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Finite amplitude thermal convection in a rapidly rotating spherical shell associated with a stably stratified layer placed near the outer
surface is investigated. Systematic numerical experiments are performed with an Ekman number of E = 10−3, a Prandtl number of P = 1
and an inner/outer radius ratio of η = 0.4, and the existence of a strongly stratified upper layer is shown to enhance the generation of
equatorial surface retrograde flows when the Rayleigh number is approximately ten times larger than the critical value. The existence of
the stable layer causes the bottom of the stable layer to behave as a virtual boundary for the convective motion underneath. Its effective
dynamic condition varies from the free-slip condition to the no-slip condition as the Rayleigh number increases. The Reynolds stress of
the convective vortices beneath the stable layer is weakened and is dominated by the transport of the planetary angular momentum. As
a result, the latitudinal temperature gradient produced at the bottom of the stable layer induces the equatorial retrograde flow through
the thermal wind balance. This diffuses through the stable layer by viscosity and produces the equatorial surface retrograde flow.
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1 INTRODUCTION

The banded structure of the zonal flows observed in the giant planets is one of the most prominent
phenomena of planetary atmospheric motions. Among the characteristics of the banded structure, the
directions of the equatorial zonal flows are remarkable. Uranus and Neptune have equatorial retrograde
flows (Hammel et al. 2005, Sromovsky et al. 2001), whereas Jupiter and Saturn have prograde, that is,
equatorial superrotation flows (Garcia-Melendo and Sanchez-Lavega 2001, Sanchez-Lavega et al. 2000). An
equatorial prograde flow is also observed in the sun (Thompson et al. 1996). The equatorial superrotation
state is interesting from a dynamics point of view. Since the equatorial upper layer is the farthest region
from the planetary rotating axis, a simple axisymmetric mixing induces a retrograde zonal flow because of
the conservation of angular momentum. A particular mechanism must operate to generate and maintain
the equatorial superrotation state.

In order to explain the acceleration mechanism at the top of the equator, possible roles of thermal
convection in rotating spherical shells have been investigated. Since the observations of thermal emission
show that, with the exception of Uranus, the giant planets have heat sources in the interiors (Pearl and
Conrath 1991), convective motions have been considered to exist in the deep layers below the cloud layers.
The first derivation of a solution of equatorial surface prograde flows was performed by Busse (1970) for
the case of a slowly rotating spherical shell. In the rapidly rotating cases, weakly non-linear and finite
amplitude calculations have demonstrated that the mean zonal flows induced by convection tend to be
prograde at the top of the equator when the Prandtl number is on the order of unity or less (Zhang 1992,
Takehiro and Hayashi 1999, Aurnou and Olson 2001, Christensen 2002). Taylor-column type vortices along
the axis of rotation are tilted in the prograde outward direction due to the heterogeneity of the topographic
β effect of the outer boundary (Takehiro 2008). Reynolds stress caused by the tilting transports angular

∗Corresponding author. Email: takepiro@gfd-dennou.org

Geophysical and Astrophysical Fluid Dynamics
ISSN: 0309-1929 print/ISSN 1029-0419 online c© 2009 Taylor & Francis

DOI: 10.1080/03091920xxxxxxxxx



July 29, 2010 14:16 Geophysical and Astrophysical Fluid Dynamics usslayer˙final

2 S. Takehiro, M. Yamada and Y.-Y. Hayashi

momentum from the inner to outer regions. As a result, the equatorial superrotation state emerges 1. This
mechanism becomes ineffective when the Rayleigh number is increased to a degree that the buoyancy
force dominates the Coriolis force, and a retrograde flow is induced at the top of the equator due to
homogenization of angular momentum (Gilman 1977, Aurnou et al. 2007).

Most of the studies on thermal convection in rotating spherical shells consider situations in which the
entire layer is thermally unstable. However, the actual planetary atmospheres may not consist of entirely
unstable layers (e.g. Guillot 1999, 2005). There exist stable stratospheres (Hunt 1983) and possibly mod-
erately stable cloud layers (Sugiyama et al. 2006). Below the cloud layer, the Galileo spacecraft observed
a stable layer between depths of 5 and 16 bars in the Jovian atmosphere (Seiff et al. 1996). If such a
stable layer exists near the top boundary, then the generation of mean zonal flow caused by the angular
momentum transport due to the tilting convection cells might not operate because the convective motion
could not penetrate the stable layer depending on the strength of stratification.

There are a few studies of thermal convection in rotating spherical shells with upper stably stratified
layers. Zhang and Schubert (1996, 1997) obtained the critical convection and illustrated the perfect pene-
tration of the Taylor-column type convection into the stable layer. On the other hand, Takehiro and Lister
(2001) theoretically derived a penetration distance of columnar convection from the dispersion relation of
inertial gravity waves. The distance is shown to be proportional to the ratio between the angular velocity
of the shell Ω and the Brunt-Väisälä frequency of the stable layer N . They clarified that that the solutions
of Zhang and Schubert correspond to large Ω/N cases. Numerical time integrations of finite amplitude
convection are performed by Takehiro and Lister (2002) for cases of Rayleigh numbers that are several
times larger than the critical value. They showed that the penetration extent of convective motion is ac-
tually determined by Ω/N . However, equatorial prograde mean zonal flows induced at the bottom of the
stable layer diffuse to the surface, even when convective motion is trapped below the stratified layer.

Recently, MHD dynamo calculations in a rapidly rotating spherical shell with an outer stably stratified
layer have also been performed. Flows in the overlying stable layer have been reported to be important to
the magnetic field in the outer region (Schubert et al. 2004). The directions of resultant equatorial zonal
flows are diverse: a retrograde zonal flow at the top of the equator was obtained by Christensen (2006),
whereas prograde zonal flows were obtained by the calculations of Stanley and Mohammadi (2008) and
Christensen and Wicht (2008).

