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Expressions of pattern sequences

By

Yohei TACHIYA®

Abstract

In this paper, we investigate a basis of the module generated by special pattern sequences
and study the expressions of pattern sequences using the basis. As an application, we give
some linear relations between the pattern sequences in the balanced ternary.

§1. DPattern sequence

Let ¢ > 2 and r be fixed integers with r € {0,1,...,¢—2}. Then any integer n > 1
is uniquely expressed as

k—1
n = Z biqi, b; € Eqﬂa, b1 > 0,
=0

where ¥, , = {-r,1 —r,...,0,1,...,¢g — 1 —r} D {0,1}. The string of (g, r)-digits
(n)g,r :=bg—1---b1bg is called the (g, r)-expansion of n. The (g, 0)-expansion is the or-
dinary g-ary expansion. These numeration systems are called (g, r)-numeration systems
and various aspects are discussed in, e.g., [1], [4], and [6].

A word or a pattern over ¥, , is a finite string of elements in ¥, ,. The set of all
finite nonempty words is denoted by %7 ;.. For w =b;_;---biby € X7 ;. with b; € ¥,

we define the length |w| := I. We write w® = ww---w (k times), in particular w®

*
q,m’

(possibly overlapping) occurrences of w in the (g, r)-expansion of n. Here if w # 0! for

denotes the empty word. For w € X we define eq,(w;n) to be the number of
any [ > 1, then in evaluating e, ,(w;n) we assume that the (g, r)-expansion of n starts
with arbitrary long strings of zeros. On the other hand, if w = 0! for some [ > 1 we just
count the number of occurrences of w in the (g, r)-expansion of n. Define e, ,(w;0) =0

Received May 25, 2011. Accepted July 22, 2011.

2000 Mathematics Subject Classification(s): 11A63

Key Words: (q,r)-expansion, {q,r)-numeration systems, pattern sequences
*Graduate School of Science and Technology, Hirosaki University

e-mail: tachiya@cc.hirosaki-u.ac.jp

(© 2012 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



438 YOHEI TACHIYA

for any w € X} .. The resulting sequence {e,-(w; n) }n>0 is sometimes called the pattern
sequence for the pattern w in the (g, r)-numeration system (cf. [1]).

Example 1.1. (i) e20(1;n) =the number of 1 in the base-2 expansion of n.
(ii) {es1(1;n)tnso = {0,1,1,1,2,1,1,2,1,1,2,2,2,3,1,... }.

Kirschenhofer [2] proved an asymptotic formula for the mean value of the average
of ego(w;n) (n =1,2,...,N). Similar results were obtained in any (g, r)-numeration
systems by Kirschenhofer and Prodinger [3]. Uchida [12] gave necessary and sufficient
conditions for the generating functions of pattern sequences defined in a fixed g-ary nu-
meration system to be algebraically dependent over C(z). This result was generalized
by Shiokawa and the author [7] to any (g, 7)-numeration systems. Generating functions

and their values defined by digital properties of integers have also been studied in [5],
[9], [10], and [11].

For w = b;_1---b1bg € ¥ . with b; € ¥ -, we define [w], , := Zi;é b;q*. Then the
pattern sequence satisfies the following properties.

Lemma 1.2 ([8, Lemma 1]).  Let w € X%, with |w| = 1. For any integer n > 0,

q,r
we have
qg—1-—r
(1.1) eq.r(w;n) = Z eq.r(bw;n),
b=—r
and if w # 0
q—1—r
(1.2) eqr(win) = Z eq.r(wb;n) + 0(w;n),
b=—r
where

S(w:n) = {1 if n=[wlg, (mod a),

0 otherwise.
Example 1.3. In the 2-ary number system, we have by (1.2)
e2,0(1;1) — e2,0(10;n) — e2,0(11; 1) = 6(n),

where {6(n)},>0 := {0,1} is a periodic sequence with a period whose length is two.

