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Supercritical carbon dioxide has been widely used as solvents, although 

its solubility is much lower than that of typical organic solvents of liquid 

state in general. Entrainer effects are known and utilized, in which adding 

small molecules, such as alcohols and hydrocarbons, increase the 

solubility and the chemical reactivity. In this study, we investigated the 

change of local fluid structure and thermodynamic properties with 

molecular dynamics simulations, focusing on the entrainer effect. A 

monatomic fluid mixture model based on the Lennard-Jones model 

potential was adopted for simplicity, the parameters of which roughly 

corresponds to those of carbon dioxide (solvent) and ethanol (solute). A 

series of simulations were performed in the vicinity of the gas-liquid 
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critical point. The radial distribution function and the coordination number 

reveal the enhancement of the solvent local density. The solvent chemical 

potential was evaluated with the Widom's particle insertion method.  The 

chemical potential change by adding solutes is smallest in magnitude at 

the critical point, qualitatively agreeing with recent experimental analysis 

and interpretation with a small-angle neutron scattering method. 

 

Keywords: supercritical fluid, entrainer effect, chemical potential, molecular 

simulation 

 

1. Introduction 

Supercritical fluids (SCFs) are widely used in chemical engineering [1, 2]. One of the 

reasons is the controllability of their density in a wide range due to the divergently 

large compressibility in the vicinity of their gas-liquid critical point (CP). As a solvent, 

however, SCFs are poor in general, when compared with conventional solvents in 

liquid state, because the density of SCFs is lower than that of normal liquids. 

Cosolvents, or entrainers, are proposed [1, 2] to improve the solvent property. For 

example, carbon dioxide is a widely used SCF solvent in “green chemistry”, because 

of its mild conditions of the CP, its safety, and its high cost performance. When a tiny 

amount of hydrocarbons, alcohols, or water is added, the solubility of various organic 

compounds is drastically enhanced. 

Concerning the mechanism of such entrainer effects, much attention has been 

paid to microscopic structure in SCF mixtures; see [3] and references therein. In a 

rough sketch, the added entrainer molecules enhance the local density 

inhomogeneities by attracting solvent around them.  
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Experiments to directly investigate the static and dynamic characters of the 

local structures were reported, with small-angle X-ray scattering [4, 5], Raman 

spectrum [6], dynamic light scattering [7], and small-angle neutron scattering (SANS) 

[8, 9]. Recently, Sato et al. reported the structure of SCF carbon dioxide with alcohols 

with the SANS techniques [10, 11], where pressure dependence of the correlation 

length and the intensity were analyzed from the viewpoints of density fluctuations. 

They proposed that the third moment of the density fluctuations, or the skewness  , is 

a good indicator of the local density distribution, and derived the relation between   

and the chemical potential of solvent v  [9]. Interestingly, they concluded that v  

increases in the vicinity of the CP by adding entrainers [11], which is contrary to a 

naive argument of osmotic pressure, where v  is expected to be a decreasing function 

of solute concentration.  

In this paper, we report molecular dynamics simulations of model SCF 

systems, focusing mainly on the change of thermodynamic quantities by adding solute. 

Since the pioneering work of Petsche and Debenedetti [12], a large number of studies 

with molecular dynamics (MD) or Monte Carlo (MC) simulations were reported on 

the solute effects on SCF, but most of them are focused on the local density and 

clustering behaviour around the solute molecules. Here, we try to figure out the local 

density and thermodynamic properties of solvents.. 

 

2. Simulation Method 

2.1 System 

We carried out a series of canonical ensemble (NVT constant) MD simulations of 

monatomic fluid. The total number of particles N  is only 1,000, close to [12]; the 
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system size is certainly too small to investigate long range fluctuations near the gas-

liquid critical point quantitatively, but will be sufficient to qualitatively elucidate the 

entrainer effects. We compare molecular structures and thermophysical properties 

between a pure solvent system and a mixture (990 solvent particles + 10 solutes) at 

the same  VT ,  conditions, corresponding to the experimental conditions [10, 11], 

where the mole fraction of solute alcohol in SCF carbon dioxide is 0.01. 

