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Synthetic RNA-protein complex shaped like 
an equilateral triangle 
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1 Synthetic nanost.ructures consisting of blomacromolecules 
2 such as nucleic acids have been constructed using bottom·up 
3 approaches1

•
2
• In particular, Watson-Crick base pairing has 

4 been used to construct a variety of two· and three·dimensional 
s DNA nanostructures3•10• Here, we show that RNA and the ribo· 
6 somal protein L7Ae can form a nanostructure shaped like an 
1 equilateral triangle that consists of three proteins bound to 
8 an RNA scaffold. The construction of the complex relies on 
9 the proteins binding to klnk·turn (K·turn) motifs In the 

10 RNA ,,.,3, which allows the RNA to bend by ""60° at three pos· 
11 lt lons to form a triangle. Functional RNA-protein complexes 
12 constructed with this approach could have applications in nano· 
13 medlclne14•15 and synthetic blology14 •1 &-1s. 

14 RNA can be used to design and build synthetic nanoscale objects 
15 through a combination of naturally occurring structural motifs and 
16 non-Watson-Crick motifs such as loop-receptor-interacting 
17 motifs19, three-way junctions20 and K-turn motifs21.22• For 
18 example, synthetic RNA enzymes (ribozymes) have been designed 
19 and developed by combining molecular design and in vitro evol-
20 ution techniques with RNA scaffolds that have been computation-
21 ally designed and catalytic cores that are obtained from a pool of 
22 random sequences"-25. However, it is difficult to produce a 
21 va.riety of ribozymes and complex nanostructures using RNA 
2~ alone26-30, and this has led to interest in the use of RNA-protein 
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r~ r- L7Ae 

A 16.7 nm 

complexes (RNPs). Here, we use the interaction between the box 25 

C/D K-turn motif in RNA and the K-turn binding protein L7Ae 26 

as a building element11' 13•31 to design and synthesize a triangular 27 

RNP. Atomic force microscopy (AFM) revealed that L7 Ae induces 28 

a conformational alteration in the designed RNAs to form the tri- 29 

angular RNP objects. 30 

We chose L7Ae and the box C/D K-turn (box C/ Dmw) because 31 

they associate with high affinity, specificity and stability 32 
(Supplementary Fig. Sl and text). We designed an RNP nanostruc- 33 

ture containing three box C/ Dminl motifs and three L7Ae proteins 34 

(Fig. la,b). The box C/ Dmioi K-turn RNA, which is relatively flexible 35 

by itself, is bent to fix the bending angle of the K-turn at - 60° by 36 

binding to L7Ae (Fig. la)13; we refer to this nanostructure as 37 

'Tri-RNP' (triangular-shaped RNP). The Tri-RNP-1 (Fig. l b) was 38 

designed to have one side with a length of 16.7 nm (including 39 
both the double-stranded RNA (dsRNA) and L7Ae). The dsRNA 40 

region was flanked by the box C/Dmini K-turn motifs to form 41 

three apices (Supplementary Fig. S2a). L7 Ae could facilitate the for- 42 

mation of triangle-like RNPs by stabilizing the K-tum regions with o 
an angle of - 60° between the axes, whereas the dsRNA by itself 44 

could present heterogeneous RNA structures due to the flexibility 45 

of the K-turn (Fig. le). 46 

Two complementary RNAs (large (L-1)- and short (S-1)-strand 47 

RNAs) were prepared and hybridized to generate LS-1 RNA 48 

c 
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Figure 1 I Molea.ilar design of the triangular RNP (Tri·RNP). a, Induced-fit interaction between L7 Ae and the K-turn RNA motif. b, Three-dimensional model 
of Tri-RNP-1 composed of two RNA strands (the L-1 strand is shown in blue and red, the S-1 strand in green and grey) and three L7Ae proteins (yellow). 
Three K-turn regions can be observed (red and grey). c, Schematic representation of the triangular RNP formation. In the absence of L7 Ae, two RNAs form 
heterogeneous stl'1.lctures, including triangular, linear, circular or multimer forms composed of sets of L/S strands. In the presence of L7 Ae, the three K·turn 
regions are fixed at -60°, which facilitates the formation of the designed triangular RNP. 
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1 (Supplementary Fig. S2b). Electrophoretic mobility gel shift assay 
(EMSA) revealed that the L-1 and S-1 RNAs effectively interacted 
with one another to form the LS-1 RNA (Fig. 2, lanes 2- 4) . The 

