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Abstract

Horizontally heterogeneous Joule heating is proposed as a new driving source

for fluid motions in the Earth’s inner core. The magnetic field imposed at

the inner core boundary (ICB) penetrates into the inner core through diffusion

and generates Joule heating. When the heating distribution is horizontally

heterogeneous, it produces torque by means of the buoyancy force, thereby

inducing fluid motions in the inner core. The expression of fluid flows induced

by arbitrary magnetic field distributions at ICB is obtained analytically.

Using the estimated values of the physical parameters of the inner core, the

amplitude of the stress field associated with the flows induced by this mechanism

is expected to be greater than or approximately the same as that of the models

considered thus far, and is sufficiently large for large scale deformation of the

inner core. The flow field by this mechanism is also accompanied by a weak stress

field layer near the ICB. The thickness of this boundary layer is comparable to

the depth of the weak anisotropy region observed near the ICB.

The model presented herein suggests that interactions of the flow and mag-

netic fields through Joule heating may occur between the inner and outer cores.

The flow field induced by Joule heating generates mass exchange through the

ICB, causing absorption and release of latent heat and light elements. This pro-

cess affects the flow field and the dynamo action in the outer core and possibly
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reflects on the distribution of the magnetic field. The variation of the magnetic

field penetrates the ICB again and modifies the distribution of Joule heating

and the resultant flow field in the inner core.

Key words: Inner core flows, Joule heating, Seismic anisotropy, Dynamo,

Interaction between the inner and outer cores

1. Introduction

Recent seismological observations have indicated anisotropy of seismic wave

velocities in the inner core, and the existence of this anisotropy has come to be

widely accepted (e.g., Poupinet et al., 1983; Morelli et al., 1986; Souriau, 2007,

for recent reviews). The finding that the wave velocity in the polar direction is

3% faster than that in the equatorial plane is thought to be explained by the

alignment of the preferred orientation of hexagonal close packed (h.c.p.) iron

crystals (e.g., Jeanloz, 1990). Whereas anisotropic crystal growth under the

circumstance of the inner core is proposed as the alignment mechanism (e.g.,

Karato, 1993; Bergman, 1997), several theories attribute the crystal alignment

to fluid motions in the inner core as described below.

Jeanloz and Wenk (1988) reported that the amount of radioactive elements in

the inner core would be sufficient to drive thermal convection and suggested that

convective fluid motions with a horizontal structure of the spherical harmonic

degree 1 component could align the preferred orientation of the iron crystal.

However, according to recent calculations of the thermal history, it is doubtful

that the inner core is thermally unstable, because radioactive elements captured

inside the inner core are insufficient and the cooling rate of the core is too slow

(e.g., Yukutake, 1998; Buffett, 2009). Another problem with this model is that

there is no reason for the axis of the convection cell to be directed poleward.

Yoshida et al. (1996) and Sumita and Yoshida (2003) suggested that the

horizontal heterogeneous growth of the inner core induces axisymmetric fluid

flows directed parallel to the rotation axis. They believed that efficient cooling

at low-latitudes due to the columnar convection in the outer core would cause
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heterogeneous growth with the Y 0
2 horizontal pattern of the spherical harmonics.

Then, they showed that the inner core deforms isostatically in order to main-

tain its spherical shape and that fluid flows from the equatorial region to the

polar regions are induced. Moreover, they theoretically calculated the crystal

alignment caused by this flow and demonstrated that this model can explain the

seismic anisotropy of the inner core. However, the disadvantage of their model

is its small amplitude of velocity. Since the order of the velocity is comparable

to the growth rate of the inner core, it will take a geologically long time for the

generation of the anisotropy.

In an attempt to explain why the axis of the fluid flow is directed parallel to

the rotating axis, Karato (1999) considered the dynamic effect of the magnetic

field at the inner core boundary (ICB) on the inner core. He reported that the

normal component of the Maxwell stresses of the geomagnetic field generated

in the outer core operates at the ICB and compresses the inner core, inducing

sufficiently strong fluid flows and stresses to generate the seismic anisotropy.

Since the distribution of the induced fluid flow in the inner core is governed by

the pattern of the geomagnetic field at the ICB in this model, he also expected

that the distribution of seismic anisotropy would reflect the structure of the

geomagnetic field in the outer core. However, Buffett and Bloxham (2000)

argued that the Maxwell stress imposed by the outer core would balance the

other stresses, such as the buoyancy, and they questioned whether strong fluid

flows in the inner core could be induced through this mechanism.

Buffett and Wenk (2001) considered a shear component of the Maxwell stress

rather than a normal component. They calculated the seismic anisotropy as-

sociated with the induced shear flows and showed that the preferred orienta-

tion of the aligned crystals is qualitatively consistent with the seismic obser-

vations. However, the strength of the Maxwell stresses of this model appear

to be insufficient compared with the necessary amplitude for the generation of

the anisotropy, and the distribution of the stress fields strongly depends on the

unrecognized morphology of the geomagnetic field around the ICB.

Buffett (2009) examined the effects of the centrifugal force on thermal con-
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vection in the inner core, and showed that the structure of spherical harmonic

degree 1 in which the axis of upward motions align with the rotation axis emerges

at the critical state. Then he argued that such a coherent structure might ap-

pear and bring the anisotropic crystals alignment just before termination of

thermal convection, which had been possibly vigorous at the initial stage of the

thermal history of the inner core. However, it is not clear whether the amplitude

and duration of velocity and stress fields associated with nearly critical thermal

convection were sufficient for the crystal alignment.