In the present study, we perform systematic numerical experiments of finite amplitude thermal convection
in a rotating spherical shell with an upper stably stratified layer. We focus on the mechanism of surface
zonal flow generation and the role of the upper stable layer rather than direct applications to the actual
planetary atmospheres. For this reason, we use the Boussinesq approximation, which is also used in the
studies mentioned above. The set up is modified from that of Takehiro and Lister (2002) in the following
manner. The thickness of the stratified layer is reduced to enlarge the convective region. The value of the
Rayleigh number is extended to approximately several dozen times larger than the critical value, while the
value of the Ekman number is increased to ten times that used in Takehiro and Lister (2002) in order to
systematically perform several calculations. We investigate the change in the mean zonal flow generated by
thermal convection as the stratification strength of the stable layer and the Rayleigh number are varied.

2 MODEL

Let us consider a Boussinesq fluid filling a shell with inner and outer radii r∗i and r∗o , respectively. The
shell rotates with angular velocity Ω. The super-adiabatic temperature gradient of the basic state is given

1Glatzmaier et al. (2008) recently proposed that turbulent convection of non-Boussinesq fluid does not constitute geostrophic convection
columns but can still produce and maintain equatorial prograde flows by local generation of vorticity through expansion/contraction of
rising/sinking plumes. In the present study, we concentrate on the convection of Boussinesq fluid. An extension to non-Boussinesq cases
is left for future studies.



July 29, 2010 14:16 Geophysical and Astrophysical Fluid Dynamics usslayer˙final

Thermal convection confined under a stably stratified layer in a rapidly rotating spherical shell 3

in the following form (Takehiro and Lister 2001, 2002):

dT ∗
B

dr∗
= −1

2

(
Q0r

∗

3k
+ Γ∗

0

)[
1 − tanh

r∗ − r∗b
a∗

]
+ Γ∗

0, (1)

where r∗ is the radius from the center of the spherical shell, T ∗
B(r∗) is the temperature of the basic state,

r∗b indicates the boundary between the lower unstable region and the upper stable region, a∗ denotes the
thickness of the transition layer, and k is the thermal conductivity. The temperature gradient in the inner
region is determined by the uniform internal heat source Q0, and the outer region is determined by the
constant temperature gradient Γ∗

0. The temperature profile is connected continuously around r∗ = r∗b .
That is,

dT ∗
B

dr∗
≈

{
−Q0r

∗/3k (r∗ � r∗b − a∗),
Γ∗

0 (r∗ � r∗b + a∗). (2)

We choose the thickness of the shell D = r∗o − r∗i as the length scale, the viscous diffusion time D2/ν as
the time scale, and the viscous velocity ν/D as the velocity scale, where ν is the kinematic viscosity. The
temperature is scaled by the internal heat source as Q0D

2/(3k), and non-hydrostatic pressure p is scaled
by ρνΩ. The governing equations are
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∇ · u = 0, (5)

where u is velocity and T is the temperature disturbance. The non-dimensional parameters,

R =
αgoQ0D

3

3kνΩ
, E =

ν

ΩD2
, P =

ν

κ
, (6)

in the governing equations are the modified Rayleigh number, the Ekman number, and the Prandtl number,
respectively. Here, α is the thermal expansion coefficient, go is the gravity at the outer boundary of the
shell, and κ is the thermal diffusivity. In addition, ur is the radial component of the velocity.

The conditions at the boundaries are free-slip and fixed temperature:

r · u = 0,
∂

∂r

(
u × r

r2

)
= 0, T = 0, at r =

η

1 − η
and

1
1 − η

, (7)

where η = ri/ro is the ratio between the inner and outer radii of the shell, and ri = r∗i /D = η/(1− η) and
ro = r∗o/D = 1/(1 − η) are the non-dimensional boundary radii. The non-dimensional basic temperature
is given by

dTB

dr
= −1

2
(r + Γ0)

[
1 − tanh

r − rb

a

]
+ Γ0. (8)

Here, Γ0 = Γ∗
0 · 3κ/(Q0D), rb = r∗b/D, and a = a∗/D are the non-dimensional temperature gradient in

the outer layer, and the radial position and thickness of the transition layer, respectively. Figure 1 shows
typical profiles of temperature, the temperature gradient of the basic state, and the internal heat source.

The important parameter for the extent of penetration Ω/N in the stable layer is described by these
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Figure 1. The profiles of temperature, the temperature gradient, and the internal heat source of the basic state for the case of Γ0 =
10. Broken, solid, short-dashed lines denote temperature, the temperature gradient, and the heat source, respectively. The geometry
parameters are fixed as η = 0.4, rb = 1.5, and a = 0.05 for all of the cases.

non-dimensional parameters as follows:
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The calculations of critical convection reveal that Taylor-column type convection deeply penetrates the
stable layer when (Ω/N)kH is larger than the thickness of the stable layer, whereas the penetration is
weakened when (Ω/N)kH is less than the thickness of the stable layer (Takehiro and Lister 2001). Here,
kH is a typical horizontal wavenumber of the convective motion. This scaling law is confirmed to be
applicable to the finite amplitude convection at a Rayleigh number several times greater than the critical
value (Takehiro and Lister 2002).

In the following, we will perform numerical time integrations using larger values of the Rayleigh num-
ber than those used in Takehiro and Lister (2002). The Rayleigh number is varied from a few times to
approximately forty times the critical value Rc. The temperature gradient in the stable layer Γ0 is also
extended and is varied from 1 to 104. The radius ratio and the Prandtl number are fixed as η = 0.4
(ri = 0.667, ro = 1.667), and P = 1, respectively. The Ekman number is E = 10−3, which is increased
to ten times that used in Takehiro and Lister (2002) in order to perform several systematic experiments.
The parameters for the stable layer are given as rb = 1.5 and a = 0.05, where the thickness of the layer
is reduced from Takehiro and Lister (2002) to enlarge the convective region. The important parameters
Ω/N and the supercriticality R/Rc for each experiment are summarized in Table 1. The initial condition
is given as the state of rest u = 0 accompanied by a point-like temperature disturbance with an ampli-
tude of 0.01. The actual time integrations are performed using the equations described by the toroidal
and poloidal potentials. The equations are expanded by the spherical harmonics in the horizontal direc-
tion and by the Chebyshev polynomials in the radial direction. The spherical harmonics are truncated
at a total wavenumber of 42 or 85, and Chebyshev polynomials are calculated up to the 32nd or 48th
order. In all of the calculations, the kinetic energy becomes almost stationary by one non-dimensional
time. The calculated data between 1 and 1.2 non-dimensional time units are subjected to the follow-
ing analyses. For the spectral transform calculations, the Fortran77 library “ISPACK” (http://www.gfd-
dennou.org/library/ispack/) and its Fortran90 wrapper library “SPMODEL library”(Takehiro et al. 2006)
(http://www.gfd-dennou.org/library/spmodel/) were used.
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Γ0 100 101 102 103 104

