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A nonlinear response theory is provided by use of the transient linearization method in the spatially one-
dimensional Vlasov systems. The theory inclusively gives responses to external fields and to perturbations for
initial stationary states, and is applicable even to the critical point of a second-order phase transition. We apply
the theory to the Hamiltonian mean-field model, a toy model of a ferromagnetic body, and investigate the critical
exponent associated with the response to the external field at the critical point in particular. The obtained critical
exponent is the nonclassical value 3/2, while the classical value is 3. However, interestingly, one scaling relation
holds with another nonclassical critical exponent of susceptibility in the isolated Vlasov systems. Validity of the
theory is numerically confirmed by directly simulating temporal evolutions of the Vlasov equation.
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I. INTRODUCTION

The Vlasov equation describes dynamics of Hamilto-
nian systems with long-range interactions, including self-
gravitating systems and plasma systems, in the limit of a
large number of particles [1–3]. The Vlasov system has a
continuously infinite number of stationary states, and stable
ones are called quasistationary states (QSSs) [4], whose
lifetimes diverge with increasing the number of particles. The
long-lasting QSS brings a problem of understanding response
to the external field or perturbation.

In the Vlasov system, the linear response theory for the
external field has been recently developed [5,6]. This theory
gives the asymptotic value of the observable associated with
the external field if the field is small enough. One remarkable
product of the theory is that the critical exponent of zero-field
susceptibility in a ferromagnetic model takes the nonclassical
value 1/4 in an isolated system [7], while the classical
mean-field theory gives the exponent 1 in an isothermal
system. However, the naive perturbation theory cannot work
at the critical point of a second-order phase transition due to
divergence of the linear response, and hence the theory is not
available to obtain the critical exponent for response to the
external field at the critical point. Another disadvantage of
the linear response theory is, obviously, that amplitude of the
external field must be small enough.

Perturbation to a stable stationary homogeneous state
exponentially damps, as shown by Landau [8]. The exponential
damping stands for the linear analysis of the Vlasov equation,
and nonlinear effects tend to stop the damping [9]. Thus, there
is a competition between the Landau damping and nonlinear
trapping effects. Based on this competition, creations of small
traveling clusters are discussed phenomenologically [10]. The
nonlinear effects make the response to perturbation nontrivial
even for stable stationary states.

Our goal is to construct a nonlinear response theory,
which inclusively describes responses to the external field
and to perturbation, and which works well even just on the
critical point. The theory is constructed by using the transient
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linearization, which is called T linearization, a method based
on the asymptotic-transient decomposition of the distribution
function [11–13]. This method is originally proposed to
investigate dynamical asymptotic states given by nonlinear
superposition of Bernstein-Greene-Kruskal solutions [14]. We
apply the method to a simple toy model, the Hamiltonian
mean-field (HMF) model [15,16], in order to capture asymp-
totically stationary states starting from stationary states with
the external field and perturbations. The main consequence
of this method is that the asymptotic states are equivalent to
rearrangement of initial distribution functions along the energy
contours associated with the asymptotic effective Hamiltonian.
Accordingly, this procedure induces a self-consistent equation
for the asymptotic state.

We emphasize progresses by the present article: The
self-consistent equation is expanded with respect to a small
order parameter in order to analyze the scaling relations. The
expansion method is different with and might be simpler than
one of the previous works [12,13]. Thanks to the expansion, we
obtain one nonclassical critical exponent for response to the
external field at the critical point. Interestingly, the nonclassical
critical exponent satisfies a classical scaling relation with
the previously mentioned nonclassical critical exponent for
the zero-field susceptibility. The theoretical predictions are
quantitatively examined by direct numerical simulations of
the Vlasov equation. A similar idea of the rearrangement is
presented in Ref. [17], but there is no theoretical justification
as the nonlinear trapping and the T linearization, and hence
limitation of the theory was not clear. We clarify hypotheses
to ensure validity of the theory, and, as a result, we can discuss
the origins of discrepancies which will be observed between
the theory and the numerical tests for response to perturbation.

We mention other previous studies on nonlinear dynamics
of the Vlasov equation. A bifurcation from spatially homoge-
neous to inhomogeneous states is investigated by constructing
unstable manifolds of the unstable homogeneous stationary
states in the weak instability limit for the Vlasov-Poisson
equation [18]. The theory predicts that inhomogeneity in
asymptotic states increases as a quadratic function of the
distance from the critical point in a parameter space, like
temperature. This prediction is numerically confirmed in a
one-dimensional (1D) self-gravitating system [19]. The theory
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provided in the present article also reproduces the quadratic
scaling successfully.

The organization of the present article is as follows. We
introduce the spatially 1D and periodic Vlasov equation and
the T-linearization method [12,13] in Sec. II. The method is
exhibited in Ref. [13] in details, but it might be worthwhile to
rephrase the derivation of T linearization in a simpler form
with confirming the necessary hypotheses. In Sec. III, the
general theory is applied to the HMF model, and we expand
the asymptotically self-consistent equation with respect to the
small order parameter. Theoretical consequences are arranged
in Sec. IV with the aid of the expanded self-consistent equation,
and these predictions are numerically examined in Sec. V.
Conclusion and remarks are in Sec. VI.

II. TRANSIENT LINEARIZATION IN VLASOV SYSTEM

We consider spatially 1D and 2π -periodic Hamiltonian
systems described by the Hamiltonian,

HN =
N∑

i=1

p2
i

2
+ 1

2N

N∑
i,j=1

V (qi − qj ) +
N∑

i=1

U (qi), (1)

where qi ∈ (−π,π ] is the position of the ith particle for
i = 1,2, . . . ,N , pi ∈ R the conjugate momentum, and the
interaction V (q) is even. The external field is represented by
the on-site potential U . In the large limit of N , the evolution
of this system is well described in terms of the single body
distribution f (q,p,t) governed by the Vlasov equation [1–3]:

∂f

∂t
+ {H[f ],f } = 0. (2)

The effective Hamiltonian H[f ] is given by

H[f ] = p2

2
+ V[f ](q,t) + U (q),

V[f ] =
∫ π

−π

dq ′
∫ ∞

−∞
V (q − q ′)f (q ′,p′,t)dp′,

(3)

and the Poisson bracket {a,b} is defined by

{a,b} ≡ ∂a

∂p

∂b

∂q
− ∂a

∂q

∂b

∂p
. (4)

A. Asymptotic-transient decomposition

We take the initial condition of a stationary state with a
perturbation as

f0(q,p) = fini(q,p) + εg(q,p). (5)

We refer to f0 and fini as the initial state and the initial
stationary state, respectively. The perturbation must satisfy∫∫

μ

g(q,p)dqdp = 0, (6)

to keep the normalization condition, where μ represents the
whole (q,p) plane. The Vlasov equation (2) evolves the initial
state f0(q,p) to f (q,p,t) at time t . We introduce a hypothesis
on the asymptotic state:

H0 The state f goes to a stationary state fA asymptotically.

The hypothesis H0 is the basic hypothesis of the present theory.