In this manner, geophysicists have expressed interest in the fluid motions

in the inner core as a possible origin of the seismic anisotropy. However, none

of the models proposed thus far have been adequate, and each of these models

has its own advantages and disadvantages. Nevertheless, the concepts proposed

by Karato (1999) and Buffett and Bloxham (2000) are interesting because they

demonstrated that the inner core could be affected by the magnetic field in the

outer core. They considered the dynamic effects through the Maxwell stress

or the Lorentz force of the geomagnetic field. However, the effects of the mag-

netic field are not necessarily limited to the dynamic effects. The thermal effect

through the Joule heating might act on the inner core. Since the amplitude of

Joule heating in the inner core is considered to be small compared with other

thermal factors, such as global secular cooling of the inner core, the effect of

Joule heating is usually neglected, for example, in discussions of the occur-

rence of thermal convection or the thermal history of the inner core. Horizontal

variation of Joule heating, however small, can induce a horizontal temperature

gradient and cause torque associated with the buoyancy force, which drives

horizontal convective fluid motions.

The present study investigates fluid motions in the inner core induced by hor-

izontally heterogeneous Joule heating of the magnetic field imposed by the outer

core. The strength of stresses associated with induced flows is estimated. The

model formulation is presented in Section 2, and steady solutions are obtained

analytically in Section 3. Geophysical applications are discussed in Section 4.

Section 5 summarizes the results.
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2. Model

As a model of the inner core, let us consider a sphere of radius a filled with a

Boussinesq fluid. As a basic state, we assume the magnetic field in the inner core,

B0(r), imposed through the ICB from the outer core and spherically symmetric

temperature field, T0(r), induced by the secular cooling process, where r is the

radius from the center of the sphere, and r denotes the position vector.

The magnetic field of the basic state is determined by a given distribution

field at the ICB:

B0 = Bs(θ, φ) at r = a, (1)

and the steady induction equation with no fluid motion and the solenoidal con-

dition of the field:

∇ × ∇ × B0 = 0, ∇ · B0 = 0, (2)

where θ and φ are the colatitude and azimuth, respectively, in the spherical

coordinate. The solutions of Eqs. (1) and (2) are expressed by introducing

toroidal and poloidal potentials T (r) and P(r) as follows:

T (r, θ, φ) =
∑
n,m

T̃nmrnY m
n (θ, φ),

P(r, θ, φ) =
∑
n,m

P̃nmrnY m
n (θ, φ), (3)

where B = ∇ × (T r) + ∇ × ∇ × (Pr). Y m
n (r, θ, φ) is a spherical harmonics

function of degree n and order m. The amplitude of each spherical harmonics

component T̃nm and P̃nm is determined by the magnetic field distribution at

the ICB, Bs(θ, φ). The Joule heating QJ associated with the magnetic field is

as follows:

QJ ≡ |J0|2

σ
=

|∇ × B0|2

µ2σ
, (4)

where J0 is the electric current field of the basic state, and σ and µ are the

electrical conductivity and the magnetic permeability, respectively. Note that

the poloidal fields do not accompany electric currents. The electric current field

is expressed by the potentials as J0 = ∇×∇×(T r)−∇×(∇2Pr). The second

term of the right-hand side vanishes because the solution (3) satisfies ∇2P = 0.
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Therefore, it is sufficient to consider the toroidal magnetic field only, and the

poloidal fields are not relevant to the present problem.

The equations for disturbances with respect to this basic state are as follows:

∂v

∂t
+ (v · ∇)v + 2Ω × v = − 1

ρ0
∇p +

1
ρ0

J × B0 +
1
ρ0

J0 × B + αTg + ν∇2v,(5)

∂T

∂t
+ (v · ∇)T + vr

dT0

dr
= κ∇2T +

QJ

ρ0Cp
, (6)

∂B

∂t
= ∇ × (v × B0) + λ∇2B, (7)

∇ · v = 0, ∇ · B = 0, (8)

Here, v, vr, T , and B are the velocity, radial component of velocity, temper-

ature, and magnetic field disturbances induced by Joule heating, respectively.

In addition, Ω is the rotation rate of the system, α is the thermal expansion

coefficient, ν is the kinematic viscosity, κ is the thermal diffusivity, ρ0 is the

average density of the Boussinesq fluid, Cp is the specific heat capacity, and λ

is the magnetic diffusivity. Here, g is assumed to be the spherically symmetric

self-gravitational acceleration of the sphere and is expressed as g = (g0/a)r,

where g0 is the acceleration due to gravity at the ICB. Since we are interested

in fluid flows induced by Joule heating only, the Lorentz force of the basic mag-

netic field J0 × B0/ρ0, which is examined in Buffett and Bloxham (2000), is

removed from Eq. (5).

Note that in the framework of the Boussinesq approximation, the basic tem-

perature gradient dT0(r)/dr expresses the difference from the adiabatic tem-

perature gradient (potential temperature gradient). Therefore, dT0(r)/dr = 0

means neutral stratification, and dT0(r)/dr > 0 and dT0(r)/dr < 0 expresses

stable and unstable stratification, respectively. It is still under debate whether

the inner core of the Earth is thermally stable or unstable: for example, it

may depend on the estimation of thermal conductivity of iron under the high

pressure-temperature environment (e.g. Buffett, 2009). In the following, we

consider the stably stratified case dT0(r)/dr > 0, for the first step of the study.

Before non-dimensionalizing the governing equations, let us discuss about

the dominant balances in the equations of motion and temperature. One of

6



the possibilities is that the thermal conduction term balances with the Joule

heating term in the temperature equation and the induced temperature distur-

bance drives the fluid motion through the buoyancy force in the equation of

motion. However, as you see below, this hypothesis fails because the amplitude

of advection of the temperature exceeds that of the thermal conduction term.

By using typical estimated values of the permeability and electrical conductiv-

ity, µ = 4π × 10−7H/m, and σ = 2 × 105Sm−1 (Stacey and Davis, 2008), the

radius of the inner core, a = 106m, and the magnetic field strength at the ICB,

|B0| = 10−2T, the amplitude of the Joule heating |QJ | is estimated as,

|QJ | =
|B0|2

µ2σa2
∼ 3 × 10−10W/m3

.