*
q,7m7?

eq.r(w,n;) — +o0o (j — +o0) for positive integers n; defined by (n;),, = lw? (j >

For any w € X} ., the pattern sequence {eq,(w;n)},>0 is not periodic. Indeed,

1). On the other hand, for some patterns wi, ..., wnm € X . (m > 2) the nontrivial
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linear combination over Z of the corresponding pattern sequences can be periodic (e.g.
Example 1.3).

§2. Periodicity

In this section, we give necessary and sufficient conditions for a linear combination
of pattern sequences to be periodic (cf. [8, Theorem 1]).

Theorem 2.1.  Letm > 2 andwy, ..., wy, € Xy . withl = max;<ij<m |wi|. Then
the following three statements are equivalent:

(i) There exist c1,...,cm € Z not all zero such that {31 cieqr(wi;n)}n>0 is a peri-
odic sequence.

(ii) There exist c1,...,cm € Z not all zero such that {Y i~ cieq.r(wi;n)tn>o is a purely

periodic sequence with a period whose length is ¢' 1.

(iii) The rank of the matriz

(2.1) (eq,r(wi; n) — eq,r(wz’;ﬁ))ql—lgngql,lgigm

is less than m, where n =7 (mod ¢'~1) with 0 <7 < ¢! 1.

Remark 1. For any given patterns, the condition (iii) can be checked in finite
steps. Furthermore, if the condition (iii) is satisfied, then we can find ¢y,...,¢,, € Z
not all zero such that the sequence

{Cleq,r(wl; n) +o At Cmeq,r(wm§ n)}nZO
is periodic (cf. [8, Proof of Theorem 1)).

Example 2.2. We consider the so-called balanced ternary, namely, the (3,1)-
=1

numeration system. For the patterns w; := 01, wy := 10, w3 := 11, and wy : 1

(1:=—1€ X3;), the matrix (2.1) is given by

10010 0 1
10000 11
0001110 |’
00001 00

(e31(wiz;n) — e31(wisM))3<n<g, 1<i<a =

which is of the rank 3 (< 4). Hence, by Theorem 2.1, there exist ¢, co,c3,c4 € Z not
all zero such that

{6163,1(01; n) + 0263,1(10; TL) + 0363,1(1T; TL) + 6463,1(T1; n)}nzo
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is a purely periodic sequence with a period whose length is three. Here we can find such
¢; by using the formulas (1.1) and (1.2). Indeed, we get by (1.1) and (1.2)

63’1(1; 7’L) = 63’1(T1; n) + 63’1(01; 7’L) + 63’1(11; n),

e31(l;n) =e31(11;n) + e3,1(10;n) + e3,1(11;n) + 6(n),
with {5(n)}n>0 = {0, 1,0}, respectively, so that

{63’1(01; n) — 63’1(10; n) — 63’1(1T; 7’L) + 63’1(T1; ’n)}nzo = {O, 1, O}

Example 2.3. Any nontrivial linear combination over Z of three pattern se-
quences in {e3 1(w;;n)}n>0 (¢ = 1,2,3,4) can not be periodic. In particular, any three
pattern sequences in {eg 1(w;;n)}n>0 (i =1,2,3,4) are linearly independent over Z as
a sequence.

§3. The module M,

In what follows, let Py(Z) be the set of all purely periodic sequences of integers
{a(n)}n>o0 with (0) = 0 and a period whose length is ¢*. Note that Py_1(Z) C Py(Z)
(k> 1). Denote by M; the module generated by the pattern sequences {eq »(w;n)}n>0
for w € ¥y . with |w| <.

Proposition 3.1.  For anyl > 1, the module M; contains P,_1(Z) as a submod-
ule and there is no other periodic sequence in M;.