The asymptotic state fA is rigorously defined by the Bohr
transform defined as

Bω[a] ≡ lim
σ→∞

1

σ

∫ σ

0
a(t)e−iωtdt. (7)

This transform picks up the asymptotic oscillating mode of
a(t) with frequency ω. The asymptotic stationary state fA has
no oscillating modes, thus we define it as

fA(q,p) = B0[f ]. (8)

Validity of this definition is guaranteed by the equality,

B0[f ] = lim
t→∞ f. (9)

See Appendix A to derive it.
For later convenience, we decompose f (q,p,t) into the

initial state f0(q,p) and evolving perturbation as

f (q,p,t) = f0(q,p) + εgE(q,p,t). (10)

The second hypothesis is

H1 The evolving part εgE is of O(ε).

The hypothesis H1 implies that the state f is in a O(ε)
neighborhood of the initial state f0. Thus, we decompose
f (q,p,t) into the asymptotically stationary surviving part fA

and the transient part vanishing at t → ∞ as

f (q,p,t) = fA(q,p) + εgT(q,p,t), (11)

where the transient part εgT is of O(ε). The hypothesis H1
and one of its consequences (11) are used to perform the T
linearization.

The decomposition of f , Eq. (11), induces the decomposi-
tion of the effective Hamiltonian as

H[f ](q,p,t) = HA(q,p) + εVT(q,t), (12)

where

HA(q,p) = p2

2
+ VA(q) + U (q), (13)

and

VA(q) = V[fA], VT(q,t) = V[gT]. (14)

Thanks to the Jeans theorem [20], we may assume that the
asymptotic distribution fA, which is stationary, is a function
of the asymptotic Hamiltonian HA, and the Hamiltonian HA

is determined by fA. The asymptotic distribution must be
therefore determined self-consistently.

B. T-linearized Vlasov equation

The T linearization is performed by omitting O(ε2) terms:

H2 We omit O(ε2) terms.

Substituting Eqs. (10) and (12) into the Vlasov equation (2)
and using the hypothesis H2, we have the T-linearized Vlasov
equation,

∂f

∂t
+ {HA,f } + ε {VT,f0} = 0. (15)

We stress that the term including the asymptotic Hamiltonian
HA still remains nonlinear although this equation is called the
T-“linearized” equation.
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Remark 1. Following the previous works [11–13], we
substituted the decomposition (10) instead of Eq. (11). For
the setting discussed in the present article, we may replace f0

with fA if they are even with respect to p, since contribution
from this term vanishes as shown later.

By introducing the operator LA as

LA[•] = −{HA,•} , (16)

the T-linearized Vlasov equation (15) is written in the form,

∂f

∂t
= LA[f ] − ε {VT,f0} . (17)

The formal solution to T-linearized Vlasov equation with the
initial condition f (q,p,0) = f0(q,p) is [6]

f (q,p,t) = etLAf0(q,p) − ε

∫ t

0
e(t−s)LA {VT(q,s),f0} ds.

(18)

The first and second terms of the right-hand side are called
the O’Neil term and the Landau term and are denoted by fO

and εfL, respectively. In the next subsection, we will give a
simple expression of the self-consistent equation to determine
the asymptotic distribution fA with the aid of the ergodiclike
formula.

C. Ergodiclike formula

The operator exp(tLA) in Eq. (18) drives a func-
tion ψ(q,p,0) to ψ(q,p,t) = ψ(q(−t),p(−t),0), where
(q(t),p(t)) is the solution to the Hamiltonian equation of
motion associated with the asymptotic Hamiltonian HA with
the initial point (q,p). Thus, the Bohr transform,

B0[exp(tLA)ψ(q,p)] = lim
σ→∞

1

σ

∫ σ

0
etLAψ(q,p)dt, (19)

is read as the time average of ψ(q,p) along the orbit
(q(−t),p(−t)). The ergodiclike formula replaces the time
average with the partial phase space average under constraints
of the integral [12,13].

The asymptotic Hamiltonian HA is integrable, since it is
stationary and is a spatially 1D system. We can hence introduce
the angle-action variables (θ,J ), whose temporal evolutions
for the initial point (θ,J ) are

θ (t) = θ + 	(J )t, J (t) = J, (20)

where 	(J ) = dHA/dJ . The time average on the energy
contour, which is equivalent with the iso-J line, is thus
obtained by the average over θ . The ergodiclike formula is
expressed by

B0[exp(tLA)ψ(q,p)] = 〈ψ〉J , (21)

where the partial phase space average is defined by

〈ψ〉J = 1

2π

∫ π

−π

ψ(q(θ,J ),p(θ,J ))dθ. (22)

The subscript J in the left-hand side represents that the partial
phase space average is taken on the iso-J line.

We will derive a simple expression of the asymptotic
distribution fA by using the ergodiclike formula (21). From the

definition (8), the asymptotic distribution fA is decomposed as

fA = B0[fO] + εB0[fL]. (23)

Contribution from the O’Neil term is written in the form,

B0[fO] = B0[etLAf0(q,p)] = 〈f0〉J . (24)

Hereafter, we put an additional hypothesis:

H3 The initial state f0(q,p) is even with respect to p.

Lemma 2. Contribution to HA from the Landau term
vanishes, that is, V[B0[fL]] = 0, under the hypotheses from
H0 to H3.

Proof. Thanks to the periodicity for q, we perform Fourier
transform of the force field −∂VT/∂q with respect to q as

−∂VT

∂q
(q,s) =

∑
k∈Z

Tk(s)eikq . (25)

We note that Tk(t) converges to 0 as t → ∞ rapidly so
that

∫ ∞
0 |Tk(t)|dt < ∞. This is because the transient force

field Tk(s) represents the term damping exponentially [8] or
algebraically [21], thanks to the hypothesis H0. It has been
reported that the algebraic damping is equal to or faster than
the inverse square of time, t−2 for spatially 1D systems, so
that the Tk(s) is to be an L1 function. Substituting it into the
Landau part, we have

B0[fL] =
∑
k∈Z

Bk,

Bk ≡ − lim
σ→∞

1

σ

∫ σ

0
dt

∫ t

0
e(t−s)LATk(s)eikq ∂f0

∂p
(q,p)ds.

(26)

It is possible to replace the upper bound of s with ∞ by
adding a vanishing part, since the integrand except for Tk(s)
is bounded, and B0[

∫ ∞
t

Tk(s)ds] = 0 with the aid of Eq. (A1)
[12,13]. The Bk is modified as

Bk = −
∫ ∞

0
dsTk(s) lim

σ→∞
1

σ

∫ σ−s

−s

euLAeikq ∂f0

∂p
(q,p)du,

(27)

where we have changed the variable from t to u = t − s.
Further, by use of the ergodiclike formula (21) for integration
with respect to u, we obtain

lim
σ→∞

1

σ

∫ σ−s

−s

euLAeikq ∂f0

∂p
(q,p)du =

〈
eikq ∂f0

∂p
(q,p)

〉
J

, (28)

for each s. Then, we have

Bk = −
〈
eikq ∂f0

∂p
(q,p)

〉
J

∫ ∞

0
Tk(s)ds. (29)

The action variable is determined by the asymptotic
Hamiltonian HA which is even with respect to p, and hence
the iso-J line is symmetric under the transform p 	→ −p.
Remembering that f0 is even with respect to p, we conclude
V[B0[fL]] = 0. �

We put a physical interpretation of Lemma 2 as the
following Remark 3:
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Remark 3. Under the introduced hypotheses, we may
omit the transient potential VT in the T-linearized Vlasov
equation (15), and may neglect the transient temporal evolution
including the Landau damping [11]. In other words, the
nonlinear trapping effect dominates the Landau damping and
the state is rapidly trapped at the asymptotic state. Such
a situation is suitable around the stable side of a stability
threshold, where the Landau damping rate is almost zero.