R = 2.0 × 103 0.71,44.5 0.22,43.0 0.071,43.0 0.022,23.9 0.0071,19.6
1.5 × 103 0.82,34.1 0.26,32.6 0.08,32.6 0.026,17.9 0.0082,14.7
1.0 × 103 1.0, 22.7 0.32,21.5 0.10,21.5 0.032,11.9 0.010,9.80
5.0 × 102 1.4,11.4 0.45,10.8 0.14,10.8 0.045,6.00 0.014,4.90
2.0 × 102 2.2,4.5 0.71,4.30 0.22,4.30 0.071,2.39 0.022,1.96
1.0 × 102 0.32,2.15 0.10,1.19

Table 1. Values of Ω/N (left) and R/Rc (right) for each case of the numerical experiments, where Rc is the critical Rayleigh number.

(a) (b) (c) (d)

Γ0 = 102 R = 2 × 102 Γ0 = 102 R = 5 × 102 Γ0 = 102 R = 1 × 103 Γ0 = 102 R = 2 × 103

Figure 2. Mean zonal flow distributions for various values of the Rayleigh number with Γ0 = 100. Solid lines and red regions indicate
prograde flows, and broken lines and blue regions indicate retrograde flows (colour online). The temporal mean fields between 1 and 1.2
non-dimensional time units are shown. The contour interval is 4 in (a), 5 in (b), 8 in (c), and 15 in (d). Note that the critical Rayleigh
number is Rc = 46.5.

3 RESULTS

Figure 2 shows mean zonal flow distributions for various values of the Rayleigh number when the tem-
perature gradient in the stable layer is fixed. For a Rayleigh number five times greater than the critical
value (figure 2(a)), the distribution of mean zonal flow is largely uniform along the axis of rotation and is
prograde in the outer equatorial region. This mean zonal flow distribution is similar to that of the weak
stratification cases reported by Takehiro and Lister (2002). However, as the Rayleigh number is increased,
the retrograde region begins to penetrate the stable layer around the equator and extends to the outer
boundary (figure 2(b)), and, finally, retrograde flows are dominant from the equator to the mid-latitudes
(figures 2(c) and 2(d)).

Figure 3 shows the variation of the mean zonal flow distributions when the temperature gradient of
the upper stable layer is increased while the value of the Rayleigh number is fixed. In the case of weak
stratification, Γ0 = 1 (figure 3(a)), the distribution is completely uniform along the axis of rotation, and
prograde mean flows are induced in the outer region far from the axis of rotation, while retrograde flows
are generated in the inner region near the axis. This distribution is close to that for the case without
the upper stratified layer. However, as the temperature gradient is increased, the retrograde region breaks
through the stratified layer and reaches the outer boundary (figures 3(b) through 3(d)), and the retrograde
flows again dominate the equatorial and high-latitude regions (figure 3(e)).

Figure 4 is the diagram of mean zonal flow distributions versus the temperature gradient of the stable
layer and the Rayleigh number. In the cases of Rayleigh numbers of several times the critical value,
equatorial prograde flows appear in the outer region for all of the temperature gradient values. This is
consistent with the results of Takehiro and Lister (2002). However, for larger values of the Rayleigh number,
the increase in stratification of the stable layer causes retrograde flows in the equatorial outer region. The
retrograde flow tends to emerge when Ω/N is smaller than unity and the value of the Rayleigh number
is larger than ten times the critical value. Note that these retrograde flows are not caused by angular
momentum homogenization. The amplitudes of the flows shown in figures 2 and 3 are so weak that the
magnitudes of their relative angular momentum are much smaller than the planetary angular momentum.
On the other hand, when the stratification of the stable layer is weak, i.e., Ω/N is approximately unity,
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(a) (b) (c) (d) (e)

Γ0 = 1 R = 103 Γ0 = 10 R = 103 Γ0 = 102 R = 103 Γ0 = 103 R = 103 Γ0 = 104 R = 103

Figure 3. Mean zonal flow distributions for various values of the stable layer temperature gradient Γ0 with R = 1× 103 (colour online).
The contour interval is 30 in (a), 15 in (b), 8 in (c), and 6 in (d) and (e).
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Figure 4. Pattern diagram of the mean zonal flow distributions with respect to the temperature gradient of the stable layer and the
Rayleigh number. White and black symbols denote the equatorial prograde and retrograde flows at the outer boundary, respectively.
White circles indicate the distributions that are largely uniform along the axis of rotation, as shown in figure 3(a). Crosses denote the
critical states. White triangles indicate the distributions that are distorted from the axially uniform fields in the equatorial outer region,
as shown in figure 2(a). Black triangles denote the distributions in which the retrograde flows elongate from the equatorial inner to outer
regions, as shown in figure 2(b). Black circles indicate the distributions accompanied by the isolated retrograde regions in the equatorial
outer stable layer, similar to figure 2(d). The black asterisk indicates the equatorial retrograde flow at the outer boundary produced by
angular momentum homogenization.

the Rayleigh number should be increased, for example, up to 2 × 103 for Γ0 = 1 in order to obtain the
equatorial retrograde surface flow. This equatorial retrograde flow is produced by angular momentum
homogenization due to vigorous convective motions (Gilman 1977, Aurnou et al. 2007).

