<table>
<thead>
<tr>
<th>Title</th>
<th>Prenatal diagnosis of anterior sacral meningocele.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Sumi, A; Sato, Y; Kakui, K; Tatsumi, K; Fujiwara, H; Konishi, I</td>
</tr>
<tr>
<td>Citation</td>
<td>Ultrasound in obstetrics & gynecology (2011), 37(4): 493-496</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2011-03-08</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/197587</td>
</tr>
<tr>
<td>Right</td>
<td>© 2011 ISUOG. Published by John Wiley & Sons, Ltd; This is the peer reviewed version of the following article: Sumi, A., Sato, Y., Kakui, K., Tatsumi, K., Fujiwara, H. and Konishi, I. (2011), Prenatal diagnosis of anterior sacral meningocele. Ultrasound Obstet Gynecol, 37: 493–496, which has been published in final form at http://dx.doi.org/10.1002/uog.8852; この論文は出版社版ではありません。引用の際には出版社版をご確認ご利用ください。This is not the published version. Please cite only the published version.</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>author</td>
</tr>
<tr>
<td></td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
Prenatal diagnosis of anterior sacral meningocele

Akiko Sumi, Yukiyasu Sato*, Kazuyo Kakui, Keiji Tatsumi, Hiroshi Fujiwara, and Ikuo Konishi

Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine

*Address correspondence and reprint requests to: Yukiyasu Sato, M.D., Ph.D.
Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan.
Tel; 81-75-751-3269: Fax; 81-75-761-3967: E-mail; yukiyasu@kuhp.kyoto-u.ac.jp

Short title; anterior sacral meningocele
Keywords; Currarino syndrome, cloacal anomaly, enteric duplication cyst, hydrometrocolpos, MRI
Abstract

Prenatal diagnosis of anterior sacral meningocele (ASM) is an extremely rare condition and there has been only one English case report posted on the website. A 36-year-old primigravida was referred for huge fetal pelvic cyst noted in routine ultrasonography (USG) at 19+4 weeks’ gestation. Neither fetal USG nor magnetic resonance imaging (MRI) at 20+5 weeks’ gestation could detect communication between the cyst and the spinal cord. Since extension of the pear-shaped cyst through the pelvic diaphragm down to the perineum was reminiscent of dilated vagina and uterine cervix, tentative diagnosis of hydrometrocolpos secondary to imperforate hymen had been considered.

In follow-up MRI at 33+5 weeks’ gestation, narrow stalk connecting the pelvic cyst and the spinal canal through the anterior sacral foramen was clearly delineated, allowing us to reach the prenatal diagnosis of ASM.
A 36-year-old nulligravida became pregnant after in vitro fertilization and embryo transfer. She was referred for huge fetal pelvic cyst noted in routine ultrasonography (USG) at 19+4 weeks’ gestation.

Fetal USG at 20+5 weeks’ gestation showed pear-shaped pelvic cyst and bilateral hydronephrosis with normal amniotic volume (Figure 1A and 1B). Appearance of the external genitalia exhibited normal female phenotype. The pelvic cyst was located posterior to the bladder and extended down to the perineum. The size of the cyst was unchanged during the fetal urination, indicating that the cyst was not communicated with the bladder. Extrinsic ureteral compression by the cyst was considered to be a primary cause of bilateral hydronephrosis. Fetal magnetic resonance image (MRI) taken on the same day revealed that the pelvic cyst with multiloculated nature was located contiguous to the normal-appearing sacrum (Figure 1C). Differential diagnosis included cloacal anomaly, enteric duplication cyst, hydrometrocolpos secondary to imperforate hymen, and anterior sacral meningocele (ASM). Cloacal anomaly seemed unlikely due to lack of communication between the cyst and the bladder. Enteric duplication cyst was implausible because the cyst had no peristaltic movement. Communication of the cyst with spinal canal through sacral bony defect, which is characteristic of ASM, was not detected. Extension of pear-shaped cyst through the pelvic diaphragm down to the perineum was reminiscent of dilated vagina and uterine cervix. Although multiloculated nature of the cyst could not be fully explained, tentative diagnosis of hydrometrocolpos secondary to imperforate hymen was considered.

Diameter of the renal pelvis was relatively constant and amniotic volume was preserved throughout the pregnancy, although the size of the pelvic cyst was gradually increased. The second MRI was taken at 33+5 weeks’ gestation to reevaluate the diagnosis. In the T1-weighted image, the bowel containing hyperintense meconium signal was visualized separately from the cyst (Figure 2A). Narrow stalk connecting the pelvic cyst and the spinal canal through the anterior sacral foramen was clearly delineated in the T2-weighted image (Figure 2B and 2C). Accordingly, we reached the prenatal diagnosis of ASM. Additional meticulous USG search based on the MRI
finding, however, failed to visualize the connecting stalk.