Proof of Proposition 3.1. The assertion is trivial for [ = 1. Let [ > 2. For any
w e Xy, with |w| =1—1 and w # 0!, we have by (1.1) and (1.2)

q—1—r q—1—r

(3.1) Z eq,r(aw;n) — Z eq.r(wb;n) = 6(w;n),
a=-r b=—r

where |aw| = |wb| = [ and §(w;n) € P_1(Z). Let {\(n)}tnso (i = 1,...,¢71 = 1)
denotes the purely periodic sequence with a period whose length is ¢/~' such that
Ai(i) = 1and \i(j) = 0 (j # i) for j = 0,1,...¢""1 — 1. Clearly, these sequences
generate P,_1(Z). By definition, {6(w;n)}n>0 = {Ni(n)}n>0 if [w]yr =i (mod ¢'71).
Putting S = {w € X}, ||lw] = I — 1L,w # 07!}, we see that [w]y, # [w]q,r (mod
¢ 1) for w,w’ € S with w # w’ and 4S = ¢'~! — 1. Hence we deduce from (3.1)
i) }ns0 € My (i = 1,2,...,¢"1 — 1), and therefore P,_1(Z) C M,. Furthermore,
if {371 ciegr(wizn)}tn>0 € M; is a periodic sequence of integers, then by Theorem
2.1 (i)« (ii) it must be purely periodic with a period whose length is ¢!, where k =
maxi<;<m |w;| < 1. Noting that Py_1(Z) C P,_1(Z), we have the conclusion. [
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Example 3.2. Let ¢ =3, r =1, and [ = 3. Putting {e31(w;n)}n>0 := (w;n)
for brevity, we have

(101;n) + (001;n) + (101;n) — (01T;n) — (010;n) — (011;n) = {0,1,0,0,0,0,0,0, 0},
(T11;n) + (01T;n) + (11T;n) — (111;n) — (110;n) — (111;n) = {0,0,1,0,0,0,0,0,0},
(110; ) + (010; ) + (110;n) — (101;n) — (100;n) — (101;7) = {0,0,0,1,0,0,0,0,0},
(T11;n) + (011;n) — (11T;n) — (110;n) =1{0,0,0,0,1,0,0,0,0},

(01I1;n) + (111;n) — (110;n) — (111;7) = {0,0,0,0,0,1,0,0,0},
(T10; n) + (010; 1) 4 (110; ) — (10T;n) — (100;n) — (101;7n) = {0,0,0,0,0,0,1,0,0},
(T11;n) + (011;n) + (111;n) — (T1T;n) — (110;n) — (T11;n) = {0,0,0,0,0,0,0,1,0},
(101;n) + (001;n) 4 (10T;n) — (011;n) — (010;n) — (011;n) = {0,0,0,0,0,0,0,0,1}.

§4. Expressions of pattern sequences

In this section, we introduce the expression of pattern sequence by using some basis.
First, we give a basis of the module generated by pattern sequences for words of length
not exceeding [ and study the expressions of pattern sequences using the basis. Similar
results are obtained for the module generated by all pattern sequences. The proofs of
the following Theorems 4.1-4.4 are given in [8].

For any integer [ > 1, we put

‘/2 = {'U) = bl—l cee blbO € EZ’T | bz S Eq,'rabl—l 7é O} U {Ol}7
where 1V, = (¢ — 1)¢ ! + 1.

Theorem 4.1. Let | > 1 be a fixed integer. The module M; is generated by
the pattern sequences {eqr(w;n)}tn>o for w € Vi mod P,_1(Z). More precisely, for any

w € Xy . with w <, there exist distinct patterns wy, ..., wm € Vi and nonzero integers
C1,...,Cm such that

m
(4.1) {egr(win)}n>0 = {Z cieq,r(wi;n)} mod P,_1(7Z),

i=1 n>0

where c1,...,cm € {1,—1} if w # 0% for any k < 1 — 2. Furthermore, the pattern
sequences {eq.r(w;n)}n>0 (w € Vi) are linearly independent over Z mod P;_1(Z).