In the MD simulations, the equations of motion are numerically integrated 

with the leapfrog algorithm. The velocity scaling technique is adopted so that the 

average temperature becomes a given value. Time average for equilibrium properties 

is taken for sufficiently long run at each condition. 

A snapshot for the mixture is shown in Fig. 1, where the added solute particles 

are uniformly dispersed in general. 

 
 

Fig. 1 Snapshot of LJ fluid with solute particles at the critical point. Note that the size ratio displayed here is 

exaggerated; the ratio in the simulation is  21.165.342.4 vu  , based on the critical 

volume of carbon dioxide (solvent) and ethanol (solute). 
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2.2 Interaction model 

As the solvent-solvent interaction, we adopt the Lennard-Jones (LJ) 12-6 potential for 

simplicity: 































612

4)(
rr

r vv
vv


 ,     (1) 

where r is a distance between solvent particles, v  and v  are the LJ parameter of 

size and energy, respectively.  

The solute is also modelled as a monatomic LJ fluid. Since we are interested 

in ethanol as the typical entrainer, the LJ parameters u  and u  are chosen so that the 

critical properties correspond to those of ethanol. Based on Table 1, we choose 

21.1vu  ,  69.1vu        (2) 

The Lorentz-Berthelot combination rule is adopted so that the parameters of 

interaction between solute and solvent are 

u
vu

uv 


 105.1
2




 ,  vvuuv  30.1    (3) 

Table 1 Properties and model parameters for solvent and solute. Values of the critical point are taken from [13]. 

 

 Solvent Solute 

 CO2 C2H5OH 

Critical temperature cT  (K) 304 514 

Critical pressure cP  (MPa) 7.38 6.14 

Critical density c  (kg/m3) 468 276 

Critical volume cV  (m3/mol) 9.4010-5 16.710-5 

Molecular mass  44.0 46.1 

Model 

parameters 

Energy   (J) 3.2010-21 5.4010-21 

Diameter   (m) 3.6510-10 4.4210-10 

Mass m  (kg) 7.3110-26 7.6410-26 
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As the solute-solvent interaction is stronger than that of solvent-solvent, we expect 

that the model works as an attractive solute [14]. 

In the following descriptions, we use reduced units with the solvent 

parameters v , v , and vm (particle mass), such as 

temperature 
v

BTk
T


* ,  pressure 

v

v P
P




3

*  ,  volume 
3

*
v

v
v


   (4) 

The asterisk is often omitted to simplify the expression. 

2.3 Simulation conditions 

We focus on properties of fluid close to the gas-liquid critical point. To determine the 

critical point, a series of MD simulations for a single component (i.e., pure solvent) LJ 

system were carried out at temperature 6.10.1 T  with various density; the particle 

interaction is truncated at 0.4r , and no tail correction is made. We fitted the 

obtained pressure data to a simple van der Waals equation of state to find the critical 

condition as 

 
 
Fig. 2 Simulation conditions. The dashed curves roughly show the gas-liquid coexistence region. The condition 

2 corresponds to the critical point. 
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313.1cT ,  1536.0cP ,  3116.0c , 209.3cv     (5) 

which is within the range of reported values ( 35.1~313.1cT , 145.0~123.0cP , 

257.3~857.2cv ) cited in Table 4 in [15], and close to a more recent work [16]. 

We selected 10 simulation conditions in the vicinity of  cc vT , , as shown in Fig. 2.  

A cubic cell is used, the size of which ranges from 14.2 to 15.3 v . 

We use the time step 001.0 , where   is the unit time defined as vvv m  .  The 

total steps of the MD simulation for each condition are 30,000, of which the initial 

10,000 steps are discarded. 