Contribution from the O’Neil term (24) and Lemma 2 give
a simple expression of the asymptotic effective Hamiltonian
HA as

HA(q,p) = H[fA] = H[〈f0〉J ]. (30)

We note that the above equation is a self-consistent equation,
since the right-hand side depends on the asymptotic effective
Hamiltonian HA through the definition of the angle-action
variables (θ,J ). Equation (30) is physically interpreted as the
rearrangement of f0 to make fA constant along the iso-J
line [17]. In the next section, we apply the general theory
described in this section to the HMF model.

III. APPLICATION TO THE HAMILTONIAN MEAN-FIELD
MODEL

Let us consider the HMF model, which is a simple toy model
of a ferromagnetic body. The interaction is written by V (q) =
− cos q, and the on-site potential is U (q) = −hx cos q −
hy sin q in Eq. (1), where U (q) represents potential by the
external magnetic field (hx,hy). The effective Hamiltonian is
written as

H[f ](q,p,t) = p2

2
− (Mx[f ] + hx) cos q

− (My[f ] + hy) sin q, (31)

where (Mx[f ],My[f ]) is the magnetization vector defined
by

Mx[f ] =
∫∫

μ

cos qf (q,p,t)dqdp, (32)

and

My[f ] =
∫∫

μ

sin qf (q,p,t)dqdp. (33)

For simplicity, we consider the following situation, men-
tioned as another hypothesis:

H4 The magnetization vector and the external magnetic
field asymptotically point to the positive x direction.

In other words, the asymptotic Hamiltonian HA is written as

HA(q,p) = p2

2
− (M + h) cos q, (34)

where M and h are the values of the asymptotic magnetization
and the external magnetic field, respectively, and they are
positive constants. We note that the initial distribution fini

and perturbation g must be suitably chosen to fit this situation.

A. The asymptotically self-consistent equation

The asymptotically self-consistent equation (30) implies
the equation for M as

M =
∫∫

μ

cos q 〈f0〉J dqdp. (35)

It is worth noting that the above self-consistent equation has
another expression of

M =
∫∫

μ

〈cos q〉J f0(q,p)dqdp. (36)

Indeed, we can show the following Lemma 4.

Lemma 4. Let A(q,p) and B(q,p) be functions on (q,p)
plane, and both A 〈B〉J and 〈A〉J B are integrable in a rectangle
region (−π,π ] × IJ 
 (θ,J ). Let RJ be the corresponding
region on the (q,p) plane with the rectangle region. Then,
the following equality holds:∫∫

RJ

A 〈B〉J dqdp =
∫∫

RJ

〈A〉J Bdqdp. (37)

Proof. The transform (q,p) 	→ (θ,J ) is canonical, and
hence dqdp = dθdJ . Using the integrability of A 〈B〉J and
〈A〉J B, we have∫∫

RJ

A 〈B〉J dqdp

=
∫

IJ

(∫ π

−π

A 〈B〉J dθ

)
dJ

= 2π

∫
IJ

〈A〉J 〈B〉J dJ =
∫

IJ

(∫ π

−π

〈A〉J Bdθ

)
dJ

=
∫∫

RJ

〈A〉J Bdqdp. (38)

�
With the aid of the concrete forms of angle-action variables

(θ,J ) in the HMF model [22], we have 〈cos q〉J as

〈cos q〉J =
{ 2E(k)

K(k) − 1, k < 1
2k2E(1/k)

K(1/k) − 2k2 + 1, k > 1,
(39)

where the functions K(k) and E(k) are the complete elliptic
integrals of the first and the second kinds, respectively. The
modulus k is defined by

k =
√

p2 + 2M̄(1 − cos q)

4M̄
, (40)

where M̄ = M + h. The intervals k < 1 and k > 1 imply
inside and outside separatrix, respectively. See Appendix B
for derivations of 〈cos q〉J , and Fig. 1 for its graphical
presentation. We know k for a given point (q,p), thus the
asymptotically self-consistent equation (36) can be solved
numerically at least.

In the following, we theoretically analyze the asymptot-
ically self-consistent equation (36) for small M case. One
advantage of this theoretical treatment is that we can obtain
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FIG. 1. (Color online) 〈cos q〉J as the function of k. The value
of 〈cos q〉J is −1 in the limit k → 1, since K(k) diverges while
E(k) → 1.

the critical exponent δ, which is, at the critical point of the
second-order phase transition, defined as

M ∝ h1/δ. (41)

The exponent δ is 3 in the classical mean-field theory [23], but
we will show that the exponent δ is 3/2 in the present isolated
Vlasov system.

B. Assumptions and expanded self-consistent equation

We introduce some assumptions to derive the theoretical
approximation of the asymptotically self-consistent equa-
tion (36).

A0 The asymptotic magnetization M is small enough.

This assumption suggests that h is also small enough, and
permits one to expand the right-hand side of (36) in a power
series of M̄ . Another assumption is for the initial distribution
f0.

A1 f0(q,p) satisfies the hypothesis H3, is smooth with
respect to p, and is bounded on (−π,π ] × R.

The assumption A1 induces the following Lemma 5.

Lemma 5. Let f satisfy the assumption A1. Then, there
exists a positive constant c such that

|f (q,p) − f (q,0)| < cp2 (42)

holds for any (q,p) ∈ (−π,π ] × R.

See Appendix C for the proof.
Under the above assumptions, we will show that the

asymptotically self-consistent equation (36) is expanded as

M = L1/2[f0]M̄1/2 + L1[f0]M̄ + L3/2[f0]M̄3/2 + O(M̄7/4),

(43)

where

L1/2[f0] = M̄−1/2
∫∫

μ

f0(q,0) 〈cos q〉J dqdp

L1[f0] = −1

2

∫∫
μ

f
(1)
0 (q,p)

p
dqdp

L3/2[f0] = M̄−3/2
∫∫

μ

f
(2)
0 (q,0)

(
p2

2
〈cos q〉J + M̄

4

)
dqdp.

(44)

We introduced the symbol f
(n)
0 for the nth partial derivative of

f0 with respect to p. The coefficients L1/2 and L3/2 have the
prefactor depending on M̄ , but are of O(1). Indeed, changing
variables from (q,p) to (q,k), we have

L1/2 = 8

(∫ 1

0
dk

∫ qmax

0
dq +

∫ ∞

1
dk

∫ π

0
dq

)
ψ1/2(q,k),

(45)

and

L3/2 = 8

(∫ 1

0
dk

∫ qmax

0
dq +

∫ ∞

1
dk

∫ π

0
dq

)
ψ3/2(q,k),

(46)

with

qmax = cos−1(1 − 2k2) = 2 sin−1 k. (47)

The integrands are

ψ1/2(q,k) = f0(q,0) 〈cos q〉J√
1 − k−2 sin2(q/2)

, (48)

and

ψ3/2(q,k) = f
(2)
0 (q,0)[(2k2 − 1 + cos q)〈cos q〉J + 1/4]√

1 − k−2 sin2(q/2)
.

(49)

We used the relation (40) for getting the function ψ3/2.