When the thermal conduction term is balanced with this Joule heating, the

magnitude of temperature disturbance ∆T ′
d becomes,

∆T ′
d ∼ |QJ |a2

ρCpκ
∼ 10K.

where the typical values of density, specific heat capacity and thermal diffusivity,

ρ = 104 kg/m3, Cp = 700 J/kg K, κ = 5×10−6 m2/s are adopted. The velocity

amplitude Vd induced by this temperature perturbation is calculated with the

balance between the buoyancy and viscous terms as,

Vd ∼ αg∆T ′
da

2

ν
∼ 5 × 10−5m/s,

where we use the values of viscosity, ν = η/ρ = 1017Pa ·s/104 = 1013m2/s, ther-

mal expansion coefficient, α = 1×10−5/K, and gravity, go = 5m/s2. Under this

circumstance, the ratio of the advection and diffusion terms in the temperature

equation becomes,
|(v · ∇)T |
|κ∇2T |

∼ Vd∆T ′
d/a

κ∆T ′
d/a2

∼ 107.

This contradicts the assumption that thermal conduction term dominates the

temperature equation.

Accordingly, let us assume that the advection of temperature disturbance

balances with the Joule heating. Expressing the amplitudes of the induced
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temperature disturbance and velocity, as ∆T ′
a and Va, and assuming the balance

between the buoyancy and viscous terms, we have,

Va∆T ′
a

a
∼ |QJ |

ρCp
, Va ∼ αg∆T ′

aa2

ν
.

Then we obtain,

∆T ′
a ∼

(
ν

αga

|QJ |
ρCp

)1]2

∼ 3 × 10−3K, Va ∼ αg∆T ′
aa2

ν
∼ 1 × 10−8m/s.

The amplitude of temperature disturbance becomes rather small compared to

that of the basic (potential) temperature, which is considered to be O(10)K (e.g.

Yukutake, 1998; Buffett and Bloxham, 2000). As a result, the advection of the

basic temperature dominates the advection of temperature disturbance.

Therefore, it is expected that the advection of the basic temperature balances

with the Joule heating in the equation of temperature while in the equation

of motion, buoyancy and viscous terms would be in balance because of large

viscosity in the inner core. That is,

vr
dT0

dr
∼ QJ

ρ0Cp
, αTg ∼ ν∇2v.

These relations mean that velocity field is determined by the equation of tem-

perature, while temperature disturbance is by the equation of motion.

Based on the expected main balances discussed above, let us non-dimensionalize

the governing equations. The typical magnitude of Joule heating |QJ | is esti-

mated as |QJ | = B2
0/(µ2σa2), where B0 is a typical magnitude of the basic

magnetic field at the ICB. The time scale τ is selected as τ = ∆TρCp/|QJ |,

where ∆T denotes the typical value of the difference between the basic and

the adiabatic temperature. Also note that |QJ |/ρCp is the rate of temperature

increase. The length scale is the radius of the sphere a. The velocity scale V

is selected as V = a/τ = (|QJ |a)/(ρCp∆T ), which is derived from the balance

between the advection of the basic temperature and Joule heating. The temper-

ature disturbance is normalized with (νV )/(αg0a
2) by considering the balance of

the buoyancy force and the viscous force in the equation of motion. The ampli-

tude of the magnetic field disturbance is estimated to be (V aB0)/λ based on the

8



balance between the induction and the magnetic diffusion terms in the induction

equation. The pressure term is scaled with ρ0νV/a. The non-dimensionalized

equations governing the steady state are then obtained as follows:

Re(v · ∇)v +
1
E

ez × v = −∇p + M2(J × B0 + J0 × B) + Tr + ∇2v,(9)

Pe

R
(v · ∇)T + vr

dT0

dr
=

1
R
∇2T + qJ , (10)

0 = ∇× (v × B0) + ∇2B, (11)

∇ · v = 0, ∇ · B = 0, (12)

where qJ is the normalized Joule heating term, Re is the Reynolds number, E is

the Ekman number, M is the Hartmann number, Pe is the Péclet number, and

R is the Rayleigh number with a negative sign, which expresses the strength of

the stability of the basic temperature profile.

Re =
V a

ν
, E =

ν

2Ωa2
, M =

B0a√
ρ0µλν

, Pe =
V a

κ
, R =

αg0∆Ta3

κν
. (13)

Using the expected values of the inner core parameters, the values of the non-

dimensional numbers are evaluated and the magnitude of each term is compared

in order to simplify the governing equations. In the inner core, the typical values

of several physical properties are estimated as a = 106 m, ρ = 104 kg/m3,

Cp = 700 J/kg K, µ = 4π × 10−7 H/m, σ = 2 × 105 Sm−1 λ = 1.0 m2·s−1,

α = 1 × 10−5/ K, κ = 5 × 10−6 m2/s, go = 5 m/s2, and Ω = 7.3 × 10−5

s−1 (Stacey and Davis, 2008). Although estimates of inner core viscosity vary

from 1013 to 1021 Pa s (Sumita and Bergman, 2007), here we will assume a

moderate value that is similar to that used in Karato (1999), namely, ν =

η/ρ = 1017Pa s/104 = 1013 m2/s. In addition, based on Buffett and Bloxham

(2000), we assume that ∆T = 30 K. Although the magnitude of the toroidal

magnetic field at the ICB remains unclear, we assume B0 = 10−2 T, which is a

plausible value. The values of the non-dimensional numbers are then obtained

as follows:

Re ∼ 4×10−18, M ∼ 3×10−2, E ∼ 7×104, Pe ∼ 1, R ∼ 3×107. (14)
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Based on the values of Re, M , and E, the inertia term, the Lorentz force term,

and the Coriolis term are found to be negligible compared to the viscous term.

