1	Title: Ontogenetic changes in the spatial learning capability of jack mackerel Trachurus
2	japonicus

- 3
- 4 Authors: K. Takahashi*, R. Masuda and Y. Yamashita
- 5 Address: Maizuru Fisheries Research Station, Kyoto University, Nagahama, Maizuru, Kyoto
- 6 625 0086
- 7 *Corresponding author
- 8 Tel: + 81 773 62 5512
- 9 Fax: + 81 773 62 5513
- 10 Email: tkouji@kais.kyoto-u.ac.jp
- 11
- 12 Running head: ONTOGENY OF LEARNING IN JACK MACKEREL

14 ABSTRACT

Ontogenetic changes in learning capability were studied in jack mackerel Trachurus 1516 *japonicus* (Temminck & Schlegel) juveniles ranging from 20 to 95 mm standard length (L_S) collected from either pelagic or coastal habitats. Simple spatial and reversal learning tasks 17were used to estimate learning capability. There was no size dependence in the scores of 18 simple reward conditioning using a Y-maze, whereas the scores of reversal learning tasks 19showed a clear sigmoidal curve of increase with an inflexion point at 51.7 mm $L_{\rm S}$. The 20increase of this learning capability coincided with the size at which juveniles recruit from 2122offshore pelagic to coastal rocky habitats.

23 Key words: behavioural ontogeny; cognitive ecology; habitat shift; life history strategy;

24 Trachurus japonicus

INTRODUCTION

Learning in animals plays an important role in adaptation to changes in environmental
conditions and thus enhances survival potential. Fish have been reported to learn survival
skills in various life history contexts, such as predator avoidance (Brown, 2003; Kelley &
Magurran, 2003), homing (Dodson, 1988; Odling-Smee & Braithwaite, 2003), and food
search and handling (Ehlinger, 1989; Warburton, 2003).
Although the study of learning is well established in freshwater fishes (Coble et al.,

331985), relatively few studies have focused on the learning of marine fishes, presumably due to the difficulty of sampling and maintaining them in the laboratory. Previous studies have 34revealed ontogenetic changes in learning capability through the juvenile stage for some 3536marine fishes such as striped jack Pseudocaranx dentex (Bloch & Schneider) (Tsukamoto et al., 1995), Pacific threadfin *Polydactylus sexfilis* (Valenciennes) (Masuda & Ziemann, 2000) 3738and striped knifejaw Oplegnathus fasciatus (Temminck & Schlegel) (Makino et al., 2006). Masuda & Ziemann (2000) proposed that changes in learning capability coincide with 39 ontogenetic shifts in habitat. Indeed most marine fishes experience a major habitat shift and 40 thus face different cognitive challenges during their life history. 41

42 All of the above-mentioned studies have examined only hatchery-reared fishes which 43 have never experienced natural environmental conditions. Some of the roles of learning 44 capability (e.g., in relation to predator avoidance, foraging and homing etc.) would better be evaluated by using wild individuals because hatchery-reared fish may show behavioural inferiority in survival capability such as feeding and anti-predator performance as well as having developmental constraints on learning such as a smaller brain size compared with natural fish (Huntingford, 2004; James et al., 2009). Additionally, the investigation of skills among fish from different life history stages in the natural environment can help us reveal the relationship between learning capability and habitat shift.

51Jack mackerel, Trachurus japonicus (Temminck & Schlegel), one of the most important 52fisheries resources in Japan, forms large schools and spawns in offshore areas (Sassa et al., 2008). After hatching, larvae drift offshore either independently or associated with floating 53objects such as seaweed or jellyfish (Sassa et al., 2006). As they reach a standard length of 5455ca. 50 mm, juveniles recruit to rocky coastal reefs (Masuda et al., 2008; Kanaji et al., 2009). In this study, spatial learning capability, including simple spatial learning and its reversal 5657learning tasks, was evaluated in pre and post recruiting stage wild juveniles using a Y-maze. We hypothesized that a shift in learning capability would be associates with recruitment to 58the spatially complex rocky shore. 59