4 LS-1 RNA (final concentration, SO nM), which contained three 
5 K-turn motifs, interacted with L7 Ae in a concentration-dependent 
6 manner (Fig. 2, lanes S- 9), indicating that L7 Ae specifically asso · 
7 ated with K-turn motifs of LS-1 RNA. Three bands we;e seen to 

move more slowly (that is, shifted up) in the presencep fthe differ-
9 ent concentrations of L7Ae (Fig. 2, lanes 7-9), imp1ying that the 

10 three L7 Ae proteins interacted with the three box (SID mini motifs 
11 in the RNA in the presence of excess L7 Ae ~ A derivative 
12 of the skeletal RNA (LS-I RNAmut) (Supplementary Fig. Slb) 
13 resulted in an impaired shift (Supplementary Fig. S3a). A derivative 
14 ofL7Ae (L7AeK37K79A; L7AeKKmut) with a weaker affinity to box 
15 C/ Dmini also failed to yield the shifted band under the conditions we 
16 used (Supplementary Fig. S3b). Thus, it is conceivable that the skel-
17 eta! RNA with K-turn motifs selectively interacts with L7 Ae to form 
18 an RNP. 
19 We next analysed the structure of the RNP using AFM 
20 (Supplementary Fig. S4). In the absence of L7 Ae, heterogeneous 
21 RNA structures (for example, circular, linear, triangle-like or ellip-
22 tical) were observed, presumably due to the flexible K-turn struc-
23 tures in LS-1 RNA (Fig. 3a, left; Supplementary Fig. SS, top). As 
24 expected, the number of triangular RNPs increased in the presence 
25 of L7 Ae (Fig. 3a, middle; Fig. 3b; Supplementary Fig. SS, middle). 
26 Furthermore, the numbers of multirners (doughnut-like shapes) 
27 and linear RNA structures were reduced in the presence of L7 Ae 
28 (Fig. 3a; Supplementary Fig. SS, top versus middle). AFM analyses 
29 confirmed that the facilitated formation of the triangular structures 
30 was due to the presence of both LS- I RNA and L7 Ae (Fig. 3a). In 
31 contrast, LS-1 RNAmut> which contains the heterogeneous RNA 
32 structures, did not form the triangular shape in the presence of 
33 L7 Ae (Supplementary Fig. S6). Si.milady, fewer structural conver-
34 sions were observed for the mixture of LS-1 RNA and L7 AeKKmuL 
35 (Supplementary Fig. SS, bottom). These results indicate that L7Ae 
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Figure 2 I Interaction between the RNA and the protein. Interaction 
between L7 Ae and the RNA designed to contain three box C/ Dm;ni motifs 
was analysed by EMSA. LS-1 RNA was assayed in the presence of increasing 
amounts of L 7 Ae (lanes 4-9). Three upshifted bands were observed in lanes 

'1 f -9, indicating the formation of RNP complexes that contain one, two or 
three L7Ae, respectively. The upper band (indicated by the black 
arrowhead), corresponding to the heterogeneous LS-1 RNA structures, was 

reduced in the presence of L7 Ae, suggesting either that l 7 Ae induced 
structural conversion of LS-1 RNA towards one particular form, or 
heterogeneous RN As interacting with L7 Ae shifted the band to the gel slot. 
Lane 1, single-stranded RNA marker; lane 2, L-1 RNA; lane 3, S-1 RNA; 
lane 4, LS-1 RNA. 