A female baby weighing 2530 g was vaginally born at 38+2 weeks’ gestation with normal Apgar score. Her left buttock was bulging with soft cystic mass palpable beneath the skin. No abnormal neurological finding was noted. Postnatal MRI at 5 days old (Figure 3A) confirmed the communication between the pelvic cyst and the subarachnoid space through left anterior sacral foramina (S3/4 and S4/5). Multilocular cyst in the buttock region seemed distinct from the pelvic cyst. Helical computed tomography at 51 days old (Figure 3B) revealed the defect in posterior aspect of the vertebral bones below L3. The neonate thrived and remained asymptomatic except for mild constipation. The operation was performed with posterior approach at 52 days old. Since the posterior approach failed to identify the pedicle of the pelvic cyst, the second operation was planned at 87 days old. Both the pelvic cyst and the buttock cyst were successfully resected with abdominal and perineal approaches, respectively. Histologically, the wall of the pelvic cyst was lined by ependymal cells and contained fibrous stroma with neuronal tissue, indicating its meningeal origin. On the other hand, the buttock cyst was composed of skin, fat, muscle, and mature neural tissue and was diagnosed as mature cystic teratoma.
ASM is herniation of meningeal sac into the presacral retroperitoneal space through a congenital defect in the sacrum or through the widened anterior sacral foramina. Prenatal diagnosis of ASM is an extremely rare condition and to our knowledge, there has been only one English case report posted on the website.

Currarino syndrome is a unique complex of congenital caudal anomalies. These include anorectal malformation, sacral bony abnormality, and presacral mass (meningocele, teratoma, enteric duplication cyst, or any combination of these). Currarino et al. proposed incomplete separation of the neuroectoderm (future spinal cord) from the endoderm (future intestinal tract) as its possible embryonic etiology.

Half of the cases of Currarino syndrome are inherited and one or two features of the triad are commonly absent in the same family members, suggesting that this syndrome should be considered as a spectrum. In this respect, the present case is considered to fall into the category of incomplete Currarino syndrome.

The age and the symptom at first presentation range widely in the patients with Currarino syndrome. Associated anorectal malformation can cause bowel obstruction, leading to the early diagnosis in infancy. In the absence of anorectal malformation, however, most of the patients remain asymptomatic until early adult life. These patients usually present with symptoms resulting from compression of surrounding tissue by enlarging presacral mass or acute meningitis. Occasionally, the incidental discovery of a pelvic mass is the first presentation. Thus, indication for surgical resection of asymptomatic ASM still remains to be determined.

When fetal presacral cyst is encountered, a variety of congenital anomalies including cloacal anomaly, enteric duplication cyst, hydrometrocolpos secondary to imperforate hymen, and ASM should be considered. Firstly, exclusion of cloacal anomaly, which is defined as a confluence of the rectum, vagina, and urethra into a single common channel, is of great importance because this anomaly usually requires intensive postnatal care with the worst outcome. For this purpose, one should evaluate possible communication between the cyst and the surrounding organs. USG is a suitable measure to see the communication with the bladder, because process of emptying the bladder into the cyst can be easily visualized. In contrast, USG detection of
communication with the bowel may be difficult. T1-weighed MRI can highlight the meconium and visualization of meconium-containing bowel as a separate structure from the cyst contributes to exclusion of cloacal anomaly. Secondly, since aspiration of meningeal cyst could induce chemical meningitis resulting in serious neurological sequelae, potential communication between the cyst and the spinal canal should be meticulously evaluated. When the communicating stalk is too narrow for USG detection as in the present case, MRI may be an essential tool for the prenatal diagnosis of ASM.

Figure legend

Figure 1. Coronal (A) and horizontal (B) fetal ultrasonogram and sagittal T2-weighed fetal magnetic resonance image (C) at 19 weeks’ gestation.

A. Pear-shaped pelvic cyst (asterisk) is extended down to the perineum.

B. Pelvic cyst (asterisk) is located posterior to the bladder (arrowhead). Extrinsic ureteral compression by the pelvic cyst causes left (L) and right (R) hydronephrosis.

C. Pelvic cyst with multiloculated nature (arrow) is contiguous to the sacrum.

Figure 2. Fetal magnetic resonances images (MRI) at 33 weeks’ gestation.

A. Coronal T1-weighed MRI. Bowel containing hyperintense meconium signal (black asterisk) is delineated as a separate structure from pelvic cyst (white asterisk).

B. Sagittal T2-weighed MRI. Narrow stalk (arrow) connects the pelvic cyst and the spinal canal through the anterior sacral foramen. Multilocular lesion (arrowhead) is located caudally to pelvic cyst.

C. Horizontal T2-weighed MRI. Narrow stalk (arrow) connects the pelvic cyst and the spinal canal through the left anterior sacral foramen.

Figure 3. T2-weighed magnetic resonances image at 5 days old (A) and helical computed tomography at 51 days old (B)

A. Huge pelvic cyst is connected with the spinal canal (arrow). Note that caudal multiloculated lesion (arrowhead) is distinct from the pelvic cyst.

B. Posterior aspect of the vertebral bones below L3 is defective.
Figure 1
Figure 3

A

B

L3

L4

L5

L3

L4

L5

anterior aspect

posterior aspect