MATERIALS AND METHODS

Ontogenetic changes in learning capability by reward conditioning were examined in 62 single fish ranging from 20 to 95 mm $L_{\rm S}$ (standard length). Fish were captured by three 63 64 different methods: (1) pelagic fish: collecting individuals associated with drifting objects such as the giant jellyfish *Nemopilema nomurai* (Kishinouye) (14, 23 Oct and 26 Nov 2007) 65or drifting algae (18 July 2007) with a hand net while snorkeling in ca. 10 km offshore area 66 of Maizuru, Kyoto (35°68' N, 135°44' E), (2) migrating fish: sampled from a set net located 67ca. 2 km offshore of Maizuru (35°59' N; 135°49' E; 31 July 2007), and (3) coastal fish: 68 captured by artificial fly angling from a pontoon of Maizuru Fisheries Research Station 69 (MFRS) (35°49' N, 135°36' E, 13 July and 21 Sep 2007). These fish were introduced into 7071separate 500 L black tanks provided with filtered sea water at an exchange rate of 4 L per 72min. They were fed commercial dry pellets (Otohime S2, Syoki-siryou Kyowa N700, 73Kyowa Hakko Bio Co., Ltd. Tokyo, Japan) and defrosted krill Euphausia sp. from July to December. When fish were confirmed to forage actively on pellets near the water surface, 74one fish was transferred to an experimental tank and the experiment was started. A total of 7540 juveniles (L_8 57.7 ± 20.5 mm, mean ± SD) were used to conduct the experiment: 21 76pelagic fish (L_8 42.8 ± 14.7 mm), 11 migrating fish (L_8 74.4 ± 6.0 mm) and 8 coastal fish 7778 $(L_{\rm S} 73.9 \pm 16.4 \text{ mm}).$

Five identical glass tanks (L \times W \times H: 60 \times 30 \times 36 cm, 25 cm in water depth) were

prepared as Y-maze experimental tanks for fish < 90 mm $L_{\rm S}$. A larger tank (L × W × H: 90 × 80 30×36 cm, 25 cm in water depth) was used for fish ≥ 90 mm $L_{\rm S}$ (n = 3), as these individuals 81 did not acclimatize well in the small tank. Each tank was separated into left and right 82 sections by a 20×30 (L × H) cm (30×30 cm in the large tank) PVC board set at the center 83 of one of the ends. These two separated zones were designated as the conditioning area (Fig. 84 1). A removable PVC board (W \times H: 30 \times 30 cm) was set as the gate at a distance of 20 cm 85 (30 cm in the large tank) from the opposite end to the conditioning area, defined as the 86 87 acclimatization area. Filtered sea water was delivered to the experimental tanks in the conditioning area and drained out from the acclimatization area. Each tank was covered on 88 all sides with a grey sheet to minimize the effects of the observer. 89

90 An individual was introduced into the acclimatization area on the day previous to the training and left to acclimatize overnight. A few pellets were provided immediately before a 9192training trial, and if the fish foraged on the pellets, the experiment was started. If not, the experiment was postponed for another day or two. Fish that did not feed after 2 days of 93acclimatization or did not swim to the conditioning area within 5 min from the time of gate 94 opening were not used in further experiments and regarded as aborting fish. Aborting fish 95were measured in $L_{\rm S}$. During the experimental period, fish $\leq 40 \text{ mm } L_{\rm S}$ were provided with 96 973-6 small pellets (ca. 0.7 mm in diameter, Syoki-siryou Kyowa N700) and fish > 40 mm $L_{\rm S}$ were provided with 1-5 large pellets (ca. 1.4 mm in diameter, Otohime S2). The amount of 98

reward was established by preliminary survey so that fish never satiated during the training.
Feeding was conducted by remote control feeding device, which allowed pellets to drop by
pulling a string.