Theorem 4.2.  Let w € ¥y . with lw| =k < 1. Then the number m = m(w) of
words in Vi necessary for the expression (4.1) is bounded by, if ¢ = 2,

2l=k (k=1,2),

(42) m = m(w) < {2l—2 + 9l—k (k =3,... ,l),
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and} qu > 3>

-1 (

=~
I

q
43) m=mw)< 2¢' = 3¢ (

2(1-3) 7= (=)

where the equalities in (4.2) (k=1,2), (4.2) 3 <k <), and (4.3) (1 <k <) hold for
w =011, w = 0210, and w = 011, respectively.

ayd
I
w N =
~

D),

For [ > 1, we define
Ul = {w = bl—l .. 'blbo € 2277’ | bz c Eq’,«, bo 7é O,bl_l 7é 0} C ‘/l

We denote by M the module generated by all pattern sequences {eq ,(w;n)}n>o for
w € Xy ., 50 that M = Up°, M;. By Proposition 3.1, the module M contains Ui°, P, _1(Z)

as a submodule and there is no other periodic sequence in M.

Theorem 4.3. The module M is generated by the pattern sequences
{egr(win)fn>o for w € U2 U; U {0} mod U2\ P—1(Z). More precisely, for any

w e X, with |w| = 1, there exist distinct patterns wy, ..., w, € Us_ U; U {0} and
nonzero integers ci, ...,y Ssuch that

m
(4.4) {egr(w;n)}n>0 = {Z cieq’r(wi;n)} mod P,_1(Z).

=1 n>0
Furthermore, for distinct wq,...,ws € us2,U; U {0}, the pattern sequences
{eqr(wisn)}n>0, ..., {egr(ws;n)}n>0 are linearly independent over Z mod Pi_1(Z),
where | = max{|wi|, ..., |ws|}.

For a real number ¢, |t| denotes the greatest integer not exceeding ¢.

Theorem 4.4.  Let w € X} . with |lw| =1 > 1. Then the number m = m(w) of

words in U5_U; U {0} necessary for the expression (4.4) is bounded by

| (1=1),
(1—-1)(¢g—1) (1=2,3,4),
S (a-1* 5] -1) (= 5),

where the equalities hold for w = 0" (I = 1,2,3,4) and w = 0910F with j = [(I —1)/2]
and k= |1/2] (I >5).

m=m(w) < 1+ (¢g—1
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Example 4.5. By Theorem 4.1, {e31(01;n)},>0 can be written as a sum of
pattern sequences for words in V; and a purely periodic sequence with a period whose
length is 37!, where j > 2. If j = 2,3 we have

e31(01;n) = e3,1(11;n) + e3.1(10;n) — e3.1(11;n) + a(n),

= 63’1(111; n) + 63’1(1T0; n) + 63’1(1T1; n) + 63’1(10T; n) + 63’1(100; 7’L)
+e3,1(101;n) — e31(111;n) — e31(110;n) — e31(111;n) + B(n),

where {a(n)}n>o := {0,1,0} and {B(n)}n>0 := {0,1,1,1,1,0,0,0,0}. This example
implies also that pattern sequences for distinct words in V; U V; (i < j) can be linearly
dependent over Z modulo P;_;(Z). On the other hand, Theorem 4.3 gives the expression

63’1(01;77/) = 63’1(1; n) — 63’1(T1; 7’L) — 63’1(11;77/).

The expression (4.4) in Theorem 4.3 admits ¢; with |¢;| > 2 even in the case w # 0,
contrary to that of (4.1) in Theorem 4.1. For example, for w = 010 # 0% we have

e3,1(010;n) = e3,1(1;n) — e31(11;n) — e3,1(11;n) — 2e3,1(11;n) + e31(111;n)
+e3,1(111;n) 4 e3,1(111;n) 4+ e3,1(111;n) — y(n),

where y(n) =1 if n =1 (mod 9), = 0 otherwise.
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