C. Expansion of the self-consistent equation

Let us expand the right-hand side of the asymptotically
self-consistent equation (36), which is denoted by

I =
∫∫

μ

〈cos q〉J f0(q,p)dqdp. (50)

The basic strategy is to divide the whole μ space into the two
parts U1 and U2, where

U1 = {(q,p)||p| < p∗}, U2 = {(q,p)||p| > p∗}. (51)

The boundary p∗ = Mu between U1 and U2 is determined to
satisfy the following requirements.

(1) In U1, |p| is small, and we expand f0(q,p) into the
Taylor series with respect to p.

(2) In U2, k is large, and we expand 〈cos q〉J into the power
series of 1/k.
Remembering the scaling p  M̄1/2k in a large k region, to
satisfy the above two requirements, we have the interval of u

as 0 < u < 1/2. We note that the separatrix reaches to p =
2M̄1/2, but is much smaller than M̄u, and hence the region U1
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FIG. 2. Schematic picture of division of the μ space. The region
U1 consists of gray region, and U2 of white region. The broken curve
in the region U1 is the separatrix.

includes the whole separatrix inside. See Fig. 2 for a schematic
picture of this division.

Corresponding to the division of the μ space, the integral I

is divided as

I = I1 + I2, (52)

where

Ii =
∫∫

Ui

〈cos q〉J f0(q,p)dqdp. (53)

In the way of expansion we will neglect higher terms than
O(M̄3/2).

1. Region U1

In the region U1, thanks to the assumption A1, the Taylor
expansion gives

f0(q,p) = f0(q,0) + 1
2f

(2)
0 (q,0)p2 + O(p4). (54)

We separately estimate the contribution from the term of
O(p4) in the two subregions of U1: separatrix inside U1,in and
separatrix outside U1,out. In the separatrix inside, the maximum
of p is of O(M̄1/2), hence we have∫∫

U1,in

〈cos q〉J p4dqdp 
∫ M̄1/2

0
p4dp = O(M̄5/2). (55)

This contribution is higher than O(M̄3/2) and is negligible. In
the separatrix outside, we have the asymptotic expansion of
〈cos q〉J , (B9), and we have∫∫

U1,out

〈cos q〉J p4dqdp 
∫ p∗

M̄1/2

p4

k2
dp = O(M̄1+3u). (56)

The contribution from the region U1 is, therefore,

I1 =
∫

U1

(
f0(q,0) + f

(2)
0 (q,0)

p2

2

)
〈cos q〉J dqdp

+O(M1+3u). (57)

2. Region U2

In region U2, we use the asymptotic expansion of
〈cos q〉J , (B9), and I2 is

I2 = −
∫∫

U2

(
1

8k2
+ 1

16k4
+ O(1/k6)

)
f0(q,p)dqdp.

(58)
Contribution from the term of O(1/k6) is estimated as∫∫

U2

f0(q,p)

k6
dqdp  M̄3

∫ ∞

p∗

dp

p6
= O(M̄3−5u). (59)

Expanding the relation (40) for small M̄ , we have

1

8k2
+ 1

16k4
= M̄

2p2
+ M̄2 cos q

p4
+ O(M̄3/p6), (60)

and the term of O(M̄3/p6) gives the contribution of O(M̄3−5u).
The integral I2 is therefore expressed as

I2 = −
∫∫

U2

(
M̄

2p2
+ M̄2 cos q

p4

)
f0(q,p)dqdp

+ O(M̄3−5u). (61)

We perform the integration by parts for the first term of (61),
and we have

I2 = −
∫ π

−π

M̄

p∗
f0(q,0)dq −

∫ π

−π

M̄p∗
2

f
(2)
0 (q,0)dq

− M̄

2

∫∫
U2

f
(1)
0 (q,p)

p
dqdp

−
∫∫

U2

M̄2 cos q

p4
f0(q,p)dqdp

+O(M̄3−5u) + O(M̄1+3u), (62)

where, using smallness of p∗, we expanded f0(q,p∗) into
the Taylor series, whose higher terms give contribution of
O(M̄1+3u). We will modify the above expression to obtain the
expansion (43).

Using the relation,∫ ∞

p∗
〈cos q〉J dp = − M̄

2p∗
−

∫ ∞

p∗

M̄2 cos q

p4
dp + O(M̄3−5u),

(63)

the sum of the first and the fourth terms of (62) become

−
∫ π

−π

M̄

p∗
f0(q,0)dq +

∫∫
U2

M̄2 cos q

p4
f0(q,p)dqdp

=
∫∫

U2

f0(q,0) 〈cos q〉J dqdp

−
∫∫

U2

M̄2 cos q

p4
(f0(q,p) − f0(q,0))dqdp. (64)

Thanks to Lemma 5, the second term is estimated as∫∫
U2

M̄2 cos q

p4
(f0(q,0) − f0(q,p))dqdp

 M̄2
∫ ∞

p∗

dp

p2
= O(M̄2−u). (65)

This is higher than O(M̄3/2), and is negligible.
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The second term is modified as

−
∫ π

−π

M̄p∗
2

f
(2)
0 (q,0)dq = −M̄

4

∫∫
U1

f
(2)
0 (q,0)dqdp. (66)

Modification of the third term is

−M̄

2

∫∫
U2

f
(1)
0 (q,p)

p
dqdp

= −M̄

2

∫∫
μ

f
(1)
0 (q,p)

p
dqdp + M̄

2

∫∫
U1

f
(2)
0 (q,0)dqdp

+O(M̄1+3u), (67)

where we expanded f
(1)
0 (q,p) in the second term of the right-

hand side around p = 0 with the aid of smallness of p∗, and
the term of O(M̄1+3u) comes from higher terms of the Taylor
expansion.

Putting all together, we have the term I2 as

I2 =
∫∫

U2

f0(q,0) 〈cos q〉J dqdp − M̄

2

∫∫
μ

f
(1)
0 (q,p)

p
dqdp

+ M̄

4

∫∫
U1

f
(2)
0 (q,0)dqdp + O(M̄3−5u) + O(M̄1+3u).

(68)

3. The whole I

The above computations give the whole integral I in the
form,

I =
∫∫

μ

f0(q,0) 〈cos q〉J dqdp − M̄

2

∫∫
μ

f
(1)
0 (q,p)

p
dqdp

+
∫∫

U1

f
(2)
0 (q,0)

(
p2

2
〈cos q〉J + M̄

4

)
dqdp

+O(M̄3−5u) + O(M̄1+3u). (69)

The final modification is to extend the integral region of the
third term of Eq. (69) to the whole μ space. This extension can
be done since contribution from the region U2 is negligible.
Indeed, using the relation (40) and the asymptotic expansion
of 〈cos q〉J , Eq. (B9), we have∫∫

U2

f
(2)
0 (q,0)

(
p2

2
〈cos q〉J + M̄

4

)
dqdp

= M̄

∫∫
U2

f
(2)
0 (q,0)

(
−cos q

8k2
+ O(1/k4)

)
dqdp

= O(M̄2−u), (70)

and is higher than O(M̄3/2). This extension gives the final form
of I as

I =
∫∫

μ

f0(q,0) 〈cos q〉J dqdp − M̄

2

∫∫
μ

f
(1)
0 (q,p)

p
dqdp

+
∫∫

μ

f
(2)
0 (q,0)

(
p2

2
〈cos q〉J + M̄

4

)
dqdp

+O(M̄3−5u) + O(M̄1+3u). (71)

The optimal value of u is u = 1/4, and both O(M̄3−5u) and
O(M̄1+3u) become O(M̄7/4). The above expression of the
integral I concludes the expansion (43).