36 induces a structural alteration of the LS-1 RNA into a triangular were observed (Fig. 4a). The average and longest side lengths of 67 

37 form by binding to K-turn motifs. Tri-RNP-2 (27.S and 29.4 nm, respectively) were longer than 68 

38 The sizes of the observed triangular shapes and the other objects those of Tri-RNP-l (21.3 and 23.1 nm, respectively) (Fig. 4b). The 69 

39 (Supplementary Fig. SS) were determined by measuring the longest coefficient of variation of the lengths of the three sides of 70 

40 side of each object. The average length of the triangular objects was Tri-RNP-2 strongly indicated that most of the triangular objects 71 

41 21.7± 1.1 nm or 24.6± LS nm (Fig. 3c; Supplementary Fig. SS) in were equilateral-triangular (Supplementary Fig. S13), demonstrat- 72 

42 the absence or presence of L7 Ae, respectively, indicating the ing that the molecular design of Tri-RNP with different dimensions 73 

43 formation of the designed nanoscale RNP objects (see Supplementary is feasible. 74 

44 Fig. S4 for the observed size of Tri-RNP-1). The average height of the The effect of metal ions on the formation of Tri-RNP-2 was then 75 

45 object in the presence of L7 Ae was ~ 1.5 nm, which was consistent examined. AFM indicated that a certain portion ofLS-2 RN A formed 76 

46 with the height of the RNA duplexes on a mica surface27. a triangle-like structure in the absence ofL7 Ae under our EMSA con- 77 

47 To investigate whether the lengths of the three sides of each ditions (1.S mM MgC12 and lSO mM KC!). However, the number of 78 

48 triangular object were close to identical, the standard deviation of such triangular RNAs was reduced significantly, and the number of 79 

49 the three side lengths of each object (coefficient of variation of the linear and circular RN As increased, in the presence oflower concen- so 
50 three side lengths; 44 objects in total) was determined. The majority trations of metal ions (no MgC12 and 30 mM KCl) (Fig. 4c, top). The 81 

51 of the objects turned out to have an equilateral-triangle shape addition of L7 Ae facilitated the conversion of LS-2 RNA into the 82 

52 (Supplementary Fig. S7), allowing us to assume that the actual triangular structure (Fig. 4c, bottom). This result is consistent with 83 

53 RNP architectures were close to the designed ones. previous findings that the formation of the K-turn structure 84 

54 To construct a variant Tri-RNP, we designed a large triangular depends on the concentrations of metal ions and L7 Ae13·32. 85 

55 RNP, termed Tri-RNP-2, with 48 bp on one side (Supplementary Fina.Uy, we attempted to attach functional proteins to the three 86 

56 Figs S8 and S9) and a predicted length of 22.6 nm, including vertices of the triangular RNA scaffold (Supplementary Fig. Sl4a). 87 

57 dsRNA and L7Ae (Supplementary Fig. S4). As for Tri-RNP-1, EMSA and AFM analyses confirmed that three L7Ae- EGFP 88 

58 EMSA confirmed that the skeletal Tri-RNP-2 interacted with proteins effectively interacted with the RNA complex to form the 89 

59 L7 Ae (Supplementary Fig. SlOa). L7 AeKKmut exhibited no inter- triangular objects (Supplementary Fig. Sl4b- d). To investigate the 90 

60 action with the RNA under these conditions (Supplementary stability and versatility of the RNA triangle containing functional 91 

QlO 

61 Fig. SIOb). Furthermore, EMSA and size-exclusion chromatography proteins, the interactions were analysed by EMSA under physiologi- 92 

62 revealed that the Tri-RNP-2 was larger than the Tri-RNP-1, as cal conditions ~or Opti-MEM) (Supplementary Fig. SlS). The 93 Q2 
63 designed (Supplementary Figs Sll and S12). tested interac~· ns between the RNA and the proteins (L7 Ae, 94 

64 After size-exclusion chromatography to purify the Tri-RNP L7Ae-EYFP o L7Ae- GB1) confirmed that the RNP complexes 95 

65 complexes, we measured the sizes of Tri-RNP-l and Tri-RNP-2 under these p ysiological conditions are as stable as those under 96 

66 using AFM. As expected, RNP-1 and RNP-2 triangular forms our RNP bin ·ng condition. 97 
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Figure 3 I AFM ima~ing of Tri·RNP·l. a, AFM images of LS-1 RNA only ( left), LS-1 RNA with L7Ae (middle) and L7Ae alone (right). b, Lett/ magnified 

images of Tri·RNP~showing triangular structures . Right: three-dimensional Image of Tri-RNP-1. c, Distributions of the dimensions of~ in the absence 