102 The behaviour of fish was observed after gently opening the gate. Fish were first trained to enter the left side of the branch of a Y maze (original learning task); when the fish swam 103 to the left side, pellets were dropped as the reward into the left side. After feeding on the 104 pellets, the fish was returned gently to the acclimatization area. When the fish swam to the 105106 right side, the fish was returned to the acclimatization area without being provided with pellets. The process from opening the gate to returning the fish to the acclimatization area 107 was defined as one trial, and the interval of each trial was about 1 min. Ten trials comprised 108 109 one session and two consecutive sessions were conducted four times a day at intervals of 30 110 min or longer. The percentage of choosing the correct side in one session was calculated as 111 the criteria of learning. Once a fish chose the correct side 70 % or more times in three consecutive sessions, it was considered to have learnt the task (Makino et al., 2006). After 112being conditioned to the original learning task, the fish was conditioned to the reversal 113 learning task where the position of feeding was changed from left to right. When a fish 114 chose the right side 70 % or more times in three consecutive sessions on the reversed task 115116the fish was then again conditioned to an additional reversed task, thus returning the reward side back to the left. Eight sessions a day were carried out for three consecutive days. 117

Therefore each test fish was conditioned in a total of 24 sessions or 240 trials including the original learning task and all the reversal learning tasks. The reversal learning task was repeated ("right to left" and "left to right") depending on the achievement of the learning task until the end of 240 trainings. The average percentage of the correct choice of side until the accomplishment for each learning task was calculated as a score of each task, and these values were summed to give the total score for each individual. Each fish was anesthetized and measured for $L_{\rm S}$ after the experiment.

Overall, of all fish indicated a pattern of the total scores increase around 50 mm L_s . Over 50 mm L_s , the scores plateaued and remained constant. Therefore, the relation between L_s and the total score of learning was fitted with a nonlinear least squares model; y = c + (d - c) $/ [1 + \exp \{-(a + b * x)\}]$. Fish were divided and compared as two size groups based upon their differing performance patterns. Total scores were also compared between different habitat groups (i.e. pelagic, migrating or coastal fish) by the Kruskal-Wallis test followed by the Steel-Dwass method.

Personality (bold or shy) of fish may affect learning performance (Sneddon, 2003). Aborting rate was used as a criterion of shyness and was compared in each size and habitat group. Similarly, laterality may also influence learning in spatial tasks (Brown & Braithwate, 2005; Brown et al., 2004). All the fish were conditioned to the left area on the original learning task, so if there was a difference in laterality with body size, learning score could be 137affected by the fish's laterality (Miklosi & Andrew, 1999; Bisazza et al., 1998). Laterality of individual fish was estimated by the side (left or right) of the first selection on the original 138139learning. Laterality was then compared with the body size. There was a possibility that learning performance was affected by the rearing period because tested fish were kept in 140 captivity for various durations ranging from 5 and 92 days. As plasticity of fish is affected 141 by rearing environment (Berjikian et al., 2001), overly long conventional rearing might have 142had some effect on the behavioural performance of fish. The effect of rearing period on 143learning performance was also evaluated by the correlation between rearing period and 144learning capability. 145

146

ETHICAL NOTES

147 All fish used in experiments were subsequently released into the sea off the MFRS. 148 Small juveniles were kept until they reached 40 mm L_s , because the size range of *T*. 149 *japonicus* found in this area was between 40 and 120 mm L_s (Masuda et al., 2008).

152

RESULTS

The mean $L_{\rm S}$ of pelagic fish was smaller than those of other groups (Steel-Dwass method,

P < 0.05). There was no correlation between body size and acclimatization time (Spearman 153154rank method, r = 0.09, P = 0.57), nor between the habitats and acclimatization time (Kruskal-Wallis test, P = 0.50). 155Total learning score followed a logistic curve as follows (Fig. 2): y = c + (d - c) / [1 + c]156exp {-(a + b * x)}]; a = -47.6745 (P = 0.34), b = 0.9222 (P = 0.34), c = 132.3460 (P < 0.001), 157d= 225.2855(P < 0.001). The curve had an inflexion point at 51.7 mm L_s with a score of 158178.8. Total score of smaller fish was significantly lower than those of larger size 159(Mann-Whitney U test, n = 16 + 24, P < 0.001). To investigate the relationship between 160 body size and score, the data were divided into two groups with $L_{\rm S}$ of over and below 51.7 161162mm. Then there was no correlation between body size and total learning score within each size group (Spearman rank method; ≤ 51.7 mm: r = 0.12, P = 0.65; > 51.7 mm: r = 0.34, P 163= 0.10). The relation between learning capability and body size was further analysed for 164each learning task (Fig.3). Reversal learning was repeated for a maximum of four times 165during the whole trials depending on the achievement of learning criteria. The average score 166 of the original learning task was 80.3 ± 9.4 points, which was achieved on average in $4.3 \pm$ 1671680.8 sessions. There was no size dependence in the score of original learning task (R_0) and the fourth reversal learning task (R₄) (Spearman rank method, R₀: r = 0.24, P = 0.13, R₄: r =169