IV. THEORETICAL CONSEQUENCES

We provide some theoretical predictions obtained from the
expansion (43). For this purpose, we introduce some additional
assumptions for the initial stationary state:

A2 fini is even, single peak and spatially homogeneous, and
is denoted by fini(p).

A3 We consider a one-parameter family of fini, which
continuously depends on the parameter τ . The family changes
the stability at τ = τc, which is called the critical point.

For instance, the family of Maxwellians is parametrized by
temperature T ,

fini(p) = 1

2π
√

2πT
e−p2/2T , (72)

and Tc = 1/2 is the critical temperature in the HMF
model [16]. We note that the nonequilibrium phase transitions
can be observed in several families of QSSs [24,25].

From the above assumptions, the functionals L1/2[fini] and
L3/2[fini] can be written as

L1/2[fini] = M̄−1/2fini(0)
∫∫

μ

〈cos q〉J dqdp = 0, (73)

and

L3/2[fini] = M̄−1/2f (2)
ini (0)

∫∫
〈cos q〉2

J dqdp < 0. (74)

Indeed, we can show the equalities,∫∫
μ

〈cos q〉J dqdp = 0, (75)

and∫∫
μ

(
p2

2
〈cos q〉J + M̄

4

)
dqdp = M̄

∫∫
μ

〈cos q〉2
J dqdp.

(76)

See Appendix D for the proofs of these equalities. The sign
of L3/2[fini] comes from the assumption A2, which implies
f (2)

ini (0) < 0.
We further introduce an assumption for the initial perturba-

tion g:

A4 g has no Fourier zero mode with respect to q.

With this assumption g satisfies the normalization condi-
tion (6). The assumption A4 eliminates L1[g].

Omitting the higher order terms, we have the self-consistent
equation of the form,

εL1
1/2(M + h)1/2 − DM + (1 − D)h+L0

3/2(M + h)3/2 = 0,

(77)

where L1
1/2 = L1/2[g],L0

3/2 = L3/2[fini], and

D = 1 − L1[fini] = 1 + 1

2

∫∫
μ

f (1)
ini (p)

p
dqdp. (78)
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FIG. 3. Schematic picture of QSS families and critical exponents.
Bold lines represent stable QSSs, and dashed unstable, which goes
to the bold line indicated by β = 2. The straight line on M = 0,
which is slightly shifted for a graphical reason, corresponds to the
family of fini mentioned in the assumption A3. We assumed that
fini is stable (respectively, unstable) for τ > τc (respectively, τ < τc)
without loss of generality. The exponents γ+ and γ− are obtained in
Refs. [5–7], respectively. The exponent β for prepared stable
inhomogeneous states is 1/2 in the usual case, as we will explain
in Sec. IV A 3.

The functional D represents the stability functional for a
single-peak homogeneous even distribution [4], and positive
(respectively, negative) D implies that fini is stable (respec-
tively, unstable). For instance, one can directly confirm

D = (T − Tc)/T , (79)

for the Maxwellians (72). The functional D is small around
the critical point, and hence we keep the last term of O(M̄3/2).

Considered QSS families and the critical exponents are
summarized as a schematic picture in Fig. 3. In the following
Secs. IV A and IV B, we will show the critical exponents δ =
3/2 and β = 2 with quantitative predictions of M .

A. Response to external field

We set ε = 0 and h > 0, and observe response to the
external field. The self-consistent equation is reduced to

−DM + (1 − D)h + L0
3/2(M + h)3/2 = 0. (80)

1. Stable off critical

We first consider the off-critical situation with fini stable,
D > 0. Solving Eq. (80) recursively and taking into account
the truncated term of order O((M + h)7/4), we have

M = χh + L0
3/2

D
(χ + 1)3/2h3/2 + O(h7/4), (81)

where

χ = 1 − D

D
. (82)

The leading order is identical to the linear response of
homogeneous states [5,6].

One remarkable difference between the present method
and the linear response theory is that the latter is based on
approximated solutions to the Vlasov equation constructed
by perturbation technique. Higher order computations of the
perturbation procedure give vanishing O(h2) term due to

symmetry, and the nonvanishing next leading order is of O(h3),
while the present method gives the next leading of O(h3/2).
The two methods coincide in the linear regime, but do not in
the nonlinear regime. In Sec. V, we will numerically confirm
that the present method successfully predicts values of the
magnetization even in a large h regime.

2. On critical

In addition to the nonlinear response in the off-critical
situation, the present method has another advantage against the
linear response theory, which is the prediction at the critical
point. The linear response theory can not apply to the critical
point, since the susceptibility χ diverges. However, the present
method gives the critical exponent δ defined in Eq. (41). Let
us set the parameter τ as the critical value τc, and D = 0
accordingly. The solution to the self-consistent equation (80) is

M =
(

h

−L0
3/2

)2/3

− h. (83)

Note that L0
3/2 < 0 and hence the first term of the right-hand

side is meaningful. The right-hand side is dominated by
h2/3 for small h, and hence the critical exponent δ for an
isolated system is evaluated as δ = 3/2. It is worth noting that
the classical mean-field theory gives the isothermal critical
exponent δ = 3.

3. Scaling relation

Apart from the initial stationary homogeneous state fini(p),
we consider the family of QSSs parametrized by τ . We
consider the Jeans-type family,

f (q,p; τ ) = F (p2/2 − M(τ ) cos q; τ ), (84)

with F smooth, and assume that f depends on M solely
through the Hamiltonian. We set that states of the family are
stable homogeneous for τ > τc, and stable inhomogeneous for
τ < τc, without loss of generality. For such a family we can
show the scaling relation,

γ− = β/2, (85)

from the linear response theory [7], where the critical expo-
nents β and γ− are defined in the inhomogeneous side by

M ∝ (τc − τ )β, χ = dM

dh

∣∣∣∣
h→0

∝ (τc − τ )−γ− , (86)

respectively. The value of β is 1/2 in general, since the fam-
ily (84) must satisfy the self-consistent equation for M , and it
is expanded around M = 0 as the Landau’s phenomenological
theory:

DhomoM + BM3 + O(M5) = 0, (87)

where the stability functional Dhomo is evaluated for the
homogeneous state F (p2/2; τ ) and is positive (respectively,
negative) in the homogeneous side τ > τc (respectively, the
inhomogeneous side τ < τc) since the homogeneous state is
stable (respectively, unstable). We have assumed B > 0.

The scaling relation (85) ensures the scaling relation,

γ− = β(δ − 1), (88)
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TABLE I. Critical exponents for asymptotic states in isothermal
and isolated systems. The value of β in the isolated system depends
on choice of a family of QSSs, but β = 1/2 in general. Moreover, the
relation γ− = β/2 holds. These exponents satisfy the scaling relation
γ− = β(δ − 1) in both systems.

Critical Expt. Isothermal Isolated QSSs

β 1/2 1/2
γ− 1 1/4
δ 3 3/2

with the obtained exponent δ = 3/2. The scaling relation (88)
is, therefore, extended from the family of thermal equilibrium
states in the isothermal system to families of QSSs in the
isolated system. The critical exponents are summarized in
Table I.

B. Response to perturbation

We set h = 0 and ε > 0, and observe response to perturba-
tion. The self-consistent equation is reduced to

εL1
1/2M

1/2 − DM + L0
3/2M

3/2 = 0. (89)

Taking the limit ε → 0, we have

M =
{

0 (fini stable)

0,
(

D

L0
3/2

)2
(fini unstable).