(left) or presence (right) of L7 Ae. White and grey bars indicate data for the triangular and other-shaped RNPs, respectively. The average lengths of the 

longest side of the observed triangular RNA object in the absence and presence of L7Ae were 21.7±1.1 and24.6±1.5 nm, respectively. Note that although 

the designed Tri-RNP-1 had a length of 16.7 nm, the tip effect of the AFM suggested that the observed size would be - 24 nm (Supplementary Fig. 54). 

We have demonstrated that RNP can be used to design and con-
2 struct nanoscale triangular structures. Three proteins can be 
3 attached to the apices of the RNA triangle to minimize steric hin-
4 drance between the proteins; the rigid RNA rods physically separate 
s the proteins. This RNP design could potentially form a multifunc-
6 tional agent for biological applications14•33• For example, the 

triangular RNP could be used for controlling cellular signalling by 
means of some cell surface receptors (for example, tumour necrosis 

9 factor receptors) known to function as a trimer; certain receptors 
10 send signals only when trimerized or oligomerized34..35• The relative 
11 orientation of the three components of the receptors could be fixed 
12 by the cognate three ligands at the three apices of the resizable RNP. 
13 Thus, the RNP triangle could be used as a potent agonist or antag-
14 onist for this application. Moreover, because RNA can be tran-
1s scribed in cells. RNP nanostructures that are produced in vivo will 
16 be usable in regulating biological functions in cells. In addition to 

the L7Ae K-turn structure, many other high-resolution structures 17 

of RNP are known, including ribosomes and other ribozymes17•36• 1s 

Incorporation of their numerous RNP motifs in nano-architecture 19 

will significantly expand the repertoire of designable and usable 20 

nanosized molecules. In contrast to DNA nanotechnology, which 21 

relies on Watson- Crick base pairing3·10 to build nanostructures, 22 

our strategy using proteins to in~uce structural changes is advan- 23 

tageous, because it may be possible to construct RNA- protein com- 24 

plexes with functionalities comparable to ribosomes. 25 

Methods 26 
Molecular design of triangular RNPs. The three· dimensional atomic model of 27 
l7 Ae-box C/ D K-turn was obtained from PDB (ID: lRLG). Two bromo-uridines in 28 
the model were substituted to uridines, and an energy minimization protocol was 29 Q 3 
adapted. This modified l7 Ae-K·turn structural model was used to design triangular 30 
RNPs (Tri-RNP-1 and Tri·RNP-2) as follows. Three identical l7Ae-K-turn motifs 31 
were connected by three linear RNA double helices (each containing 'JA or 48 32 
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Figure 4 1 Comparison of the dimensions of Tri·RNP·l and Tri·RNP-2. a, AFM images of LS·l or LS-2 RNA with L7Ae. Images of the triangles are also 

snown in the lower panels. b, Sizes of the purified Tri-RN~- nd Tri·RNP·R alysed by AFM. The average lengths of the longest side of each of the observed 
triangular objects (Tri·RNP-1 and Tri·RNP-2) were 23.1± . an 29.4±1.9 n"J~ respectively. c, Top, the absence of L7Ae and lower concentrations of metal 

ions (no MgCl2 and 30 mM KCI) resulted in linear and cir lar RNAs and tater triangles. Bottom, the addition of L7 A~cllitated the formation of triangular 

structures. r-+- ) 
\.. 1op (boi\"ol'l'I) o.t lowel' conceY-tl'a.tior.S oh ·net c>. \ loM 

Watson- Crick base pairs for Tri-RNP·l or Tri-RNP-2, respectively) to form an templates for in vitro transcription were generated by polymerase chain reaction 13 
equilateral triangle. To check the suitability of the conformation, the Tri-RNP (PCR) with KOO-plus DNA polymerase (Toyobo). All RNA molecules were 14 