In order to illustrate the behavior of the convective motion, figure 5 shows snapshots of the radial
component of velocity. In the case of Ω/N = 0.22 and R/Rc = 4.30 (figure 5(a)), in which the equatorial
mean zonal flow is prograde (figure 2(a)), systematic Taylor-columnar convection emerges outside the
tangent cylinder below the stable layer, but does not penetrate the stable layer. When the Rayleigh number
is increased to R/Rc = 21.5 but the stratification is maintained approximately constant at Ω/N = 0.1
(figure 5(b)), where the equatorial mean zonal flow is retrograde (figures 2(c) and 3(c)), the irregular
convective motion breaks the columnar structure, but is still confined under the stable layer. The convective
motion also occurs inside the tangent cylinder. When the stratification is weakened to Ω/N = 1 but the
Rayleigh number is maintained approximately constant at R/Rc = 22.7 (figure 5(c)), where the equatorial



July 29, 2010 14:16 Geophysical and Astrophysical Fluid Dynamics usslayer˙final

Thermal convection confined under a stably stratified layer in a rapidly rotating spherical shell 7

(a) (b) (c)

Γ0 = 102 R = 2 × 102 Γ0 = 102 R = 1 × 103 Γ0 = 1 R = 1 × 103

Ω/N = 0.22 R/Rc = 4.3 Ω/N = 0.1 R/Rc = 21.5 Ω/N = 1 R/Rc = 22.7

Figure 5. Snapshots of the radial component of the velocity field at 1.2 non-dimensional time units. The left-hand and right-hand panels
for each case show the equatorial cross section and a meridional cross section, respectively. Solid lines and red regions indicate radially
outward motion, and broken lines and blue regions indicate radially inward motion (colour online). The contour interval is 5 in (a) and
30 in (b) and (c).

(a) (b) (c)

Γ0 = 102 R = 2 × 102 Γ0 = 102 R = 1 × 103 Γ0 = 1 R = 1 × 103

Ω/N = 0.22 R/Rc = 4.3 Ω/N = 0.1 R/Rc = 21.5 Ω/N = 1 R/Rc = 22.7

Figure 6. Snapshots of the disturbance component of azimuthal velocity at the same time and the same meridional cross section shown
in figure 5 (right), and temporally averaged zonal mean component of azimuthal velocity (left). The left-hand panels are from figures 2(a),
2(c), and 3(a), respectively. Solid lines and red regions indicate the prograde direction, whereas broken lines and blue regions indicate
the retrograde direction (colour online). The values of Γ0 and R are the same as the values shown in figure 5 for each case. The contour
intervals are (a) 4 for zonal mean and 4 for disturbance, (b) 8 for zonal mean and 20 for disturbance, and (c) 30 for zonal mean and 40
for disturbance.

mean zonal flow is prograde (figure 3(a)), the convective motion fully penetrates and erodes the stable
layer.

The extent of penetration of the convective motions is shown in figure 6, where the longitudinal compo-
nent of velocity is divided into the zonal mean and the disturbance from the zonal mean. For the case in
which Ω/N = 0.22 and R/Rc = 4.30 (figure 6(a)), Taylor-column type convective motion is trapped below
the stable layer, whereas the mean zonal flow extends into the entire stable layer. When the Rayleigh num-
ber is increased to R/Rc = 21.5 but the stratification is maintained approximately constant at Ω/N = 0.1
(figure 6(b)), the convective motion becomes irregular but is still confined beneath the stable layer, as
indicated by the radial motion of figure 5(b). Once again, the zonal mean component fully extends into
the stable layer. However, the zonal flow appears to penetrate in the radial direction rather than in the
direction of the axis of rotation. When the stratification is weakened to Ω/N = 1 but the Rayleigh number
is maintained approximately constant at R/Rc = 22.7 (figure 6(c)), the amplitude of the disturbance is
also strong in the stable layer, which indicates that the convective motion completely erodes the stable
layer. As a result of the erosion of the stable layer, the distribution of the induced mean zonal flow is
similar to that observed in previous studies without a stable layer (Zhang 1992, Takehiro and Hayashi
1999, Aurnou and Olson 2001).

Figure 7 shows the convective motions through the vorticity component in the direction of the rotating
axis. The aspect of penetration observed in the previous figures can be confirmed again. For the case in
which Ω/N = 0.22 and R/Rc = 4.30 (figure 7(a)), regular Taylor-columnar convection columns are trapped
below the stable layer. When the Rayleigh number is increased to R/Rc = 21.5 but the stratification is
maintained approximately constant at Ω/N = 0.1 (figure 7(b)), the irregular convective motion breaks the
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Figure 7. Snapshots of the vorticity component in the direction of the rotating axis at the time shown in figure 5. The left-hand and
right-hand panels for each case show, respectively, the equatorial cross section and the same meridional cross section as shown in figure
5. Solid lines and red regions indicate positive vorticity, and broken lines and blue regions indicate negative vorticity (colour online). The
values of Γ0 and R are the same as those of figure 5 for each case. The contour interval is 400 in (a) and (b) and 100 in (c).

columnar structure but remains confined under the stable layer. When the stratification is weakened to
Ω/N = 1 but the Rayleigh number is maintained approximately constant at R/Rc = 22.7 (figure 7(c)), the
strong vorticity regions spread over the entire shell and fully erode the stable layer. Another remarkable
feature is the tilting of the convection cells observed in the equatorial cross sections. The tilting of the cells
is closely related to the Reynolds stress, which is one of the primary factors in the generation of mean zonal
flows. In the cases of figures 7(a) and 7(c), where the equatorial mean zonal flows are prograde (figures
6(a) and 6(c)), it is clearly seen that the convection cells are tilted in the prograde outward direction. In
contrast, in the case of figure 7(b), where the equatorial mean zonal flows are retrograde (figure 6(b)),
tilting of the cells is not prominent in the whole shell.