(90)

As the Maxwellians, we may expect that D for fini linearly
depends on the parameter τ − τc in general. The asymptotic
magnetization for unstable fini, therefore, has the scaling,

M ∝ (τ − τc)2, (91)

which is consistent with a theoretical analysis for plasma sys-
tem [18] and with numerics for the self-gravitating system [19].
The scaling implies that the critical exponent β for this family
is β = 2.

Coming back to nonzero ε but at the critical point, we have
the response,

M = 0,
L1

1/2

−L0
3/2

ε. (92)

Considering that the linear response at critical point diverges,
for positive L1

1/2, we may expect that the M = 0 branch is
unstable and the other one is stable. This expectation will be
confirmed numerically in Sec. V.

For stable homogeneous fini, thanks to L1
1/2 > 0 and

L0
3/2 < 0, we have the nonzero solution to the self-consistent

equation (89) as

M =
⎛
⎝D −

√
D2 − 4εL1

1/2L
0
3/2

2L0
3/2

⎞
⎠

2

. (93)

V. NUMERICAL TESTS

We perform numerical computations of the Vlasov equation
by using the semi-Lagrangian method [26] with the time
step �t = 0.05. The μ space (−π,π ] × R is truncated as

(−π,π ] × [−4,4], and each axis is divided into N bins. We call
N the grid size. The initial condition is set as the Maxwellian
and small perturbation:

fini(p) = 1

2π
√

2πT
e−p2/2T , g(q,p) = fini(p) cos q. (94)

The initial stationary state fini is stable for T > Tc = 1/2, and
is unstable for T < Tc, and this family satisfies the assumptions
A2 and A3. The above symmetric perturbation g is suitable
for the considering situation H4, satisfies H3, and satisfies the
assumptions A1 and A4.

For the initial state (94), we have the values of L1
1/2 and

L0
3/2 as

L1
1/2 = ξfini(0) = ξ

2π
√

2πT
, L0

3/2 = ξf (2)
ini (0) = −L1

1/2

T
,

(95)
where the factor ξ is defined and computed as

ξ = M−1/2
∫∫

〈cos q〉2
J dqdp  5.17. (96)

The value of functional D is obtained as Eq. (79).
We compute the asymptotic value M of the order parameter

as the time average of Mx[f ], defined by Eq. (32).

A. Response to external field

We set ε = 0 and h > 0 with T � Tc, and observe M as
functions of h in Fig. 4. We used the two grid sizes of N = 256
and 512, and both sizes are in good agreements with each
other. Thus, these grid sizes are large enough for observing
responses.

10−6

10−5

10−4

10−3

10−2

10−1

100

10−6 10−5 10−4 10−3 10−2 10−1

M

h

Slope= 2/3

Slope= 1

T = 0.50
T = 0.51
T = 0.55
T = 0.60
T = 0.70

FIG. 4. (Color online) External field h dependence of response.
T = 0.50(=Tc) (red circles), 0.51 (green triangles), 0.55 (blue
diamonds), 0.60 (purple squares), and 0.70 (light blue inverse
triangles). Grid sizes are N = 256 (open symbols) and N = 512
(solid symbols). The value of M is computed taking time averages
over the time interval [500,3000]. The solid curves represent solutions
to the self-consistent equation (80) for each temperature T , and T

increases from top to bottom. The dashed curves are from (81). Two
black solid lines with slopes 2/3 and 1 are guides for the eye.
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0 0.05 0.1 0.15 0.2

M

T = 0.50
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T = 0.55
T = 0.60
T = 0.70

FIG. 5. (Color online) Perturbation ε dependence of response
with several T in the disordered phase (T � Tc = 1/2). Lines are
drawn by (93), and points are by numerical simulations. Open
symbols are for the grid size N = 256, and solid are for N =
512. Temperature T is T = 0.50(=Tc) (red circles), 0.51 (green
triangles), 0.55 (blue diamonds), 0.60 (purple squares), and 0.70
(light blue inverse triangles). Time averages are taken in the interval
t ∈ [500,3000].

We stress the following two observations: (h-i) At the
critical temperature T = Tc, the slope 2/3 corresponding to
the critical exponent δ = 3/2 is successfully observed, and
the slope goes to 1 with increasing T as predicted by the
linear response theory [5,6]. We note that the slope seems to
change smoothly between 2/3 and 1, but it must be 1 in the
limit of small h except for T = Tc. (h-ii) The solutions to
the self-consistent equation (80), solid curves in Fig. 4, are in
good agreement with numerical simulations even in a large h

regime, beyond the linear response regime.
The recursive solution (81), dashed curves in Fig. 4, does

not provide good predictions for T close to Tc, since the
omitted part as higher order terms includes χ which becomes
large as T approaches to Tc.

B. Response to perturbation

We numerically examine the three theoretical conse-
quences: (ε-i) M linearly depends on ε at the critical
point, (92). (ε-ii) Nonlinear response of M for the fini stable
case with the expression (93). (ε-iii) The scaling (91) for the
fini unstable case.

Numerical tests for the consequences (ε-i) and (ε-ii) are
exhibited in Fig. 5. The coefficients (95) give the theoretical
response at the critical temperature as

M = Tcε, Tc = 1/2, (97)

and the numerical response perfectly coincides with this
theoretical prediction. Apart from the critical temperature, the
numerical responses are in good agreements with the theory
for temperature close to the critical point. As T increases,
the agreement becomes worse quantitatively, but is still good
qualitatively except for a threshold like dependence on ε, for

10−5

10−4

10−3

10−2

10−1

10−2 10−1

M

Tc T

Theory
= 10−7 (Grid256)
= 10−7 (Grid512)
= 10−6 (Grid256)
= 10−6 (Grid512)

FIG. 6. (Color online) Asymptotic value of M with small pertur-
bation ε for the unstable Maxwellian initial states. The solid red line
is the theoretical prediction, and points are numerically computed
values. ε = 10−7 (blue squares) and 10−6 (green diamonds). The grid
sizes are N = 256 (open symbols) and N = 512 (solid symbols).
Time average interval is [1000,3000].

instance, M = 0 below the threshold εth  0.07 for T = 0.7,
cannot be reproduced by the present theory.

The scaling for the unstable fini, (ε-iii), is confirmed in
Fig. 6. With the coefficients (95) we have the theoretical
scaling as

M = (T − Tc)2(
L1

1/2

)2 = (2π )3T

ξ 2
(T − Tc)2. (98)

The absolute values of numerical responses are slightly larger
than the theoretical ones, but the scaling is perfect.

We remark that it is not easy to numerically check validity
of the scaling relation (88) for the family with β = 2 starting
from the unstable homogeneous fini. For getting the exponent
γ−, we have to compute the asymptotic state accurately, but
the state oscillates in the computing time as shown in Fig. 7.
Studying validity of the hypothesis H0 and the scaling relation
for this family is left as a future work.

C. On discrepancies between theory and numerics

We observed quantitative discrepancies between the theory
and numerics in the response for perturbation. In the high-
temperature side, the agreement becomes worse as temperature
goes up. In the low-temperature side, the numerical response is
systematically larger than the theoretical prediction. For each
discrepancy, we propose a possible explanation: The Landau
damping cannot be neglected for the former, and the transient
field is not small for the latter. We will discuss that the two
explanations come from breaks of the hypotheses H2 and H1,
respectively.

