene and FSG (F344-scid Il2rg) rats that are simultaneously deficient 

in both the Prkdc and Il2rg genes have also been generated using the ZFN technology 

(Mashimo et al., 2012). In contrast to the “leaky” phenotype of the SCID mouse, where 

immunoglobulins such as IgG, are detected in the blood, SCID rats did not show such a 

leaky phenotype (Mashimo et al., 2012). These SCID rats can be used as hosts for 

xenotransplantation of human stem cells and tissues. 

 

Transcription activator-like effector nucleases 

ZFNs provide a straightforward strategy for targeted gene disruption in zygotes, resulting in 

rapid and cost-effective knockouts compared with conventional technology using ES cells. 

However, there are hurdles in terms of cost and protocols, making it difficult to establish 

ZFNs as a routine laboratory process. Recently, an artificial nuclease technology similar to 

ZFN, called TALENs, has been reported (Bogdanove & Voytas, 2011, Wood et al., 2011, 

Mussolino & Cathomen, 2012, Joung & Sander, 2013). Natural TAL effectors are potent 

virulence proteins from plant-pathogenic Xanthomonas bacteria that are injected into 

eukaryotic host cells where they function as transcription factors (Bogdanove & Voytas, 

2011). As fusions of TAL effectors to the FokI nuclease, TALENs can bind and cleave DNA 

in pairs (Fig. 1). Although the sequences recognized by ZF domains are limited in ZFNs, 

TAL effectors can recognize almost any sequence, except T at position 0. Simple and 

straightforward design and assembly strategies have been developed for rapid construction 

of TALENs (Carbery et al., 2010, Cermak et al., 2011, Sakuma et al., 2013), providing a 

cost-effective targeted nuclease platform. 

 TALEN technology has also been reported in induced pluripotent stem cells 

(iPSCs) (Hockemeyer et al., 2011), nematodes (Wood et al., 2011), plants (Li et al., 2012), 
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zebrafish (Huang et al., 2011, Sander et al., 2011), and rats (Tesson et al., 2011). Although 

TALEN technologies seem to have advantages over ZFNs, there are also some ambiguous 

points that need to be clarified. For unknown reasons, the system appears to be less 

effective in rodent embryos. However, we recently showed that combined expression of 

exonuclease 1 (Exo1) with engineered site-specific TALENs provided highly efficient 

disruption of the endogenous gene in rat zygotes, and in the production of knockout rats for 

the albino (Tyr) gene (Mashimo et al., 2013). The microinjection of TALENs with Exo1 is 

an easy and efficient method of generating gene knockouts using zygotes, which increases 

the range of gene targeting technologies available to various species. 

 

Clustered regularly interspaced short palindromic repeats 

(CRISPR)/CRISPR-associated (Cas) protein 

The bacterial CRISPR/Cas system has recently been identified as an efficient gene-targeting 

technology in mammalian cells (Bassett et al., 2013, Friedland et al., 2013, Hwang et al., 

2013, Li et al., 2013a, Li et al., 2013b, Wang et al., 2013). The system consists of a 

CRISPR that produces RNA components, along with the CRISPR-associated (Cas) 

nuclease protein. The CRISPR RNAs (crRNAs), containing short stretches of sequence 

homologous to specific target DNA, act as guides to direct Cas nucleases to introduce 

DSBs at the targeted DNA sequences. A synthetic chimeric guide RNA (gRNA) consisting 

of a fusion between crRNA and trans-activating crRNA (tracrRNA), directs Cas9 to cleave 

target DNAs that are complementary to the crRNA (Mali et al., 2013). In addition to the 

ability to easily generate synthetic gRNAs, a significant advantage of the CRISPR/Cas 

system is that multiplex genes can be targeted simultaneously with multiple targeted 
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gRNAs. Furthermore, studies in mice have shown that homology-directed repair is 

preferentially activated over the NHEJ pathway when providing donor DNA templates 

(Wang et al., 2013, Yang et al., 2013). We have constructed the CRISPR/Cas architectures 

in rats, and applied it to embryos together with single-strand DNA oligonucleotides as 

donor templates, which efficiently generated targeted KI mutations in rats (unpublished 

data). Over the last decade, the emerging technology of next generation sequencing, and 

thereby genome wide association studies (Davey et al., 2011, Biesecker & Spinner, 2013), 

has successfully identified numerous common SNPs in the human genome associated with 

important human diseases. As the functional testing of particular human SNP variants is a 

challenging proposition, accurate genome editing technologies are required for generating 

KI rats carrying equivalent mutations to human polymorphisms, rather than the KO models 

where entire coding genes are deleted. The CRISPR/Cas system provides sophisticated and 

flexible gene-targeting tools for generating suitable animal models of human diseases. 