170	0.16 , $P = 0.32$), whereas there was a positive correlation between L_S and score in the first to
171	third reversal learning tasks (R ₁ : $r = 0.36$, R ₂ : $r = 0.65$, R ₃ : $r = 0.61$, $P < 0.05$). The score
172	showed a clear increase from around 50 mm in the second and third reversal learning task.
173	Observation of fish behaviour suggested that smaller fish tended to go directly to the
174	learned area once original learning was established and had difficulty achieveing reversal
175	learning. In contrast, although larger fish also went to the original learning area at the
176	beginning of reversal learning, they tended to stop in front of the conditioning area after
177	several mistakes. Then they started to enter the correct (reversed) side.
178	The median score of pelagic, migrating and coastal fish were 146.3 (median, IQR (inter
179	quartile range): 123.0 - 180.7), 231.0 (IQR: 221.1 - 244.2) and 215.5 (IQR: 186.0 - 227.3),
180	respectively (Fig. 4a). The score of pelagic fish was significantly lower than those of the
181	other two groups (Kruskal-Wallis test followed by Steel-Dwass method, $P < 0.05$). When
182	the scores of fish > 51.7mm L_8 were compared to eliminate the size bias, medians in pelagic
183	(n = 5), migrating $(n = 11)$ and coastal $(n = 8)$ fish were 217.3 (IQR: 205.4 - 236.9), 231.0
184	(IQR: 221.1 - 244.2) and 215.5 (IQR: 186.0 - 227.3), respectively, and did not differ
185	significantly (Kruskal-Wallis test, $P = 0.36$; Fig.4b).
186	A total of 50 fish aborted the experiment: 25 pelagic fish (L_8 42.8 ± 14.7 mm), 16
187	migrating fish (L_8 74·4 ± 6·0 mm) and 9 coastal fish (L_8 73·9 ± 16·4 mm). There was no
188	significant difference in aborting rate between fish over and below 51.7 mm (Fisher's exact

test, P = 0.83) and among habitats (Fisher's exact test, P = 0.92). A total of 25 fish selected the left side and 15 fish selected the right side on the first original learning task. There was no significance difference of the first selection on the original learning task between fish over and below 51.7 mm (Fisher's exact test, P = 1.00). There was no correlation between the rearing duration and learning score in each size group (Spearman rank method, ≤ 51.7 mm: r = -0.12 P = 0.67, > 51.7 mm: r = 0.07, P = 0.76). These findings suggest that these factors do not affect the difference of learning score by size and habitat.

DISCUSSION

There was no size-dependence in the original learning score and even the smallest 198 199individuals learned the task. Early juveniles of *T. japonicus* (size range of ca. 10-50 mm) 200often associate with jellyfish and feed on foods collected by jellyfish (Masuda et al. 2008). The basic spatial learning capabilities represented by the original learning task indicate that 201early juveniles may be able to quickly learn the edible parts of jellyfish. Relatively simple 202spatial learning skills are likely to be advantageous for survival even in this poor spatial 203204environment. On the other hand, there was size dependence in the total score including original and all 205reversal learning scores, bigger fish having a higher score than smaller ones within the size 206207range studied. This was due to differences in reversal learning capability. In particular in the 208second and third reversal learning task, fish above 51 mm showed a higher score than 209smaller fish. The total time of reversals indicated a similar tendency, suggesting that reversal learning capability increases with a flexion point at about 50 mm $L_{\rm S}$. This result may imply 210211that the development of reversal learning capability is related to ontogenetic habitat shift in T. 212*japonicus*, because at about 50 mm L_S *T. japonicus* recruit from offshore pelagic to coastal rocky reefs area (Masuda et al., 2008; Kanaji et al., 2009). Our study considers reversal 213214learning capability as the ability to quickly learn a novel feeding area in a spatially complex environment. Such a learning capability may not be as important in pelagic environments 215

which lack spatial complexity. Therefore, these results suggest that an increase in reversal learning capability coincides with the recruitment period from the pelagic zone to the rocky reef.