3 structure was compared with the energy-minimized structure. We confirmed the transcribed in vitro by a MEGAshortscript kit (Arnbion). To purify the transcripts, 15 
4 lack of significant structural differences between the two structures, indicating that denaturing polyaCI'}famide gel electrophoresis (PAGE) was performed. After the 16 
5 the designed model was relatively stable. Molecular designs and simulations were recovery of RN As, their concentrations were measured in a NanoDrop (Thermo 17 
6 performed with Discovery Studio (Accelryo). To ensure that the three double-helix Scientific). 18 

regions selectively formed the designed secondary structure, the sequences of the 
DNA tetrahedral nanostructure were used'. Protein preparation. L7 Ae and its mutant (L7 AeK37K79A) were prepared as 19 

described previously12.J1• Briefly, the pET 28-b+ vector (Novagen) was selected for 20 
9 DNA lllld RNA preparat.ions. AU DNA templates and primers used in this study the cloning and expression of the recombinant protein L7 Ae from A. fulgidus . The 2 1 

22 10 were purchased from Hokkaido System Science or Greiner Japan (Supplementary plasmid (pET 28·b + -L7Ae) was transformed into E.coli. BL-21 (DE3) (pLysS) 

Qll 

11 Table I). The minimal box CJD motif (box C/ D.,,;,,;) at the three vertices of the cells. Protein expression was induced with I mM~ and the culture was 
12 triangle was prepared based on the sequence from Archaeoglobus Julgidus" . DNA incubated overnight at 30 °C. The cells were h1 ed by centrifugation at 

23 Q4 
24 
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6,000 r.p.m. for 20 min at 4 •c and resuspended in sonication buffer (SO mM 
phosphate buffer, pH 8.0, 300 mM NaCl) at 4 •c. The suspension was sonicated, 
and the lysate incubated for 15 min at 80 •c to denature endogenous protein, which 
was removed by centrifugation at 6,000 r.p.m. for 20 min at 4 °C. The supernatant 
contained the recombinant hexahistidine-tagged l7 Ae protein. l7 Ae was purified 
from the supernatant using Ni-NT A agarose following the manufacturer's directions 
(Qiage.n). The purity of the protein was confirmed by sodium dodecyl sulphate 
(SDS)-PAGE. The eluted protein was concentrated using a YM-3 microcon 
(Millipore), and dialysed against buffer containing 20 mM HEPES-KOH (pH 7.5), 
ISO mM KCJ, J .5 mM MgCl2 and 5% glycerol. The concentration of the purified 
l7 Ae protein was determined using the Bradford protein assay (Bio-Rad). The 
purified l7 Ae protein was stored in storage buffer (20 mM HEPES-KOH (pH 7.4), 
150 mM KCl, 1.5 mM MgCl2 containing 40% glycerol) at -20 °C. 

14. Guo, P. RNA nanotechnology: engineering, assembly and applications in 73 
detection, gene delivery and therapy. ]. Na11osci. Nanotechnol. 5, 74 
1964-1982 (2005). ,83~-Blf2 75 

15. Guo, P. The emerging field of RNA nanotechnology. Nature Nanotech. ~2010). 76 QB 
16. Saito, H. & Inoue, T. Synthetic biology with RNA motifs. Int. ]. Biochem. Cell 77 

Biol. 41, 398- 404 (2009). 78 
17. Saito, H . & Inoue, T. RNA and RNP as new molecular parts in synthetic biology. 79 

J. Biotechnol. 132, 1-7 (2007). 80 
18. Win, M. N., Liang, J. C. & Smolke, C. 0. Frameworks for programming 81 

biological function through RNA parts and devices. Chem. Biol. 82 
16, 298- 310 (2009). 83 

19. Jaeger, L. & Chworos, A. The architectonics of programmable RNA and DNA 84 
nanostructures. Curr. Opin. Struct. Biol. 16, 531-543 (2006). 85 