Based on the values of Pe and R, the thermal diffusion term and the advection

term of temperature disturbance are assumed to be smaller than the advec-

tion term of the basic temperature. However, in this case, a thin boundary

layer would form near the ICB in order to satisfy a certain boundary condition,

where the effect of thermal diffusion cannot be neglected because of the small

transversal length scale of the layer. Therefore, we do not neglect the thermal

diffusion term.

From the scaling discussed above, we can obtain the set of equations for

determining flow and temperature fields induced by Joule heating.

0 = −∇p + Tr + ∇2v, (15)

vr
dT0

dr
=

1
R
∇2T + qJ , (16)

∇ · v = 0, (17)

As the boundary conditions at the ICB, for simplicity, we adopt a constant

normal component of the stress field, a zero shear component of the stress field,

and zero temperature disturbances.

σrr = −p + 2
∂vr

∂r
= 0, (18)

σrθ =
1
r

∂vr

∂θ
+

∂vθ

∂r
− vθ

r
= 0, (19)

σrφ =
∂vφ

∂r
− vφ

r
+

1
r sin θ

∂vr

∂φ
= 0, (20)

T = 0, at r = 1, (21)

where vi and σij (i, j = r, θ, φ) denote the individual components of the veloc-

ity and stress fields, respectively. These boundary conditions imply that the

position of the ICB does not move, which would be realized by sufficiently fast

phase change between the solid inner core and liquid outer core.
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3. Steady analytic solutions

In order to solve Eqs. (15) through (17), we introduce toroidal and poloidal

potentials to express non-divergent velocity fields.

v = ∇ × (Ψ(r, θ, φ)r) + ∇ × ∇(Φ(r, θ, φ)r). (22)

Substituting this into Eq. (15) and operating r ·∇× and r ·∇×∇×, we obtain

the equations for the toroidal and poloidal potentials. Expressing the equation

of temperature, i.e., Eq. (16), with the potentials, we have

∇2L2Ψ = 0, (23)

∇2L2∇2Φ − L2T = 0, (24)
L2Φ

r

dT0

dr
=

1
R
∇2T + qJ (25)

where L2 is horizontal Laplacian operator on a unit sphere with negative sign.

Equation (23) indicates that the toroidal component of velocity is not induced

and Ψ ≡ 0.

Removing the temperature term from Eqs. (24) and (25), the equation for

poloidal potential is obtained as follows:

L2Φ
r

dT0

dr
− 1

R
∇2∇2∇2Φ = qJ (26)

Here, let us express the boundary conditions given in Eqs. (18) through (21)

with the poloidal potential. Using Eq. (24), Eq. (21) is rewritten as follows:

∇2∇2Φ = 0 at r = 1. (27)

The boundary condition for the normal component of the stress field is modified

by removing the pressure term from Eq. (18) and the horizontal divergence from

Eq. (15).
∂

∂r
r

(
∇2Φ +

2L2Φ
r2

)
= 0 at r = 1. (28)

By expressing the boundary condition for the shear components of the stress

field given in Eqs. (19) and (20) with the poloidal potentials and organizing

them into a single equation, we obtain

∂2Φ
∂r2

− 2Φ
r2

+
L2Φ
r2

= 0, at r = 1. (29)
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The variables are then expanded by the spherical harmonics function series,

as follows:

Φ =
∑
n,m

Φ̃nm(r)Y m
n (θ, φ), T =

∑
n,m

T̃nm(r)Y m
n (θ, φ), qJ =

∑
n,m

q̃Jnm(r)Y m
n (θ, φ).

(30)

Substituting Eq. (30) into Eqs. (26) and (24), we have

n(n + 1)Φ̃nm

r

dT0

dr
− 1

R
DnDnDnΦ̃nm = q̃Jnm, (31)

T̃nm = DnDnΦ̃nm, (32)

where

Dn =
1
r2

d

dr
r2 d

dr
− n(n + 1)

r2
. (33)

The boundary conditions given in Eqs. (27) through (29) are then rewritten as

follows:

d

dr
r

(
DnΦ̃nm +

2n(n + 1)Φ̃nm

r2

)
=

d2Φ̃nm

dr2
+

(n − 1)(n + 2)Φ̃nm

r2

= DnDnΦ̃nm = 0, at r = 1. (34)

From the boundary condition for temperature given as Eq. (21) and its

regularity at the origin, we can express temperature T̃nm in terms of spherical

Bessel functions, as follows:

T̃nm =
∞∑

j=1

AjJn(αn,jr), (35)

where αn,j denotes the j-th zero point of the spherical Bessel function of order

n. Since the spherical Bessel function Jn(αr) satisfies the following ordinary

differential equation:

d2Jn(αr)
dr2

+
2
r

dJn(αr)
dr

+
[
α2 − n(n + 1)

r2

]
Jn(αr) = 0, (36)

we can obtain the following simple relationship:

DnJn(αr) = −α2Jn(αr). (37)
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In addition, Jn(αr) satisfies the following orthogonal relationship:∫ 1

0

r2Jn(αn,jr)Jn(αn,kr)dr =
1
2
[Jn+1(αn,j)]2δjk. (38)

From the relationship between temperature and the poloidal potential given

as Eq. (32), we obtain the following:

DnDnΦ̃nm = T̃nm =
∞∑

j=1

AjJn(αn,jr).

We then search for the poloidal potential in the form of

Φ̃nm =
∑

j

AjΦ̃nm,j . (39)

Then, we have

DnDnΦ̃nm,j = Jn(αn,jr).