219Makino et al. (2006) showed that the learning capability of O. fasciatus increases during 220 the transition from offshore to coastal habitat. In this study, T. japonicas showed a similar improvement of learning capability during the habitat shift. However, the improvement of 221222learning capability was different in terms of the developmental processes between these species. Learning capability of O. fasciatus improved gradually as they grow from 20 to 70 223mm Ls. In contrast, learning performance of T. japonicas increased suddenly at a threshold 224225size of 51.7 mm. It is tempting to compare the development of brain morphology, which may possibly explain the difference in the improvement trajectories of learning capability in 226 227these two species.

In the reversal training, smaller fish tended to continue going directly to the original feeding area. Although larger fish also went to the area of original learning at the beginning of reversal learning, their choice changed after several trials without rewards. These observations suggested that smaller fish learned only the cue, such as a position of feeding, whereas larger fish learned the spatial information of overall feeding area. Small, and thus pelagic, stages of fish may require relatively simple cues for learning feeding areas, whereas cognition of spatial complexity is likely to be necessary for larger coastal fish. Our 235speculation coincides with Odling-Smee et al. (2008) who found that in sympatric species of the stickleback *Gasterosteus aculeatus* L. species complex, fish from a benthic population in 236237the littoral zone had superior spatial learning abilities to those from a limnetic population in the pelagic zone. The development of learning capability revealed in our study may reflect 238239the behavioural strategy of *T. japonicas* during its life history as it migrates from pelagic to coastal environments. Hawkins et al. (2008) suggested that in hatchery reared Atlantic 240salmon Salmo salar L. predator recognition developed at ecologically appropriate periods 241during ontogeny; three-week-old juveniles showed only an innate response, and 16- to 24220-week-old fish showed acquired response to predator odour. Thus, there may be 243ontogenetic, species specific changes in learning ability in fish. 244

245Comparison of learning scores among habitats showed that coastal and migrating fish 246had a higher learning capability than pelagic fish. This trend supports the hypothesis that 247the development of learning ability coincides with a habitat shift from offshore pelagic to coastal reefs. However, the result may be biased by the size variation of individuals from 248each habitat; indeed there was no difference of learning capability among habitats in fish > 24951.7 mm $L_{\rm S}$. On the other hand, there is a possibility that larger fish sampled from drifting 250objects were at the last stage of recruitment from pelagic to rocky reef. This was observed 251252during sampling; small juveniles tended to hide inside or behind a floating object, whereas large individuals tended to swim away from the object and headed to the bottom 253

254	(Takahashi and Masuda, pers. obs. 2007; Masuda, 2009). It is thus suggested that larger
255	pelagic juveniles are those ready for the transition to rocky reef. The developments of
256	sensory or kinematic organs are often considered as requirements for recruitment (Poling
257	and Fuiman, 1998; Kingsford et al., 2002; Fisher, 2005). The present study suggests that
258	the development of learning capability may also be an important factor for the recruitment
259	to coastal rocky reef. The improvement of learning ability, and thus an increase in
260	adaptability for life in a variable environment, is thus suggested as the factor which enables
261	juveniles to recruit a complex habitat such as coastal rocky shore.
262	Fish often experience multiple, drastic environmental changes during their early life
263	history (Yousan, 1988). Present study investigated the ontogeny of learning capability in T.
264	japonicus and suggested that these fish were equipped with the appropriate capability in
265	accordance with such changes. Studying the ontogeny of learning capability in fish
266	provides an understanding of the role of learning capability during life history. Further
267	studies should focus on combining environmental factors with learning capability using
268	both wild and hatchery-reared fish. Research on learning capability with various
269	conditioning stimuli may also be required to further investigate learning performance in the
270	context of life history strategies.