We remark that the hypotheses and the assumptions are
satisfied in the numerical setting except for H0, H1, H2, and
A0, and we find numerically that A0 is satisfied. The hypoth-
esis H0 breaks for the latter case as shown in Fig. 7, where
the oscillation does not tend to vanish in the computing time
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FIG. 7. (Color online) Temporal evolutions of M for the unstable
fini case with ε = 10−6 and h = 0. T = 0.49,0.493, and 0.499 from
top to bottom.

scale. However, the breaking may not be serious for predicting
the value of asymptotic magnetization M , since effects of the
oscillation could be suppressed by taking time averages, and
the value of magnetization could be approximately obtained.
We, therefore, focus on the hypotheses H1 and H2.

The stability functional D is zero at the critical point, and
hence the Landau damping rate is zero, since D is obtained
by setting the frequency zero in the dispersion function. In
this case, the nonlinear trapping effect dominates the Landau
damping as mentioned in Remark 3, and the theory and
numerics are in good agreement.

Increasing temperature, the Landau damping rate becomes
larger, so that we cannot neglect it. From the viewpoint of
physics, this is interpreted as follows: The large Landau damp-
ing rate results in that the nonlinear trapping becomes harder,
since the trapping requires the condition that the Landau
damping time scale is much longer than the trapping time scale.

The above picture is supported by observing the L1 norms
of f − f0 and f − fini in Fig. 8. From Fig. 8(a) reporting
||f − f0||L1 , the asymptotic states are trapped at closer states
to the initial states f0 as T approaches to the critical point,

T = Tc = 1/2. On the other hand, from Fig. 8(b) reporting
||f − fini||L1 , the initial perturbation g strongly damps as T

increases. The L2 norms give the same tendency, though they
are not reported. We further observe from Fig. 8 that f stays
close to fini and f0, and the hypothesis H1 is satisfied. As
a result, we may conclude that the discrepancy in the high-
temperature side comes from breaking H2.

In the low-temperature side, the initial homogeneous
Maxwellians are unstable, and the asymptotic states are not
necessary to be close to the initial states. However, the
present theory assumes that the transient field is small in
the decomposition (11), and this assumption induces that
the asymptotic state must be close to the initial state. We
may therefore conclude that the hypothesis H1 breaks for the
unstable Maxwellians fini.

VI. CONCLUSION AND REMARKS

We have investigated the asymptotic states of stationary
initial distributions with small external field and/or perturba-
tion. The method of asymptotic-transient decomposition and
T linearization is applied to the HMF model, which is a simple
toy model of a ferromagnetic body. The theory is examined
by numerical simulations of the Vlasov equation for the initial
distributions of the Maxwellians.

The present theory unifies the two known theories: The
linear response theory [5,6] for the response to the external
field, and the bifurcation theory [18] with constructing the
unstable manifold of an unstable homogeneous state. We
emphasize that the present theory has further advantages
beyond the unification of the known ones: The theory
(i) captures the nonlinear response both to the external field
and to perturbations, and (ii) is applicable on the critical point.
For the latter advantage, we reported that the magnetization
linearly depends on strength of perturbation, and that the
critical exponent δ, defined by M ∝ h1/δ at the critical point,
is the strange value of δ = 3/2, while the classical mean-field
theory gives δ = 3. Interestingly, this critical exponent satisfies
the scaling relation γ− = β(δ − 1) with the aid of another
scaling relation γ− = β/2 [7]. We stress that the above critical
exponent δ and the scaling relations are derived without
assuming the thermal equilibrium states as the initial stationary
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FIG. 8. (Color online) Temporal evolutions of the L1 norm of (a) f − f0 and (b) f − fini. The grid size is N = 512. The perturbation level
is ε = 0.2. The black straight line at the level 2ε/π represents the L1 norm of fini − f0 = εg, which does not depend on temperature.
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states. The exponent and the scaling relations are, therefore,
true not only for the thermal equilibrium states but also for
Jeans-type QSSs in the isolated long-range system.

We have constructed the framework of the nonlinear re-
sponse, which is, for instance, the self-consistent equation (35)
in the HMF model. However, we have several remaining
works: We have assumed that the order parameter M is
small to expand the self-consistent equation into the power
series of M . One of the remaining works is to analyze the
self-consistent equation for inhomogeneous initial stationary
states for reproducing the linear response theory [6], for
instance. Providing the asymptotically self-consistent equation
for any perturbations, beyond the hypothesis H4, also remains.
Another remaining work is improvement of the discrepancy in
the high temperature region discussed in Sec. V C including the
thresholdlike dependence on ε. We discussed the competition
between the Landau damping and the nonlinear trapping effect,
and hence one possible modification is to include the Landau
damping into the present theory. Universality of the scaling
relations (88) for a wide class of systems is an interesting prob-
lem. We focused on magnetization in this paper, but studying
the asymptotic distribution function fA itself is also an open
problem, since fA may have a cusp at the separatrix as the func-
tion 〈cos q〉J shown in Fig. 1, and the cusp might be unphysical.

We remark that the exponential dampings are also
derived for the 2D Euler system [27], and the creation
of small traveling clusters by the nonlinear effects is also
discussed [28] along the same strategy with the Vlasov
case. Thus, one may expect to construct a similar nonlinear
response theory for the Euler system, which is obeyed by a
similar equation with the Vlasov equation.

We end this article with remarking on another study of
the nonlinear dynamics in the HMF model with the external
field. Pakter and Levin [29] derived equations of temporal
evolution for macrovariables, and observed oscillations of
variables. Such oscillating phenomena are out of scope from
the present theory, since the theory assumes asymptotically
stationary states.
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We are grateful to J. Barré for valuable discussions on this
topic. S.O. is supported by the JSPS Research Fellowships for
Young Scientists (Grant No. 254728). Y.Y.Y. acknowledges
the support of a Grant-in-Aid for Scientific Research (C)
23560069.

APPENDIX A: DERIVATION OF EQ. (8)

We have used the fact (8) that the asymptotic part fA can
be picked up from f by use of the Bohr transform B0[f ]. Let
us show this statement:

Lemma 6. Let a(t) be a bounded function having the limit
limt→∞ a(t). Then the limit is expressed by the Bohr transform
of a(t) as

lim
t→∞ a(t) = B0[a]. (A1)

Proof. We denote the limit as limt→∞ a(t) = a∞, and
show the equality a∞ = B0[a]. From the assumption of

convergence, for any ε > 0, there exists T > 0 such that

|a(t) − a∞| < ε, ∀t > T . (A2)

Then, the integral in the definition ofB0 is evaluated for σ > T

as follows:∣∣∣∣ 1

σ

∫ σ

0
a(t)dt − a∞

∣∣∣∣
=

∣∣∣∣ 1

σ

∫ σ

0
(a(t) − a∞) dt

∣∣∣∣
� 1

σ

∫ σ

0
|a(t) − a∞| dt

= 1

σ

∫ T

0
|a(t) − a∞| dt + 1

σ

∫ σ

T

|a(t) − a∞| dt

�
2T supt�0 |a(t)|

σ
+ (σ − T ) ε

σ
→ ε (σ → ∞). (A3)

Since the positive ε is chosen arbitrarily, we have
Eq. (A1). �

APPENDIX B: ELLIPTIC INTEGRALS

The Legendre’s elliptic integrals of the first and the second
kinds are defined as

F (φ,k) ≡
∫ φ

0

dϕ√
1 − k2 sin2 ϕ

,

E(φ,k) ≡
∫ φ

0

√
1 − k2 sin2 ϕdϕ,

(B1)

respectively [30]. The complete elliptic integrals of the first
and the second kinds are defined by taking φ = π/2 as

K(k) = F (π/2,k), E(k) = E(π/2,k), (B2)

respectively. The Jacobian elliptic function sn(z,k) is defined
as [31]

sn(F (φ,k),k) = sin φ. (B3)

With the above preparations, we can compute 〈cos q〉J as
follows. In action angle variables, cos q is expressed as

cos q =
{

1 − 2k2sn2
( 2K(k)

π
θ,k

)
, k < 1,

1 − 2sn2
(

K(1/k)
π

θ, 1
k

)
, k > 1.