 

3. Results 

3.1 Structure change 

The solvent-solvent radial distribution function )(rgvv  is calculated at each condition; 

 

  
 

(a) 313.1* T  and 863.2* v  (cond. 1) (b) 313.1* T  and 209.3* v  (cond. 2). 

 

Fig.3 Radial distribution function between solvent molecules. At the critical point (b), addition of solute particles enhances 

the first peak. 
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examples are shown in Fig. 3. In general, the first peak of )(rgvv  is expected to 

slightly decreases by adding the solute particles mainly because the solvent density is 

lowered. At the CP, however, the peak increases, which suggests that the solvent 

structure at the CP is easily affected by the small amount of solute; a similar 

enhancement of the )(rgvv  peak is observed in Conditions 5–7, although the degree is 

very small. 

The solvent-solvent coordination number vvN  is examined to see the change: 


min

0

2)(4

r

vvvvv drrrgnN       (6) 

where vn  is the number density of solvent, and the integration is done up to the first 

minimum of )(rgvv . The obtained vvN is 6.6‒8.4 depending on the condition. We 

focus on the change )pure()mixture( vvvvvv NNN  , which is shown in Table 2. 

Although the tendency is not so clear, the change is positive at the critical point (and 

several other conditions); note that we would have 01.0 vvN  due to the decrease 

of vn  if there is no shape change in )(rgvv . These results indicate the augmentation of 

solvent local density by solute [3], although its magnitude is very small. 

3.2 Chemical potential  

The chemical potential is calculated with a standard technique of Widom’s particle 

insertion [17], 

exidtotal          (7) 

where the first term is the ideal gas part, 
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The second represents the excess (or residual) part due to particle interactions, 
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where  is evaluated as an statistical average of the Boltzmann factor of a randomly 

inserted particle, the potential energy of which is 1N . It would be better to evaluate 

the chemical potential in the NPT ensemble [18] instead of the canonical one because 

the constant volume condition suppresses the long-range fluctuations. In this study, 

however, we investigate the density dependence of   by adopting the canonical 

ensemble. 

In Table 2, the change )pure()mixture( vvv    for the solvent is shown. 

As expected, 
total

v  is negative for all conditions, which agrees with the osmotic 

 

 

Table 2 Change of thermodynamic properties, (mixture)-(pure). The temperature 
rT  and the specific volume per particle 

rv  are relative 

values to the CP (gas-liquid critical point). The difference of energy E , Gibbs free energy G , the enthalpy H , and 

entropy S  are for 1000 particle systems. Thermodynamic quantities are all expressed in reduced units. The underlines indicate 

the extremum among the ten conditions. 

 

Condition 

no. 
rT  rv  vN  E  

P  

( 310 ) 

ex

v
 total

v
 G  

( 210 ) 
H  S  

0 0.952 1.000 0.029  -29.45  -2.06 -0.035 -0.048 -1.31 -36.1 75.8 

1 1.000 0.892 -0.072  -23.35  0.22 -0.037 -0.050 -1.34 24.0 120.3 

2 (CP) 1.000 1.000 0.040  -63.44  2.21 -0.006 -0.019 -1.05 -56.4 36.5  

3 1.000 1.116 -0.032  -5.31  2.58 -0.016 -0.029 -1.13 3.9 87.3  

4 1.066 0.892 -0.025  -36.06  7.74 -0.031 -0.045 -1.35 -13.9 88.3 

5 1.066 1.000 0.040  6.08  1.02 -0.020 -0.034 -1.22 9.4 93.6  

6 1.066 1.116 0.080  -35.29  -8.58 -0.016 -0.030 -1.16 -66.0 38.0  

7 1.142 0.892 -0.002  -12.07  3.50 -0.024 -0.039 -1.32 -2.1 88.4  

8 1.142 1.000 -0.022  -14.13  -3.58 -0.021 -0.036 -1.27 -25.6 66.7  

9 1.142 1.116 -0.020  11.87  -4.31 -0.013 -0.028 -1.18 -3.6 76.2  
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pressure argument. It is interesting, however, that the absolute values of both 
ex

v  

and 
total

v  are smallest at the critical point; this behaviour is qualitatively similar to 

that reported in [11]. The origin of the smallest 
total

v  at the CP is not 

straightforward, but should be explained in terms of interaction term 
ex

v , as 
id

v  

has no density dependence.  