Fishermen of the Fisheries Cooperative Association of Tai, Maizuru, kindly provided

273	juveniles from their set net, Dr. Dominique Robert, Dr. Yuichi Fukunishi and Dr. Michelle L.
274	Walsh helped to improve the manuscript and students of MFRS assisted collection of fish.
275	We also thank Dr. Culum Brown and two reviewers for providing constructive comments on
276	the manuscript.

278 References

279	Berejikian, B. A., Tezak, E. P., Riley, S. C. & LaRae, A. L. (2001). Competitive ability and
280	social behaviour of juvenile steelhead reared in enriched and conventional
281	hatchery tanks and a stream environment. Journal of Fish Biology 59, 1600-1613
282	Bisazza, A., Rogers, L. J. & Vallortigara, G. (1998). The origins of cerebral asymmetry: a
283	review of evidence of behavioural and brain lateralization in fishes, reptiles and
284	amphibians. Neuroscience and Biobehavioral Reviews 22, 411–426
285	Brown, G. E. (2003). Learning about danger: chemical alarm cues and local risk assessment
286	in prey fishes. Fish and Fisheries 4, 227–234
287	Brown, C. & Braithwaite, V.A. (2005). Effects of predation pressure on the cognitive ability
288	of the poeciliid Brachyraphis episcope. Behavioural Ecology 16, 482-487
289	Brown, C., Gardner, C. & Braithwaite, V.A. (2004). Population variation in lateralized eye
290	use in the poeciliid Brachyraphis episcope. Proceedings of the Royal Society of
291	London Series B 271, S455-S457
292	Coble, D. W., Farabee, G. B. & Anderson, R. O. (1985). Comparative learning ability of
293	selected fishes. Canadian Journal of Fisheries and Aquatic Sciences 42, 791–796
294	Dodson, J. J. (1988). The nature and role of learning in the orientation and migratory
295	behaviour of fishes. Environmental Biology of Fishes 23, 161-182
296	Ehlinger, T. J. (1989). Learning and individual variation in bluegill foraging: habitat specific

297	techniques. Animal Behaviour 38, 643-658
298	Fisher, R. (2005). Swimming speeds of larval coral reef fishes: impacts on self-recruitment
299	and dispersal. Marine Ecology Progress Series 285, 223-232
300	Hawkins, L. A., Magurran, A. E. & Armstrong, J. D. (2008). Ontogenetic learning of
301	predator recognition in hatchery-reared Atlantic salmon, Salmo salar. Animal
302	<i>Behaviour</i> 75, 1663–1671
303	Huntingford , F. A. (2004). Implications of domestication and rearing conditions for the
304	behaviour of cultivated fishes. Journal of Fish Biology 65, 122-142
305	James, G. B., Arthy, S. & F. Hellen, R. (2009). Rearing environment affects the brain size of
306	guppies: lab-reared guppies have smaller brains than wild-caught guppies. <i>Ethology</i>
307	115 , 122-133
308	Kanaji, Y., Watanabe, Y., Kawamura, T., Xie, S., Yamashita, Y., Sassa, C. & Tsukamoto, Y.
309	(2009). Multiple cohorts of juvenile jack mackerel Trachurus japonicus in waters
310	along the Tsushima Warm Current. Fisheries Research 95, 139–145
311	Kelley, J. L. & Magurran, A. E. (2003). Learned predator recognition and antipredator
312	responses in fishes. Fish and Fisheries 4, 216–226
313	Kingsford, M. J., Leis, J. M., Shanks, A., Lindeman, K. C., Morgan, S. G. & Pineda, J.
314	(2002). Sensory environments, larval abilities and local self-recruitment. Bulletin of
315	<i>Marine Science</i> 70 , 309–340

316	Makino, H	., Masuda,	R. 8	z Tanaka,	M.	(2006).	Ontogenetic	changes	of learning	capability
-----	-----------	------------	------	-----------	----	---------	-------------	---------	-------------	------------