The general solutions of this differential equation, which are regular at the origin

r = 0, are as follows:

Φ̃nm,j =
1

α4
n,j

Jn(αn,jr) + Bjr
n + Cjr

n+2, (40)

The coefficients Bj and Cj can be determined from the boundary conditions at

r = 1. From Eq. (34), we have

Cj =
1

2(2n2 + 6n + 3)

[
1

αn,j
− 2n(n + 2)

α3
n,j

]
J ′

n(αn,j), (41)

Bj = − 1
2(n + 1)(n − 1)

[
− 2

α3
n,j

J ′
n(αn,j) + 2n(n + 2)Cj

]
. (42)

Substituting Φ̃nm with these coefficients into Eq. (31), multiplying it by r2Jn(αn,kr),

and integrating from 0 to 1, we obtain

n(n + 1)
∑

j

MkjAj +
1
R

α2
n,k

1
2
[Jn+1(αn,k)]2Ak = qnm,k, (43)

where

Mkj =
∫ 1

0

r
dT0

dr

[
1

α4
n,j

Jn(αn,jr) + Bjr
n + Cjr

n+2

]
Jn(αn,kr)dr, (44)

qnm,k =
∫ 1

0

r2q̃Jnm(r)Jn(αn,kr)dr. (45)
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We can obtain the expression of the steady solution for a given distribution

of Joule heating QJ(r, θ, φ) by calculating the expansion coefficient qnm,k and

solving Eq. (44) to obtain the coefficient Aj .

The basic temperature profile is proportional to r2 when we assume a thermal

conductive solution with a constant cooling rate. On the other hand, the ra-

dial adiabatic temperature profile exp(−α(g0/a)r2/ρ0Cp) is also approximately

proportional to r2. Then, let us assume the non-dimensionalized basic tempera-

ture profile as dT0/dr ∼ r. Using the recurrence relationship of spherical Bessel

functions, Eq. (44) can be simplified as follows:

n(n + 1)
∑

j

M ′
kjAj +

(
n(n + 1)

α4
n,k

+
α2

n,k

R

)
1
2
[Jn+1(αn,k)]2Ak = qnm,k, (46)

where

M ′
kj =

Bj

αn,k
Jn+1(αn,k) +

[
2n + 3
α2

n,k

Jn+2(αn,k) − 1
αn,k

Jn+3(αn,k)

]
Cj . (47)

Moreover, when the Joule heating distribution is q̃Jnm = Q0r
n, qnm,k can be

calculated easily.

qnm,k =
Q0

αn,k
Jn+1(αn,k). (48)

3.1. Asymptotic solutions under dominance of the advection of the basic tem-
perature

When the advection term of the basic temperature dominates the diffusion

term, i.e., R → ∞, an expression of the asymptotic solution is easily obtained.

In this case, we can neglect the diffusion term in Eq. (44) to obtain

Φ̃nm =
r

n(n + 1)(dT0/dr)
q̃Jnm (n 6= 0). (49)

As in the above discussion, when we assume the non-dimensional basic temper-

ature profile as dT0/dr ∼ r, we have

Φ̃nm =
1

n(n + 1)
q̃Jnm (n 6= 0). (50)

The poloidal potential is directly determined by the Joule heating, and their

distributions resemble each other. Note that since this velocity distribution
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generally does not satisfy the boundary condition at the ICB, a thin boundary

layer would be formed near the ICB to connect the asymptotic solution and the

boundary condition. The thickness of this boundary layer, δ, can be roughly

estimated from the balance between the advection term of the basic temperature

and the diffusion term. From Eq. (26),

L2Φ
r

dT0

dr
∼ 1

R
∇2∇2∇2Φ.

Selecting the length scale as δ, we have

δ ∼ [n(n + 1)R]−1/6. (51)

4. Geophysical applications

In this section, we apply the steady solution obtained in the previous section

to the Earth’s inner core by considering a specific magnetic field at the ICB and

a Joule heating distribution and investigate induced fluid flows.

Important magnetic field components at the ICB for the fluid motion in

the Earth’s inner core are low-degree toroidal components because they deeply

penetrate the inner core. However, the lowest degree components, n = 1, are

not interesting because they produce a uniform Joule heating distribution. The

toroidal components of degree greater than one can produce horizontally het-

erogeneous heating distributions. Then, let us consider a degree-two toroidal

component, T̃20, as the basic magnetic field at the ICB. The magnetic field and

Joule heating are expressed as follows:

B0 = B0

( r

a

)2

sin 2θ eφ, (52)

QJ =
4B2

0

σµ2a2

( r

a

)2

(3 cos2 θ + 1) =
4B2

0

σµ2a2

( r

a

)2

(2Y 0
2 + 2Y 0

0 ), (53)

where eφ is the unit vector in the azimuthal direction. Figure 1 shows the

distributions of the magnetic field, associated electric current, and Joule heating.

Note that the amplitude of Joule heating is larger in the polar regions than in

the equatorial region. The electric current flows axisymmetrically from the

equatorial region to the polar regions through the inner part of the core. The
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Figure 1: Toroidal Y 0
2 component of the magnetic field (contour lines in the left-hand panel),

associated electric current field (arrows in the left-hand panel), Joule heating distribution
(center panel), and induced flow fields (right-hand panel) in a meridonal cross section are
shown. The amplitude of the basic magnetic field is normalized to unity. The contour intervals
are 0.2 and 1.5 in the right-hand and center panels, respectively. In the left-hand panel, the
light and dark areas indicate positive and negative values, respectively. In the center panel,
the light and dark areas indicate large and small positive values, respectively. The flow field
is for the case of R = 107.

magnitude of the electric current is greater around the poles than near the

equator due to the spherical geometry and the continuity of the current filed.

Corresponding to this current field, Joule heating becomes stronger around the

polar regions than near the equatorial region.