3.3 Other thermodynamic properties 

Similarly to v ,  the chemical potential of solute u  is easily evaluated; the results 

are not included in Table 2 because no specific tendency is observed, although a slight 

difference in volume dependence is discernible at the CP. With these two  , we 

estimate the Gibbs free energy of the simulated system (1000 particles) as 

)pure(1000(pure) vG       (10) 

and 

uG  10)mixture(099(mixture) v      (11) 

The change )pure()mixture( GGG   is shown in Table 2. Since we obtain the 

total energy E  and the pressure P  directly in each simulation, other thermodynamic 

quantities are easily estimated. Especially important is the entropy, 

T

GPVE
S


        (12) 

where V  is the volume of the system. In Table 2, the difference S  is shown along 

with E , P , G , and the enthalpy change H .  

Naturally, the solute particles energetically stabilize the system at the CP, as 

indicated in E . However, the pressure change P  seems to have no particular 

trends; the difference is much smaller than the pressure itself (e.g., 153.0P  and 
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002.0P  at the CP), and the attractive character of the solute, by which we expect 

0
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


 x

x

P
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 ( x : composition of the solute), is not clear. The canonical 

ensemble (constant V) may affect the results. From S , we speculate that the local 

density augmentation suppresses the entropy increase. Note that the condition 6 

( 066.1rT  and 116.1r ) is almost as singular as the CP, from the viewpoints of 

thermodynamic properties as well as the local structure ( )(rgvv  and vvN ). 

3.4 Dependence on the interaction parameter 

Assumption of the Lorentz-Berthelot combination rule is certainly too naive for the 

complex interaction between CO2 and ethanol. Results will strongly depend on the 

interaction, especially the parameter uv . Thus we change uv  and re-calculate the 

chemical potential change 
total

v ; we still assume the Lorentz-Berthelot rule, but the 

solute-solute interaction is irrelevant due to the low concentration. Results are shown 

in Table 5 at 313.1* T . Some dependence is certainly observed, but the tendency is 

similar; the chemical potential change is smallest at the critical point. 

 

Table 3 Change of solvent chemical potential 
total

v , depending on the interaction parameter. 

 

  863.2*v  

(cond. 1) 

209.3*v  

(cond. 2, CP) 

582.3*v  

(cond. 3) 

313.1* T  

69.1vu  , 30.1vuv   -0.050 -0.019 -0.029 

85.1vu  , 36.1vuv   -0.043 -0.021 -0.031 

00.2vu  , 41.1vuv   -0.044 -0.029 -0.040 
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4. Conclusion 

We investigated the local fluid structure and the thermodynamic properties of a model 

supercritical fluid with molecular dynamics simulation technique, focusing on 

entrainer effects from solvent viewpoints. By adding a small amount of attractive 

solute, (i) solvent molecules slightly gather at the critical point (CP) while they tend 

to disperse off the CP, and (ii) the chemical potential of solvent generally decreases in 

accordance with the osmotic pressure argument, but the change is the smallest at the 

CP, the behaviour of which qualitatively agrees with the analysis on recent SANS 

experiments. We speculate that theses two closely relates to the mechanism of 

entrainer effects. Certainly the simulation system is too small to realize the long range 

fluctuations near the CP, and the interaction model is too simple to incorporate 

realistic molecular interactions. Based on these findings, we will investigate the 

solubility change and other entrainer effects in more detail, using larger scale 

simulations and liquid theories. 
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