When the stratification is weak, i.e., Ω/N is close to unity, both convective motions and mean zonal flows
strongly penetrate the stable layer. As shown in figure 6(c), even for the case in which the Rayleigh number
is 10 times greater than the critical value, the morphology of the convective motions and mean zonal flows
does not change from that in the case of a smaller Rayleigh number. However, when the stratification
is intense, i.e., Ω/N is smaller than unity, convective motions do not penetrate the stable layer, whereas
the mean zonal flows induced by these convective motions just below the stable layer deeply penetrate
the stable layer (figures 6(a) and 6(b)). Penetration of mean zonal flows in these cases is governed by
viscous diffusion, because the extent of penetration is larger than the scaling by the dispersion relation
of inertia-gravity waves (Ω/N)kH , and the profiles of mean zonal flows diffuse horizontally as the mean
zonal flows penetrate the stratified layer in the radially outward direction. The angular momentum budget
analysis performed below confirms this mechanism.

The equatorial retrograde solutions we have found are interesting because the direction of equatorial
mean zonal flows changes only due to the existence of the stable layer. Again, note that these retrograde
flows are not associated with the homogenization of angular momentum. The small magnitude of rela-
tive angular momentum associated with these retrograde flows compared to that of planetary angular
momentum indicates that the total angular momentum is not homogenized.

In order to investigate the generation mechanism of equatorial retrograde zonal flows, we first examine
whether the mean zonal flows satisfy the thermal wind balance:

2(k · ∇)u =
R

ro
r ×∇T. (10)

The left-hand panels of figure 8 show the zonally averaged temperature field. In addition to positive
and negative temperature deviations in the upper and lower regions, there exist latitudinal temperature
differences beneath the stable layer. The right-hand panels of figure 8 are the distributions of mean zonal
flows calculated with these averaged temperature fields and the equation of thermal wind balance. The
mean zonal flows at the outer spherical boundary of the numerical results are used as a boundary condition
when the thermal wind equation is integrated. The distributions are very similar to the numerical results
in the left-hand panels of figure 6, where the temperature and mean zonal flow fields satisfy the thermal
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Figure 8. Zonally averaged temperature field (left) and mean zonal flows estimated by the thermal wind balance (right). The values of
Γ0 and R are the same as the values in figure 5 for each case. The contour intervals are the same as those for the left-hand panels of
figure 6 (colour online).

wind balance. Note that in the case of figure 8(c), however, the mean zonal flow is not driven by the
thermal wind in spite of the agreement of the zonal flow shown in figure 8(c) with the flow in figure 6(c).
In this case, the right hand side of equation (10) is close to zero and the outer boundary condition mostly
controls the velocity field without the deformation arising from the thermal wind relation.

Since the cause and effect relationship between the temperature and velocity fields cannot be under-
stood from only the thermal wind balance, we perform angular momentum budget analyses. The equation
of angular momentum conservation is obtained by multiplying r sin θ by the longitudinal component of
equation (2), where θ is the colatitude. The zonally averaged equation of angular momentum conservation
can be expressed as follows:

∂

∂t
(uφr sin θ) + ∇ · Fp + ∇ · Fr + ∇ · Fd + ∇ · Fv = 0, (11)

where overlines denote zonally averaged quantities, uφ is the longitudinal component of velocity, and

Fp =
1
E

r2 sin2 θ(uθeθ + urer), (12)

Fr = uφuθr sin θeθ + uφurr sin θer, (13)

Fd = u′
φu′

θr sin θeθ + u′
φu′

rr sin θer, (14)

Fv = −r2 sin2 θ∇
(

uφ sin θ

r2 sin2 θ

)
, (15)

where Fp, Fr, Fd, and Fv are the planetary angular momentum flux, the relative angular momentum flux
by mean meridional circulation, the angular momentum flux by the correlations of disturbances (Reynolds
stresses), and the viscous angular momentum flux, respectively. Here, prime indicates the disturbance
quantity defined as the deviation from the zonal average, eθ, er are the unit vectors in the colatitudinal and
radial directions, and uθ is the colatitudinal component of velocity. Note that ∇·Fp = r sin θ[(2/E) cos θūθ+
(2/E) sin θūr is also interpreted as the torque by Colioris force. Figure 9 shows the meridional distributions
of zonally and temporally averaged angular momentum flux divergences. The distributions of ∇ · Fr are
not shown because their amplitudes are one order of magnitude smaller than the amplitudes of the other
flux divergences. Note also that ∇ · Fp + ∇ · Fr + ∇ · Fd = −∇ · Fv, because the values are temporally
averaged and the zonal mean zonal flows are in approximately steady states.

For the case in which Ω/N = 0.22 and R/Rc = 4.30, where the equatorial prograde zonal flow emerges,
the relative angular momentum flux divergence by disturbances ∇ · Fd dominates the planetary angular
momentum flux divergence ∇·Fp (figure 9(a)). The distribution of ∇·Fd reflects the columnar convective
motions that are uniform in the direction of the axis of rotation (figure 7(a)). Angular momentum is
transported from the inner to outer regions of the shell through the Reynolds stress due to the tilting of the
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Figure 9. Distributions of zonally and temporally averaged angular momentum flux divergences. Solid lines and red regions indicate
divergence, and dashed lines and blue regions denote convergence (colour online). The left-hand, center, and right-hand panels show
∇ · Fp, ∇ · Fd, and ∇ · Fp + ∇ · Fr + ∇ · Fd, respectively. The values of Γ0 and R are the same as those in figure 5 for each case. The
contour intervals are (a) 150 for all, (b) 2,000, 2,000, 800, and (c) 1,500 for all.

columnar convective vortices in the prograde outward direction, and its flux convergence in the equatorial
outer region produces the equatorial prograde zonal flow below the stable layer. This configuration of
angular momentum transport is the same as that in the cases without a stable layer (Takehiro and Hayashi
1999, Christensen 2002). Since the amplitudes of ∇ · Fp and ∇ · Fd are small in the stable layer of the
equatorial region, the equatorial prograde surface flow is considered to be caused by the penetration of the
zonal flow beneath the stable layer through viscous diffusion. This picture is consistent with the solution
obtained by Takehiro and Lister (2002).