(B4)

For k < 1, inside separatrix, the average is

〈cos q〉J = 2

π

∫ π/2

0

[
1 − 2k2sn2

(
2K(k)

π
θ,k

)]
dθ

= 1

K(k)

∫ π/2

0

1 − 2k2 sin2 φ√
1 − k2 sin2 φ

dφ

= 2E(k) − K(k)

K(k)
, (k < 1), (B5)

where we used the change of variable,

θ = π

2K(k)
F (φ,k). (B6)

Similarly, we can compute the average 〈cos q〉J for k > 1,
outside separatrix.
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The complete elliptic integrals are expanded into the Taylor
series as

K(k) = π

2

∞∑
n=0

(
(2n − 1)!!

(2n)!!

)2

k2n

= π

2

(
1 + k2

4
+ 9

64
k4 + 25

256
k6 + 352

1282
k8 + · · ·

)
,

(B7)

and

E(k) = π

2

∞∑
n=0

(
(2n − 1)!!

(2n)!!

)2
k2n

1 − 2n

= π

2

(
1 − k2

4
− 3

64
k4 − 5

256
k6 − 175

1282
k8 + · · ·

)
.

(B8)

The function 〈cos q〉J is therefore asymptotically expanded as

〈cos q〉J = − 1

8k2
− 1

16k4
+ O(k−6), (B9)

for k � 1.

APPENDIX C: PROOF OF LEMMA 5

Let us show Lemma 5.

Proof. Let δ be a positive number satisfying δ < 1 and let us
recall f (q,p) satisfies the hypothesis H3, that is, f (1)(q,0) =
0. Then, the Taylor’s theorem says that, for each p ∈ (−δ,δ)
there exists ξ ∈ (0,δ) such that

f (q,p) − f (q,0) = f (2)(q,ξ )

2
p2, (C1)

where the right-hand side one is called the Lagrange form of
the remainder [30]. We hence obtain the inequality,

|f (q,p) − f (q,0)| < c1p
2, ∀p ∈ (−δ,δ), (C2)

where c1 is a positive constant satisfying

c1 > sup
(q,ξ )∈(−π,π]×[0,δ]

|f (2)(q,ξ )|
2

. (C3)

For p satisfying |p| � δ, the inequality,

|f (q,p) − f (q,0)| < c2, (C4)

holds for some c2 > 0. The positive constant c2 can be chosen
so that

c2 = 2 sup
(q,p)∈(−π,π]×R

|f (q,p)|, (C5)

for instance. Putting c as

c = max{c1,c2/δ
2}, (C6)

we obtain the inequality (42). �

APPENDIX D: PROOFS OF EQS. (75) AND (76)

We set the considering integral as

C =
∫∫

μ

〈cos q〉J dqdp, (D1)

and we will prove C = 0. We divide the μ space into two parts
as

X1 = {(q,p)|k � k∗}, X2 = {(q,p)|k > k∗}, (D2)

where k is defined by (40) and

k∗ =
√

p2
∗

4M̄
+ 1. (D3)

Corresponding to this division of the μ space, we divide C as

C = C1 + C2, (D4)

where

C1 =
∫∫

X1

cos qdqdp, C2 =
∫∫

X2

〈cos q〉J dqdp. (D5)

For the region X1 we used Lemma 4 for A = 1 and B = cos q.
In the region X2, 〈cos q〉J is integrable but cos q is not, and
hence we cannot remove the average. We separately compute
C1 and C2.

For computing C1, the recurrence relation,

(2n + 3)k−2N [2n + 4] − (2n + 2)(1 + k−2)N [2n + 2]

+ (2n + 1)N [2n] = 0 (D6)

for the integrals,

N [2n] =
∫ 1

0

u2n√
(1 − u2)(1 − k−2u2)

du, (D7)

is useful, where the first two integrals are

N [0] = K(1/k), N [2] = k2[K(1/k) − E(1/k)]. (D8)

The upper boundary of X1 is expressed by

p = b(q), b(q) = 2
√

M̄k∗
√

1 − k−2∗ sin2(q/2), (D9)

and hence the term C1 is

C1 =
∫ π

−π

dq cos q

∫ b(q)

−b(q)
dp

= 8
√

M̄k∗
∫ π

0
(1 − 2 sin2(q/2))

√
1 − k−2∗ sin2(q/2)dq

= 8
√

M̄

[
−2k3

∗ − k∗
3

K(1/k∗) + 2k3
∗ − k∗

3
E(1/k∗)

]
.

(D10)

In the way of computations, we used the change of variable as
u = sin(q/2).

From the concrete form of 〈cos q〉J for k > 1, Eq. (39), the
second term C2 is directly computed as

C2 = 4
∫ ∞

k∗
dk

(
2k2E(1/k)

K(1/k)
− 2k2 + 1

)

×
∫ π

0
dq

2
√

M̄√
1 − k−2 sin2(q/2)

= 8
√

M̄

∫ ∞

k∗
[(1 − 2k2)K(1/k) + 2k2E(1/k)]dk.

(D11)
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Using the derivatives of K(1/k) and E(1/k),

d

dk
K(1/k) = (1 − k2)K(1/k) + k2E(1/k)

k(1 − k2)
,

d

dk
E(1/k) = K(1/k) − E(1/k)

k
,

(D12)

we can show the equality,

d

dk

[
−2(k3 − k)

3
K(1/k) + 2k3 − k

3
E(1/k)

]

= (1 − 2k2)K(1/k) + 2k2E(1/k). (D13)

This equality implies C2 = −C1, and C = 0 accordingly. �.
For the proof of (76), we set the integral of

F =
∫∫

μ

(
p2

2
〈cos q〉J + M̄

4
− M̄ 〈cos q〉2

J

)
dqdp. (D14)

We will prove F = 0. Using the relation (40), the equality (75)
and Lemma 4, we can modify F as

F = M̄

∫∫
μ

(
2k2 〈cos q〉J + 1

4

)
dqdp. (D15)

We divide the μ space into X1 and X2 again, and F into F1

and F2 accordingly, which are

F1 = M̄

∫∫
X1

(
2k2 cos q + 1

4

)
dqdp,

(D16)

F2 = M̄

∫∫
X2

(
2k2 〈cos q〉J + 1

4

)
dqdp.

We used the relation 〈k2〉J = k2, since k depends on (q,p)
solely through the Hamiltonian HA, and the integral HA

depends on J only. The remaining part of the proof can be
performed by a similar strategy with the proof of (75) and we
skip details. �
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