Since a uniform Joule heating component does not induce fluid flows, it is

sufficient to examine the effect of the Y 0
2 component only. Therefore, we select

the scaling of Joule heating as |QJ | = 8B2
0/(σµ2a2). Since the Y20 component

of Eq. (53) is proportional to r2, we can use Eq. (48), and qnm,k is calculated as

q20,k = J3(α2,k)/α2,k. Then, the coefficients Aj , Bj , and CJ in the expression

of the steady solution of Eqs. (39) and (40) can be estimated using Eqs. (41),

(42), (46), and (47) for a given value of the Rayleigh number R. The right panel

of Figure 1 presents the flow field distribution for the case in which R = 107.

The series of spherical Bessel functions are calculated up to the 50th degree.

Downwelling is found to occur in the equatorial region, where Joule heating is
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relatively weak, while upwelling occurs in the polar regions, where Joule heating

is relatively strong.

Since R is sufficiently large in this case, we can obtain an analytical asymp-

totic expression of the velocity field. From Eq. (50), the poloidal velocity

potential becomes

Φ =
1
6
r2Y 0

2 =
1
12

r2(3 cos2 θ − 1). (54)

The velocity components are

vr =
L2Φ

r
=

r

2
(3 cos2 θ − 1), (55)

vθ =
1
r

∂

∂θ

∂(rΦ)
∂r

= −3r

2
sin θ cos θ, (56)

vφ = 0. (57)

The viscous stress field σ′
ij is

σ′
rr =

∂vr

∂r
= 3 cos2 θ − 1, (58)

σ′
θθ =

(
1
r

∂vθ

∂θ
+

vr

r

)
= −3 cos2 θ + 2, (59)

σ′
φφ = 2

(
1

r sin θ

∂vφ

∂φ
+

vr

r
+

vθ cot θ

r

)
= −1, (60)

σ′
rθ =

(
∂vθ

∂r
+

1
r

∂vr

∂θ
− vθ

r

)
= −3 cos θ sin θ = −3

2
sin 2θ, (61)

σ′
θφ =

(
1

r sin θ

∂vθ

∂φ
+

1
r

∂vφ

∂θ
− vφ

r

)
= 0, (62)

σ′
φr =

(
∂vφ

∂r
+

1
r sin θ

∂vr

∂φ
− vφ

r

)
= 0. (63)

The amplitude of the velocity is approximately unity in a non-dimensional

value. Converting the amplitude to the dimensional value, we obtain

|v| ∼ |QJ |
ρCp

a

∆T
. =

8B2
0

ρ0Cpσµ2a2
· a

∆T
=

8B2
0

ρ0Cpσµ2a∆T
. (64)

Note that this estimate of velocity amplitude is independent of the value of

viscosity. This is because the velocity field is directly determined by the bal-

ance between the advection of basic temperature and the Joule heating in the

equation of temperature, rather than by the equation of motion. Applying
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µ = 4π × 10−7, σ = 2 × 105 Sm−1, ρ = 104 kg/m3, cp = 700 J/kg K (Stacey

and Davis, 2008), and assuming the magnitude of the toroidal magnetic field at

the ICB to be 10−2–10−1 T, we have

|v| ∼ 1.2 × 10−11–1.2 × 10−9m/s. (65)

The amplitude of the strain rate ε̇ becomes

ε̇ ∼ |v|
a

∼ 1 × 10−17–1 × 10−15s−1. (66)

When the viscosity of the inner core is assumed to be a moderate value, η =

1017Pa s, the magnitude of the stress field σij is estimated as follows:

σij ∼ ηε̇ ∼ 1–102Pa.

Therefore, the predicted magnitude of the stress field is expected to be suffi-

ciently large for deformation of the inside of the inner core.

Figure 2 shows the distribution of the viscous stress field corresponding to

the velocity field shown in Figure 1. Here, σ′
φφ is found to be approximately

uniform inside the core, whereas other components vary with θ. Note also that

a surface boundary layer, which consists of a steep radial gradient of viscous

stress, is observed in the distribution of each component of the stress field.

Figure 3 shows the radial distribution of each component of the viscous stress

field. The surface boundary layer is clear in the figure. Note that the magnitude

of the stress field is smaller in the boundary layer than that in the inner region

due to the stress-free boundary condition at the surface.

Figure 4 presents the dependence of the thickness of the surface boundary

layer on the Rayleigh number. The boundary layer is found to become thinner

as the Rayleigh number increases. The thickness of the boundary layer is pro-

portional to R−1/6, which is consistent with the theoretical estimate given by

Eq. (51) in the previous section. From this relationship, the thickness of the

boundary layer is estimated as follows:

δ ∼ aR−1/6 ∼ 6 × 104m = 60km. (67)
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Figure 2: Viscous stress field σ′
ij induced by the toroidal Y 0

2 component of the magnetic field

for the case in which R = 107. The contour intervals are 0.3, 0.6, 0.06, and 0.3, respectively.
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Figure 3: Radial distributions of the viscous stress field induced by the toroidal Y 0
2 component

of the magnetic field in the case of R = 107. The solid, dashed, dotted, and dash-dotted lines
indicate σ′

rr, σ′
θθ, σ′

φφ, and σ′
rθ, respectively. Here, σ′

rr and σ′
θθ are shown for the slice at

θ = π/2, whereas σ′
φφ and σ′

rθ are shown for the slice at θ = π/4.
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Figure 4: Rayleigh number dependency of the thickness of the surface boundary layer formed
by the toroidal Y 0

2 component of the magnetic field. Here, ?, ◦, 4, and � indicate the
thickness of the boundary layer measured from the radial distributions of σ′

rr, σ′
θθ, σ′

φφ, and

σ′
rθ, respectively. The dotted line indicates δ = 3 × R−1/6.

This value is comparable to the depth of the weak anisotropy region observed

near the ICB (e.g., Souriau, 2007).

Finally, we estimate the total energy necessary for driving this fluid motion,

which is equal to the total Joule heating in the inner core.∫
V

QJdV ∼ 1.2 × 109 − 1.2 × 1011W. (68)

This is rather small compared to the estimated energy for maintenance of the

dynamo process in the outer core, O(1012)W. Therefore, the dynamo process

could sufficiently provide the required energy for inducing the fluid flow in the

inner core.