20. leontis, N. B., l escoute, A. & Westhof, E. The building blocks and motifs of 86 
Electrophoretic mobility shift assay (EMSA). Mixtures ofO.S µ.I each ofl-1 or l -2 RN A architecture. Curr. Opin. Struct. Biol. 16, 279-287 (2006). 87 
and S-1 or S-2 RNA (final concentration, SO nM}, 2 µI of Sx binding buffer (final 21 . Matsumura, s., Ikawa, Y. & Inoue, T. Biochemical characterization of the 88 
concentrations, 20 mM HEPES-KOH (pH 7.5). ISO mM KCl, 1.5 mM MgC12, kink-tum RNA motif. Nucleic Acids Res. 31, 5544-5S51 (2003). 89 
2 mM OTT, 3% glycerol) and 6 µI of Milli-Q water were heated at 80 •c for 3 min 22. lescoute, A., Leontis, N. B., Massire, c. & Westhof, E. Recurrent structural RNA 90 
and then cooled at room temperature for 10-30 min to fold LS-I or LS-2 RNA. motjfs,-isostericity matrices and sequence alignments. Nucleic Acids Res. 91 
After the addition of I µl of !Ox l7Ae solution, mixtures were kept at room 33 {200SJ.'- , 2,qS-'2.'tO'I 92 Q9 
temperature for I 0 min to allow binding of the RNA and l7 Ae. Mixtures added to 23 n~-- y T d K M s & l T D th · d 93 . ufa\Ya, ., su a, ., atsumura, . noue, . e novo syn es1s an 
I µ.l of dye (0.25% bromophenol blue (BPB), 0.25% xylene cyanol (XC), 30% development of an RNA enzyme. Proc. Natl Acad. Sci. USA 101, 94 
glycerol) were run ma native polyacrylamide gel with O.Sx ~either at room 137SO-l37SS (2004). 93 
temperature or at 4 °C. After electrophoresis, gels were stained Wt~ SYBR Green 11 24, Penchovsky, R. & Breaker, R. R. Computational design and experimental 96 
(Molecular Probes) and observed using FLA-3000/ 7000 (Fujifilm). Between 0.8 and validation of oligonudeotide-sensing allosteric ribozymes. Nature Biotechnol. 97 
S µM of L7Ae, no significant difference was ?bserved in ~e gd-bhift of RNP. An 23, 1424- 1433 (2005). 98 
excess amount ofl7Ae (- 400 nM) was required for full -bmdm~ to LS-RNA 2S. Voytek, s. B. & Joyce, G. F. Niche partitioning in the coevolution of2 distinct 99 
(SO nM) under our tested EMSA conditions, probably due to a f~ding problem in RNA enzymes. Proc. Natl Acad. Sci. USA 106, 7780- 7785 (2009). 100 

the K·tum structures. Tris/ Boro.te/~PTA buffer 26. Horiya, ~·et al. RNA.~GO: magn~sium-dependent formation of specific RNA 101 
Atomic force microscopy. Observations were performed in air. RNA and/ or assemblies through ki~1~g mteracbOns. Ch~.m. Biol. 10, 645.-6S4 ~2003): 102 
protein samples were prepared as described for EMSA. A fresh mica surface was 27. Chworos, A. et al. Building programmable Jigsaw puzzles with IU\A. Science 103 
coated with I 0 mM spermidine. The prepared samples (SO nM RNA with or without 306, 2068- 2072 (2004). . . . 104 
I µM L7Ae) diluted with water (-JO- to 20-fold) were applied onto the mica for 28. Ko'. S. H., Chen, Y., Shu, D~ Guo, P. & Mao, ~· Revers1bl~ switching of pRNA 105 
- 10 min, rinsed with J ml water, and dried by blowing with N

2
• The specimen was actmty on the DNA packaging motor ofbactenophage phi29. ]. Am. Chem. Soc. 106 

observed using a NanoScope Ula (Veeco) equipped with a type E scanner and a l30, l 7684-l 7687 (2008). 107 
cantilever made of silicon nitride (OMCL-AC160TS; Olympus) in tapping mode. 29. Severcan, I. et al. A polyhedron made of tRNAs. Nature Chem. 2, 108 
AFM images were analysed with the software accompanying the imaging unit 772-779 (2010). 109 
(Veeco). 30. Afonin, K. A. et al. In vitro assembly of cubic RNA-based scaffolds designed in 110 

silico. Nature Nanotech. S, 676-682 (2010). Ill 
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