- under reward conditioning in striped knifejaw *Oplegnathus fasciatus* juveniles.
 Fisheries Science 72, 1177–1182
- Masuda, R. (2009). Ontogenetic changes in the ecological function of the association
 behavior between jack mackerel *Trachurus japonicas* and jellyfish. *Hydrobiologia*616, 269–277
- 322 Masuda, R. & Ziemann, D. A. (2000). Ontogenetic changes of learning capability and stress
- 323 recovery in Pacific threadfin juveniles. *Journal of Fish Biology* **56**, 1239–1247
- 324 Masuda, R., Yamashita, Y. & Matsuyama, M. (2008). Jack mackerel *Trachurus japonicus*
- juveniles use jellyfish for predator avoidance and as a prey collector. *Fisheries*
- 326 *Science* **74**, 276–284
- 327 Miklosi, A. & Andrew, R. J. (1999). Right eye use associated with decision to bite in 328 zebrafish. *Behavioural Brain Research* **105**, 199–205
- 329 Odling-Smee, L. & Braithwaite, A. V. (2003). The role of learning in fish orientation. *Fish*
- *and Fisheries* **4**, 235–246
- 331 Odling-Smee, L., Boughman, J. W. & Braithwaite, A. V. (2008). Sympatric species of
- threespine stickleback differ in their performance in a spatial learning task. *Behavioral, Ecology and Sociobiology* 62, 1935–1945
- 334 Poling, K. R. & Fuiman, L. A. (1998). Sensory development and its relation to habitat

335	change in three species of sciaenids. Brain, Behavior and Evolution 52, 270-284
336	Sassa, C. Konishi, Y & Mori, K. (2006). Distribution of jack mackerel (Trachurus
337	japonicus) larvae and juveniles in the East China Sea, with special reference to the
338	larval transport by the Kuroshio Current. Fisheries Oceanography 15, 508-518
339	Sassa, C., Tsukamoto, Y., Nishiuchi, K. & Konishi, Y. (2008). Spawning ground and larval
340	transport processes of jack mackerel Trachurus japonicus in the shelf-break region
341	of the southern East China Sea. Continental Shelf Research 28, 2574–2583
342	Sneddon, L. U. (2003). The bold and the shy: individual differences in rainbow trout.
343	Journal of fish biology 62, 971–975
344	Tsukamoto, K., Shiozawa, S., Kogane, T., Sakakura, Y. & Mizuta, Y. (1995). Ontogenetic
345	change in abilities of learning and memory in striped jack Pseudocaranx dentex.
346	Saibai Giken 24, 45–51
347	Youson, J. H. (1988). First metamorphosis. In Fish Physiology, Vol. 11B (Hoar, W. S. &
348	Randall, D. J., eds), pp. 135–196. New York: Academic Press.
349	Warburton, K. (2003). Learning of foraging skills by fish. Fish and Fisheries 4, 203–215
350	

Figure Caption

Fig.1. Schematic drawing of the experimental tank. A fish was kept in the acclimatization area until the gate was opened. In the original learning task, the fish was rewarded by pellets when it went into the left side. In the reversal learning task, the correct side was reversed from left to right.

Fig.2. Total score including original and all reversal learnings in 240 trials for fish captured from the drifting objects (\circ), set net (\bullet) and angling (\blacksquare). Each marker represents one fish. Solid line represents nonlinear least square model fitted to the data. Model equation is $y = 929395 / \{1 + e(-56\cdot37 - 1\cdot15x)\} + 126\cdot85$. Dotted line represents the inflexion point of the model.

Fig.3. Score of original and each reversal learning task. (a) original learning, (b) first, (c) second, (d) third and (e) fourth reversal learning. Each line indicates a linear regression line. Individuals that could not accomplish a learning stage were treated as zero score, and black plots indicate such individuals.

Fig. 4. (a) The median of the total score of all fish captured under each sampling method. Bars indicate inter quartile range (drifting objects: n = 21, set net: n = 11, angling: n = 8). Scores with different letters were significantly different (Steel-Dwass method, P < 0.05). (b) The median of the total score of fish > 51.7 mm L_s captured under each sampling method. Bars indicate interquartile range (drifting objects: n = 5, set net: n = 11, angling: n = 8).

Fig.1

Fig.2