In addition, in the case of a larger Rayleigh number and a less strongly stratified stable layer, ∇ · Fd

produces the prograde zonal flows (figure 9(c)). Now, the convective motion perfectly penetrates the stable
layer. The Reynolds stress associated with the tilting of the convective vortices seen in figure 7(c) transports
angular momentum from the inner to outer regions, and produces the equatorial prograde flow. A columnar
structure that is uniform in the direction of the axis of rotation cannot be observed in the distribution of
∇·Fd because the regular columns are deformed by the vigorous convective motions. Nevertheless, axially
uniform structures can be seen in the distribution of ∇ · Fp + ∇ · Fr + ∇ · Fd in figure 9(c).

When the stratification of the stable layer is strengthened to Ω/N = 0.1, where the equatorial retrograde
zonal flow emerges, ∇·Fd is almost in balance with ∇·Fp (figure 9(b)). Fd is convergent in the equatorial
inner region, indicating the transport of angular momentum by convective disturbances from the very thin
layer near the surface of the inner core. Fp is divergent in the equatorial region below the stratified layer
and is convergent in the off-equatorial latitudes, indicating the transport of planetary angular momentum
by the mean meridional circulation driven by the latitudinal thermal contrast shown in figure 8(b) (left)
caused by the convective heat flux. Based on the sign of −∇ · Fv = ∇ · Fp + ∇ · Fr + ∇ · Fd the relative
angular momentum flux divergence caused by disturbances ∇ · Fd can be considered to dominate ∇ · Fp

in the equatorial inner region, whereas the planetary angular momentum flux divergence ∇·Fp dominates
∇ ·Fd in the equatorial outer region below the stable layer and maintains the retrograde zonal flow there.
Since ∇ · Fp and ∇ · Fd are quite small in the stable layer, as in the case of figure 9(a), the zonal flow
beneath the stable layer penetrates the surface by viscous diffusion to produce the equatorial retrograde
surface flow shown in figure 9(b).

In order to confirm the validity of these arguments, figure 10 compares the amplitudes of the planetary
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Figure 10. The radial distributions of zonally and temporally averaged angular momentum flux divergences at the equatorial cross
section. Solid line denotes ∇ · Fp + ∇ · Fr + ∇ · Fd. Broken, dotted, and broken-dotted lines indicate ∇ · Fp, ∇ · Fr, and ∇ · Fd,
respectively. The values of Γ0 and R are the same as those in figure 5 for each case.

and relative angular momentum transports, ∇ · Fp, ∇ · Fr, and ∇ · Fd at the equator. In the case of a
small Rayleigh number and strong stratification, where the equatorial prograde flow emerges (figure 6(a)),
∇ ·Fd dominates in the middle and inner regions of the shell (figure 10(a)). The equatorial prograde flow
is divergent in the inner region and convergent in the middle region. ∇·Fp dominates and is divergent just
beneath the stable layer but is not strong enough for a retrograde flow to appear. In the case of the large
Rayleigh number and weak stratification, where the equatorial prograde flow emerges (figure 6(c)), ∇ ·Fd

governs the momentum flux convergence in the outer region of the shell (figure 10(c)). ∇ ·Fp governs the
momentum flux divergence in the middle and inner regions. In the case of a large Rayleigh number and
strong stratification, where the equatorial retrograde flow emerges (figure 6(b)), ∇ ·Fd slightly dominates
and is convergent in the middle and inner regions, whereas ∇ · Fp slightly dominates and is divergent in
the outer region beneath the stable layer (figure 10(b)). Thus, the equatorial retrograde flow in the outer
layer is induced by the planetary angular momentum flux divergence ∇ · Fp. When the Rayleigh number
is further increased, ∇ · Fd changes to positive in the outer region and enhances retrograde zonal flow
generation (not shown). The retrograde zonal flow induced by ∇ · Fp is considered to tilt the convective
vortices in the retrograde outward direction. Note that the magnitudes of ∇·Fp and ∇·Fd are quite small
in the stable layer. This means that the mean zonal flow in the stable layer is passively generated through
viscous diffusion.

4 DISCUSSION

We performed numerical experiments of finite amplitude thermal convection in a rotating spherical shell
accompanied by an upper stably stratified layer. The results reveal that equatorial prograde mean zonal
flows at the top boundary are induced when the Rayleigh number is as small as several times larger than the
critical value, whereas when the Rayleigh number is increased to approximately several dozen times larger
than the critical value, equatorial retrograde flows are generated for the cases with strong stratification of
the stable layer. The existence of a strongly stratified outer layer appears to promote retrograde equatorial
zonal flows.

These retrograde flows are not associated with the homogenization of angular momentum. The results
of the angular momentum budget analysis indicate that the planetary angular momentum transport by
mean meridional circulation primarily contributes to the generation of the equatorial retrograde zonal
flow emerging in the case with a strong stratified outer layer. The contribution of the angular momentum
transport by the Reynolds stress, which dominates the total transport in the case with a weakly stratified
layer, becomes relatively small. The latitudinal temperature gradient produced below the stable layer by
the convective heat transport induces a mean meridional circulation, which removes the planetary angular
momentum and generates the equatorial retrograde flow there. The retrograde flow beneath the stable
layer diffuses towards the surface by viscosity.
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Figure 11. Distributions of mean zonal flows when rigid boundaries are given just below the stable layer. ri = 0.6667, ro = 1.5, and
rb = 10.5. The upper and lower panels show the cases of free-slip and no-slip conditions at the top boundary, respectively. Solid lines
and red regions indicate the prograde direction, and broken lines and blue regions indicate the retrograde direction (colour online). (a)
R = 2 × 102; the contour intervals are 5 and 2.5 for the upper and lower panels, respectively. (b) R = 5 × 102; the contour intervals
are 20 and 5 for the upper and lower panels, respectively. (c) R = 1 × 103; the contour intervals are 40 and 10 for the upper and lower
panels, respectively. (d) R = 2 × 103; the contour intervals are 100 and 20 for the upper and lower panels, respectively.