5. Summary and discussion

We have succeeded in obtaining the analytical solution of the steady fluid

flow induced by the horizontal heterogeneous Joule heating generated by the

toroidal magnetic field penetrating from the ICB to the inner core. In the

20



present study, we consider the thermal effect of the imposed magnetic field,

whereas previous studies by Karato (1999) and Buffett and Bloxham (2000)

considered the dynamic effects of the imposed magnetic field. A major differ-

ence between the thermally induced flow and the dynamically induced flow is

that the thermally induced flow does not stop even in a steady state. This is

advantageous to the deformation of the inside of the inner core. The fluid mo-

tion of this model is driven continuously so that the basic temperature must be

advected to balance the Joule heating. Another advantage is that the velocity

amplitude is not related to viscosity, the value in the inner core of which is quite

ambiguous.

Using the expected values of the physical parameters under the circumstance

of the inner core, the order of the estimated magnitude of the stress field is

greater than or approximately the same as that of the models considered thus

far. Therefore, the fluid flows of this model is expected to be one a candidate

for the origin of the seismic anisotropy of the inner core. The anisotropy may

be generated mainly by the flows induced by the Joule heating or may be due to

the flows driven by the combined effects of the Joule heating and several other

factors.

The model also predicts the existence of the surface boundary layer where

the stress field is relatively weak. This boundary layer may correspond to the

weak seismic anisotropy region that is expected to exist near the ICB. The

estimated thickness of the boundary layer of the model is consistent with the

depth of the weak seismic anisotropy region.

The model presented in the this study leads to the following suggestions

about the dynamic and electromagnetic states in the inner and the outer cores.

One suggestion is that the distribution of the seismic anisotropy in the inner

core reflects the distribution of the toroidal magnetic field at the ICB. Another

is that interactions of the flow and magnetic fields through Joule heating may

occur between the inner and outer cores. The mass flux between the inner and

outer cores predicted by the model causes the absorption and release of latent

heat and light elements at the ICB. For example, the fluid flows induced by the
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toroidal Y 0
2 magnetic field accompany the mass flux from the outer cores to the

inner cores around the equatorial region, and from the inner cores to the outer

cores around the pole regions (right-hand panel of Figure 1). Thus, latent heat

and light elements are released in the equatorial region, and a positive buoyancy

source is assigned to the outer core. On the other hand, in the polar regions,

latent heat and light elements are absorbed, and a negative buoyancy source is

assigned to the outer core. These horizontally heterogeneous buoyancy sources

are sufficiently strong compared to the average homogeneous buoyancy source

at the ICB, because the velocity amplitude near the ICB is similar to or greater

than the average growth rate of the inner core. Therefore, the inner core flows

are believed to affect the fluid motions and dynamo action in the outer core

through these horizontally heterogeneous buoyancy sources at the ICB and to

modify the distribution of the magnetic field in the outer core. Furthermore,

based on these suggestions the magnetic field should penetrate to the inner core

through the ICB and vary the distribution of the Joule heating and the fluid

flows in the inner core. Such an interaction between the magnetic field and

the fluid flows between the inner and outer cores may operate through Joule

heating. An assessment of the effects of the interaction between the inner and

outer cores on the dynamo process in the outer core, such as the stability and

maintenance of the generated magnetic field, should be conducted in the future.
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A. Non-dimensinalization with thermal diffusion time and velocity

For the readers who do not become accustomed to the scaling of the variables

in the text, we discuss about the derivation of approximate equations (15)–(17)

based on the non-dimensinalization with thermal diffusion time and velocity,

which is often used for thermal convection problem. Of course, the result is

independent of the choice of the scaling units.

The length is scaled with the radius of the sphere a. The time scale τ is

selected as τ = a2/κ. The velocity scale V is selected as V = a/τ = κ/a. The

temperature disturbance scale ∆T ′ is selected as |QJ |a2/ρCpκ by considering

the balance of the Joule heating and the thermal diffusion in the equation of

temperature, while the basic temperature is scaled by the typical value of the

difference between the basic and the adiabatic temperature, ∆T . The amplitude

of the magnetic field disturbance is estimated to be (V aB0)/λ based on the

balance between the induction and the magnetic diffusion terms in the induction

equation. The pressure term is scaled with ρ0νV/a2. The non-dimensionalized

equations governing the steady state are then obtained as follows:

1
P

(v · ∇)v +
1
E

ez × v = −∇p + M2(J × B0 + J0 × B) + RdTr + ∇2v,(A.1)

(v · ∇)T + γvr
dT0

dr
= ∇2T + qJ , (A.2)

0 = ∇× (v × B0) + ∇2B, (A.3)

∇ · v = 0, ∇ · B = 0, (A.4)

where γ = ∆T/∆T ′ = ρCpκδT/|QJ |a2 is the ratio between the amplitude of

basic temperature and temperature disturbance, which is estimated as O(10)
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by using the typical values of the inner core. P = ν/κ is the Prandtl number,

which is as large as O(1018). Therefore, the inertial term in the equation of

motion can be neglected. Since E and M are estimated in the text as E � 1

and M ≤ 1, the Colioris and Lorentz terms also can be neglected. Rd =

αg0∆T ′a3/κν = αg0|QJ |a5/ρCpκ
2ν is the Rayleigh number. The value of Rd is

estimated as Rd ∼ 8× 104, which becomes quite large. Then, the main balance

in the equation of motion consists of the buoyancy, viscous and pressure gradient

terms:

0 = −∇p + RdTr + ∇2v. (A.5)

On the other hand, when the amplitude of each term in the equation of

temperature is examined, we have to take care the largeness of Rd. For example,

if we assume that the Joule heating is balanced with the thermal diffusion term,

the amplitude of temperature disturbance T ′
d becomes O(1). Then the velocity

amplitude Vd becomes O(Rd) from the equation of motion. This means that

the terms of the advection of temperature disturbance and basic temperature

become O(Rd), which dominate the thermal diffusion term.

