2014年11月29-30日 総合的防災教育の構築に関する研究集会

これまでの 防災教育実践を振り返って

JpGU教育検討委員会·教育課程小委員会 埼玉県立深谷第一高等学校 宮嶋 敏

防災教育セッション共同コンビーナ 「防災読本」編集協力(現場代表)

1

本講演の主旨

- ・これまでの地学の教科書(学習指導要領)で防災に関する内容がどう扱われてきたか
- 防災教育に関する過去と現在の教育実践
- ・ 今後の課題

これまでの教職経験と災害

- 1990 大学院修了(岩石学)、埼玉県公立高校採用
- 1991 雲仙普賢岳噴火③ → これが火砕流か・・・
- 1995 兵庫県南部地震⑤ → 被害が少ないなあ・・・、これが日本?
- 2000 有珠山③・三宅島噴火③ → 予知や避難は成功、でも・・
- 2004 中越地震① → 現地の様子を伝えねば・・・
- 2008 岩手・宮城内陸地震 → 友人が被災者に
- 2011 東北地方太平洋沖地震○ → ついに来たか・・・
- 2014 2月豪雪◎、広島豪雨、御嶽山噴火
 - → 災害に会う時はこんなものか。無防備だった
 - ○現地調査(見学、数字は見学までの年数) ◎当事

基礎的な地学科目の変遷と 教科書における災害・防災の記述量(T社)

実施	科目名	災害・防災に関する記述/その分野の記述 (行数)					
		地 震	火山	地 盤	気 象	その他	割合%
1982	地学	62/166	24/156	6/36	10/115	なし	21. 6
1994	地学IA	50/111	46/107	88/88	117/117	なし	71. 2
	地学IB	49/203	26/167	2/20	2/142	なし	14. 8
2003	地学 I	0/107	34/129	2/19	0/159	なし	2. 6
2012	地学基礎	66/150	35/120	28/28	46/46	85/85	60. 6

「気象」は日本の四季の天気を指す。「その他」は防災対策全般

災害・防災を扱う科目と自然現象の原理・を仕組みを扱う科目に乖離する傾向があった

放っておくと、災害・防災のことは扱われない

教科書における災害・防災の記述

一現象の原理 vs 災害・防災一

- 地学(1982~)、地学 I B(1994~)、地学 I (2003~)
 - → ●現象の記載やメカニズムを説明することに重点 専門科目への基礎、専門家養成の視点 基本的にはこの流れが高校地学(理科)の主流
- 地学 I A(1994~)
 - → ●災害・防災等、地学と日常生活をつながりを重視 非専門家向けの科目に位置づけ(特異な科目)
- ・ 地学基礎(2012~) ⇒ ベストミックス?
 - → 全般的に災害・防災の比重大

教科書の内容は、誰のための・何のための地学か を反映。現在、市民のための地学に転換しつつある。

5

基礎的な地学の履修状況

一現在は追い風が吹いている一

<i>-</i>	2011(JE	課程)	2014(新課程)		
年度	需要数	履修率	需要数	履修率	
物理I	356000	27.4	(2485)		
化学 I	688000	53.0	(4764)		
生物 I	822000	63.4	(6050)		
地学 I	91000	7.0	(1735)		
物理基 礎			735868	57.7	
化学基 礎			1030895	80.8	
生物基 礎			1085117	85.1	

保健:全員履修科目
→ ≒1学年高校生
数
()は、定時制・通信制
等に残る旧課程履修者

履修方式 基礎科目を 3科目以上履修

現行の内容及び履修方式の堅持が不可欠。さらに地学の学習は防災の基本であることを訴える必要がある。

災害・防災に関する初期の授業実践

- 現象のメカニズムを解説する授業を展開してきた。災害・防災についての扱いはほとんどなかった。(反省)
- ・ 浅間山噴火と災害 → 校舎からよく見える山 鬼押出しは遠足等の見学地 土石流による洪水が地元まで影響 火砕流の怖さを強調(普賢岳の教訓、ビデオ視聴)
- 地震予知
 地震学会での論争(予知推進派vs否定派;1994)
 碁石モデルによる地震予知不可能の検証
 兵庫県南部地震・宏観異常は有効?

実際に起こった災害が教師の意識を高めてきた

7

災害・防災教育における留意点

- 発生した災害について、タイムリーに解説。
- ・ 報道番組の活用(臨場感)
- 教師自身が被災地を訪れ、記録し、生徒に伝えるインパクト
- 実験や実習を盛り込み体験的に教える
- ローカルな話題を取り上げる(切迫性)
- 知識から実践へ *

* 冬休みの課題として、自宅及び通学路の安全点検をレポートさせる予定

本校(1学年8クラス):1年次に地学基礎必修

,

現在の実践から一地震分野、割と進歩した例一

回	単元名·項目	重要語句(重要概念)	実験実習等
1	地震のメカニズム	震源での破壊、震動の 伝搬、震源域	つるまきパネによるP波、S波
	・地反いアリー人ム	正断層·伸張、逆断層· 圧縮	
2	震源の決定	大森公式、	作図による震源決定(コンパス)
	海溝型の地震	巨大地震、地震サイクル、	
	内陸型の地震	活断層、直下型	ppt画像(深谷断層撓曲崖)
3•4		津波	ビデオ視聴(津波)
	災害と防災	地盤液状化、地盤の強弱、固有振動数、緊急 地震速報	エッキー君、ppt画像(浦安液状 化、遺跡噴砂)、振り子(倒立振 子)共振、E-defens動画、
3年	災害への備え(5回)		紙ぶるる君、クロスロードゲーム

原理をなるべくあっさり扱い、防災に関わる比率が増した

9

防災教育の今後の課題

- ・ 火山及び気象災害・防災の扱いが弱い
 - → 教材も不足、教材開発の必要性
- 少ない授業時間数の下で、メカニズムの理解 と防災の話をどう折り合いをつけるか
- ・ 時間数の確保という観点で、防災訓練等へ の働きかけ、SPP等の活用も考える
- 高校生をどう組み入れてゆくか(自主的な活動が市民から感謝された)。高校が動いたら本物?