The reason that the contribution of the Reynolds stress becomes small and the planetary angular momen-
tum transport dominates might be explained by the change in the effective dynamic boundary condition
at the bottom of the stable layer. The bottom boundary of the stable layer is expected to behave as an
impermeable boundary when the stratification is strengthened. In order to confirm this expectation, we
perform additional numerical experiments: We place a rigid boundary at the base of the stable layer and
remove the stable layer. We adopted two types of dynamic boundary conditions, namely, the free-slip and
no-slip conditions, as extreme cases. Figure 11 shows the obtained mean zonal flows. In the case of the
free-slip dynamic boundary condition, the equatorial zonal flows tend to be prograde and become retro-
grade only when the Rayleigh number is increased to 2 × 103. On the other hand, when the boundary
condition is no-slip, the equatorial zonal flow is already retrograde at the Rayleigh number of 2 × 102.

Compared to the results shown in figure 2, the distribution of zonal flow obtained with the free-slip
boundary more closely resembles that of figure 2(a) when the Rayleigh number is 2× 102. However, when
the Rayleigh number is larger than or equal to 5× 102, the distributions obtained with a no-slip boundary
more closely resemble those shown in figures 2(b) through 2(d). The existence of the stable layer causes
the bottom of the stable layer to behaves as a virtual boundary for the convective motion underneath.
Its effective dynamic condition appears to vary from the free-slip condition to the no-slip condition as the
Rayleigh number increases. Interestingly, the introduction of a strongly stratified layer corresponds to a
no-slip virtual boundary rather than a free-slip boundary. The latter boundary might be the condition
that we intuitively imagine to hold. The viscous effect, which is often neglected in atmospheric problems,
plays a crucial role in the present problem. A strongly stable layer inhibits penetration of turbulent fluid
motion underneath. As a result, velocity vanishs within the stable layer. Viscosity should operate on this
radial shear flow. Consequently, the result appears to be similar to the case with a no-slip boundary.

In order to confirm whether the dynamic condition beneath the stable layer is close to the no-slip
condition in the high-Rayleigh-number cases, figure 12 shows the distributions of time averaged tangential
viscous stress in meridional cross sections. For the case of the outer stably stratified layer (figure 12(a)),
strong tangential stress regions concentrate around the bottom of the stable layer. In the no-slip case
(figure 12(c)), strong tangential stress layers stick to the outer no-slip boundary. On the other hand, in the
free-slip case (figure 12(b)), prominent strong tangential stress regions cannot be seen. Figure 12 suggests



July 29, 2010 14:16 Geophysical and Astrophysical Fluid Dynamics usslayer˙final

Thermal convection confined under a stably stratified layer in a rapidly rotating spherical shell 13

(a) (b) (c)

0.00

0.00

0.00

0.00

0.
00

0.00

10
0.

100.

100.

200.

400.

0.
00

0.00

200.
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Figure 13. Distributions of zonally and temporally averaged angular momentum flux divergences for the cases of figure 11. The solid
line denotes ∇ ·Fp +∇ ·Fr +∇ ·Fd. The broken, dotted, and broken-dotted lines indicate ∇ ·Fp, ∇ ·Fr, and ∇ ·Fd, respectively. The
upper and lower panels indicate the cases of the free-slip and no-slip conditions at the top boundary, respectively. (a) R = 2 × 102, (b)
R = 5 × 102, (c) R = 1 × 103, (d) R = 2 × 103.

that the tangential stress distribution of the stably stratified layer case is similar to that of the no-slip
boundary case rather than the free-slip case.

Figure 13 examines the effective dynamic condition just below the stably stratified layer from the view-
point of the angular momentum budget. In the cases of the free-slip condition on the outer boundary (upper
panels of figure 13), the relative angular momentum flux divergence by disturbances ∇·Fd dominates and
produces equatorial surface prograde flows when the Rayleigh numbers are not so large (R ≤ 1 × 103).
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When the Rayleigh number is increased to R = 2×103, the contribution of the relative angular momentum
flux caused by mean meridional circulation ∇·Fr becomes large and cancels the planetary angular momen-
tum flux caused by mean meridional circulation ∇ · Fp, suggesting the occurrence of angular momentum
homogenization, which produces an equatorial surface retrograde flow. The appearance of positive ∇ · Fd

near the surface is due to tilting of disturbances by the zonal shear flow. On the other hand, in the cases
of the no-slip condition on the outer boundary (lower panels of figure 13), ∇·Fp slightly dominates ∇·Fd

and produces equatorial retrograde flows when the Rayleigh number is small as R = 2 ∼ 5 × 102. When
the Rayleigh number is increased to R = 1 ∼ 2 × 103, the contribution of ∇ · Fd becomes large in the
equatorial surface layer, which again results from tilting of disturbances caused by the zonal shear flow.
Comparing figures 13 and 10 for the stable layer experiments, the morphology of the angular momentum
budget in the case of a small Rayleigh number (figure 10(a)) is similar to that for the case with the free-slip
condition (upper panel of figure 13(a)), whereas the morphology of the angular momentum budget in the
case of a large Rayleigh number (figure 10(b)) is similar to those for the cases of the no-slip condition
(lower panels of figure 13(b) and 13(c)). This indicates that the angular momentum budget analysis also
supports the hypothesis that the effective dynamic condition just below the stratified layer varies from the
free-slip condition to the no-slip condition as the Rayleigh number increases.

Gilman (1977) and Aurnou et al. (2007) show that transition of equatorial mean zonal flow from prograde
to retrograde occurs when the Rayleigh number is increased. They considered standard experimental setups
involving thermal convection in a rotating spherical shell without a stably stratified layer. They reported
that mixing of angular momentum by vigorous turbulent convection results in retrograde equatorial surface
flows when the Rayleigh number becomes so large that the inertial force dominates the Coriolis force and
argued that the transition occurs when R∗ ≡ αg0∆T/(Ω2D) is equal to a critical value R∗

c , which is on
the order of unity. Since, in our formulation, R∗ = RE, the transition in the experiments of the present
study, which occurs at around R ∼ O(103) (figure 4), indicates that R∗

c ∼ O(103)×10−3 = O(1). Although
the present results with a stably stratified layer might appear to be consistent with their discussion, this
argument is not sufficiently precise.