Moreover, when we assume that the Joule heating is balanced with the ad-

vection of temperature disturbance, the relations between the amplitudes of

velocity Va and temperature disturbance T ′
a becomes VaT ′

a ∼ O(1). Combined

with the force balance Va ∼ RdT
′
a, the amplitudes of temperature and velocity

become Va ∼ O(R1/2
d ), T ′

a ∼ O(R−1/2
d ). Since the velocity amplitude becomes

large, the advection of basic temperature, which is O(γRd), dominates the ad-

vection of temperature disturbance.

Therefore, in the equation of temperature, the advection of temperature

disturbance and thermal diffusion can be neglected. However, in order to satisfy

the boundary condition at the surface of the inner core, we keep the thermal

diffusion term,

vrγ
dT0

dr
= ∇2T + qJ . (A.6)
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Figure 5: Relationship between the root mean square of the flow field and the Rayleigh
number.

B. Rayleigh number dependency of the flow field

Since we use the expected parameters of the Earth’s inner core, only a solu-

tion with a large Rayleigh number is examined in Section 4. However, it is worth

considering the variation of the flow field using several values of the Rayleigh

number in order to clarify the behavior of the model.

Figure 5 shows the relationship between the root mean square of the flow field

and the Rayleigh number. The regime changes around R = 104. In the regime

of R > 104, advection of the basic temperature dominates thermal diffusion.

This regime is discussed in Section 4. On the other hand, in the regime of

R < 104, thermal diffusion dominates advection of the basic temperature.

Figure 6 shows the flow field distributions induced by a toroidal Y 2
0 magnetic

field for several values of the Rayleigh number. When the Rayleigh number is

small and thermal diffusion is dominant, the flow field distribution is deep and

the amplitude becomes large around the center of the core. When the Rayleigh

number is increased, the depth of the large-amplitude flow field gradually be-

comes shallow.
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(a) R = 10 (b) R = 104 (c) R = 107

Figure 6: Flow field distributions induced by a toroidal Y 2
0 magnetic field for several values

of Rayleigh number in a meridonal cross section.

C. Asymptotic solution in the case of R → 0

Diffusion-dominated solutions might be geophysically insignificant due to

the large value of the Rayleigh number of the Earth’s inner core. Moreover,

the advection of temperature disturbance (v · ∇)T cannot be neglected in these

solutions. Nevertheless, the asymptotic solution in the case of R → 0 is interest-

ing as an applied mathematics and geophysical fluid dynamics problem. Here,

we analytically solve the asymptotic solution of the model for the case in which

R → 0. Neglecting the advection of the basic temperature, Equations (31) and

(34) are rewritten as follows:

− 1
R

DnDnDnΦ̃nm = q̃Jnm, (C.7)

d

dr
r

(
DnΦ̃nm +

2n(n + 1)Φ̃
r2

)
= 0, at r = 1, (C.8)

d2Φ̃nm

dr2
+

(n − 1)(n + 2)Φ̃nm

r2
= 0, at r = 1, (C.9)

DnDnΦ̃nm = 0, at r = 1. (C.10)

Now, let us assume that the right-hand side of Eq. (C.7) is expressed as a func-

tion of r as q̃Jnm(r) = Q0r
nq . Then, we can obtain the following inhomogeneous
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solution to Eq. (C.7):

Φ̃s = Drnq+6 (C.11)

where

D = − RQ0

(nq − l + 6)(nq + 7 + l)(nq − l + 4)(nq + l + 5)(nq − l + 2)(nq + l + 3)
(C.12)

Homogeneous solutions of Eq. (C.7), which is regular at r = 0, are rn, rn+2,

and rn+4. The general solution of Eq. (C.7) is then expressed as follows:

Φ̃ = Arn + Brn+2 + Crn+4 + Drnq+6, (C.13)

The coefficients A,B, and C are determined by the boundary conditions given

in Eqs. (C.8) through (C.10). From Eq. (C.10), we have

C =
Q0

8(2l + 3)(2l + 5)(nq − l + 2)(nq + l + 3)
. (C.14)

From Eq. (C.8), we have

2n(n + 1)(n − 1)A + (n + 1)[2(2n + 3) + 2n(n + 1)]B

+(n + 3)[4(2n + 5) + 2n(n + 1)]C

+(nq + 5)[(nq − n + 6)(nq + n + 7) + 2n(n + 1)]D = 0. (C.15)

From Eq. (C.9), we have

2(n + 1)(n − 1)A + 2n(n + 2)Ban + [(n + 4)(n + 3) + (n − 1)(n + 2)]C

+[(nq + 6)(nq + 5) + (n − 1)(n + 2)]D = 0. (C.16)

By eliminating A from Eqs. (C.15) and (C.16), we can obtain the following

expression of B:

B = − 1
(n + 1)[2(2n + 3) + 2n(n + 1)] − 2n(n + 2)

×

[{(n + 3)[4(2n + 5) + 2n(n + 1)] − n[(n + 4)(n + 3) + (n − 1)(n + 2)]C

+{(nq + 5)[(nq − n + 6)(nq + n + 7) + 2n(n + 1)]

−n[(nq + 6)(nq + 5) + (n − 1)(n + 2)]}D] (C.17)
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Finally, A is obtained from Eq. (C.13) or Eq. (C.14), as follows:

A = − 1
2(n + 1)(n − 1)

× {2n(n + 2)B + [(n + 4)(n + 3) + (n − 1)(n + 2)]C

+[(nq + 6)(nq + 5) + (n − 1)(n + 2)]D}. (C.18)
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