 

Advantages of the site-specific nuclease technologies 

All of the artificial nuclease ZFN/TALEN/CRISPR technologies share the following 

advantages as compared with the conventional ES cell technology (Fig. 2). First and 

foremost, KO rats can be generated in a 4–6-month timeframe and with an efficiency of 

more than 20%. This is more favorable than the ES cell-based method for mice, which 

usually takes 12–18 months. Given the high rate of germ line transmission, preliminary 

phenotypic analysis can be performed on G1 animals after intercrossing the initial G0 

founders, thereby saving time and effort. Second, gene targeting with artificial nucleases is 

not strain dependent (unpublished data), and accordingly can be performed with any inbred 

strain. This provides a straightforward strategy for directly employing targeted gene 
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disruption in existing strains, thereby bypassing tedious and time-consuming backcrossing 

steps that generally take 2–3 years to complete. Third, the artificial nuclease technologies 

can be used to induce a wide variety of allelic changes covering small or large deletions or 

insertions. It is also feasible to use targeted KI technologies that have thus far been 

inaccessible without rat ES cells. Since the technology does not rely on using 

species-specific ES cell lines, it may be possible to adapt it to other mammalian species 

such as pigs, cattle, and monkeys, where it is possible to harvest and manipulate fertilized 

embryos. The off-target effects are one of the biggest unknowns concerning the use of 

ZFN/TALEN/CRISPR technologies to modify the targeted genes (Radecke et al., 2010, Fu 

et al., 2013). It is always important to backcross the mutant lines with multiple generations 

to eliminate any off-target mutation and/or to validate the phenotypes with at least two 

independent lines. 

The efficient production of inheritable genetically modified animals by artificial 

nuclease ZFN/TALEN/CRISPR technology will progress very rapidly. These 

genome-editing techniques will dramatically accelerate the development of advanced 

medical studies, drug design, and regenerative medicine, among other biomedical research 

applications, through the use of the huge number of genetically modified rats that are being 

produced. 
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Figure legends  

Figure 1. Gene targeting technologies with ZFNs, TALENs, and CRISPR/Cas in rats. 

Schematic representation of the genetic engineering methods used for generating targeted 

knockout rats. 

 

Figure 2. Various targeted genome modifications using ZFNs, TALENs, and 

CRISPR/Cas in animals.  

 



Pups (Founder)

Deriver

Pseudopregnant 
foster mothers

Transfer

Microinjection of ZFN/TALEN/CRISPR into rat embryos

mRNA

Male 
pronuclear

Microinjection

AAA
CAP AAA

CAP
CAP AAA

CAP AAA

Zinc-finger nucleases (ZFNs) TAL effector nucleases (TALENs) CRISPR/Cas

Figure 1

プレゼンター
プレゼンテーションのノート
We bought the custom-designed ZFNs plasmids, from Sigma Aldrich Japan.

ZFNs were designed to recognize the exon-intron boundery of the rat Il2rg gene.

Messenger RNA was prepared from the ZFN constructs and injected into the male pronclei of embryos by the same method used for DNA transgenic animals.

we tested F344 and TM strains,
Injected embryos were transferred to the oviduct of pseudopregnant foster mother, then developed as founder animals.
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プレゼンター
プレゼンテーションのノート
This slide shows our hypothesis against the general question why Exo1 could enhance gene-targeting efficiency.
In general DSBs generated by TALENs are repaired by cNHEJ or HR pathway offering the precise repair of DSBs. 
Overexpression of Exo1 increased recessions of DNA-ends, 
This inhibits cNHEJ and enhances the mutagenic DSB-repair by altNHEJ, or microhomology mediated end-joining (MMEJ), 
resulting in more indel mutations at the targeted site.
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