Detailed observation of the results of our additional numerical experiments indicate that R∗
c depends on

the dynamic boundary condition. As shown in the upper panels of figures 11(c) and 11(d), we find that
R∗

c is approximately 0.9 under the free-slip upper boundary condition. On the other hand, as shown in
the lower panel of figure 11(a), R∗

c is smaller than approximately 0.1(!) under the no-slip upper boundary
condition 1. The results shown in figure 2 are consistent with this dependency of R∗

c on the upper dynamic
boundary condition. When the Rayleigh number is increased, the effective dynamic boundary condition
just below the stable layer changes from the free-slip to no-slip condition, resulting a decrease in R∗

c . Then,
R∗ becomes larger than R∗

c , and the transition to the equatorial retrograde regime occurs between figures
2(a) and 2(b), where R∗=0.12 and 0.28, respectively.

The fact that R∗
c is smaller than the order of unity under the top no-slip boundary condition is consistent

with the fact that the retrograde equatorial zonal flows are not caused by the vigorous mixing of angular
momentum. Figure 13 presents the latitudinal distributions of total angular momentum at the outer surface
for the mean zonal flows shown in figure 11. The retrograde flows at R = 2×103 in the case of the free-slip
boundary condition is caused by the mixing of angular momentum. On the other hand, in the cases of the
no-slip boundary condition, the mixing of angular momentum is relatively ineffective. The amplitude of
the mean zonal velocity is small, and the total angular momentum is approximately equal to the planetary
angular momentum (not shown).

The equatorial prograde acceleration, usually produced by the Reynolds stress caused by the tilting of
the columnar convective motion, appears to be ineffective for the upper no-slip condition. This might be
a result of the possible decrease in the radial extent of the convective spiral structure when the no-slip
boundary condition is applied. Takehiro (2008) discussed the use of a two-dimensional rapidly rotating
annulus model in which the radial extent of spiral convection emerging in a rotating spherical shell is related
to the radial propagation distance of the topographic Rossby waves emitted from the inner to outer regions.

1Note that the dynamic boundary conditions of our experiments are different from those of Aurnou et al. (2007). We adopt the top
no-slip or free-slip condition and the bottom free-slip condition, whereas they adopted the top free-slip condition and the bottom free-slip
or no-slip condition.



July 29, 2010 14:16 Geophysical and Astrophysical Fluid Dynamics usslayer˙final

Thermal convection confined under a stably stratified layer in a rapidly rotating spherical shell 15

-50 0 50
(1)

Latitude

500

1000

1500

2000

to
ta

l a
n

g
u

la
r 

m
o

m
en

tu
m

Figure 14. Latitudinal profiles of the total angular momentum at the outer boundary (r = 1.5) for the mean zonal flows shown in Figure
11. Thin solid, dashed, dotted, and dash-dotted lines indicate the cases of R = 2 × 102, 5 × 102, 1 × 103, and 2 × 103, respectively, with
the free-slip condition at the top boundary. Thick solid lines indicate the cases with the no-slip condition at the top boundary, i.e., total
angular momentum of the rigid rotating state.

From the viewpoint of Rossby wave propagation, the no-slip boundary condition is expected to decrease
the amplitudes of Rossby waves faster as they propagate and to decrease the radial extent of the spiral
structure. However, there have been few studies comparing thermal convections and induced mean zonal
flows between under the no-slip and free-slip conditions. Zhang et al. (2007) obtained asymptotic solutions
of thermal convection in a rapidly rotating sphere under the no-slip boundary condition. Although the
mathematical expressions of their solutions plausibly include the difference in convective structure between
the dynamic boundary conditions, no solutions were reported because their primary goal was to reveal the
Prandtl number dependence. It is necessary to compare the structure of convection, its Reynolds stress,
and the induced zonal flow under different dynamic boundary conditions.

We have performed a series of numerical experiments for fixed values of the thickness of the stable layer
and the rotating speed of the spherical shell. The behavior of the solutions of the equatorial retrograde
flows obtained in the present study has not yet been well examined for the other values of these parameters.
However, when the thickness of the stable layer is decreased, it is expected that the equatorial retrograde
zonal flow disappears because the effect of the outer boundary becomes prominent. Preliminary numerical
experiments have demonstrated that the equatorial retrograde solution switches to the prograde solution at
around rb = 1.65. Conversely, when the depth of the stable layer is increased, the equatorial retrograde flow
still emerges even at rb = 1.2. Thus far, cases involving higher rotational speeds could not be investigated
because of limited computing resources. However, a numerical simulation of the MHD dynamo in a rotating
spherical shell with an outer stably stratified layer is interesting as an example of a lower-Ekman-number
case. Christensen (2006) obtained the retrograde flow in the equatorial outer region when the Ekman
number is as small as O(10−5). On the other hand, in experiments on a thinner stable layer performed
by Stanley and Mohammadi (2008), an equatorial prograde surface flow emerged. Christensen and Wicht
(2008) presented a series of numerical MHD dynamo experiments with a deep, stable layer, one of which
revealed an equatorial prograde surface flow. It is important to investigate the differences in the generation
mechanisms of these prograde/retrograde equatorial flows by extending the results of the present study.

We have demonstrated that, for strong stratification, the stable layer imposes a rigid, rather than stress-
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free, condition on the underlying flow. This rigid condition prevents the Reynolds-stress mechanism from
acting efficiently, and, therefore, the thermal wind effect seems to dominate instead. However, we should
refrain from applying these results to actual planetary atmospheres. First, we explore a rather larger
Ekman number of E = 10−3, which may limit their applicability. Viscous effects, which play an important
role in the investigated mechanisms, might be too large compared to actual situations. When the Ekman
number becomes smaller, the present mechanism of retrograde zonal flow generation might not function.
Second, the outer stable layers in the planetary atmospheres would be much thinner than in the proposed
model. It might be difficult to confirm that the outermost, rather thin, stable layers would have an impact
on the dynamics of the much thicker, deep regions. In addition, the effects of compressibility and radiation
transfer should be taken into account in applications involving real atmospheres.
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