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Zeros of partial zeta functions off the critical line

By

Yoonbok LEE*

Abstract

We extend the joint universality theorem for Artin L-functions L(s,x;, K/Q) from the
previously known strip 1 — i < Res < 1fork=#G(K/Q) to the maximal strip % < Res<1
under an assumption of a weak version of the density hypothesis. Then, we study zeros of partial
zeta functions ((s,.A) inside the half of the critical strip as an application of universality.

§1. Introduction

Let Q(m,n) = am? + bmn + cn? be a positive definite quadratic form with its
discriminant D = b% — 4ac < 0 and a,b,c € Z. We define the Epstein zeta function
attached to ) by

1
E(S,Q): Z W’ ReS> 1.
(m,n)#(0,0) ’

Then, it has a meromorphic continuation to C with one simple pole at s = 1, and has
the functional equation

B(s) = (ﬁ

5 > [(s)E(s,Q) = (1 —s).

Voronin([9] or [4]) studied zeros of E(s,Q) inside the critical strip and proved the
following theorem.
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Theorem 1.1 (Voronin).  Suppose that the class number of Q(v/D) is h(D) >
1. The Epstein zeta function E(s,Q) described above has at least ¢T zeros on the
rectangular region 01 < Res < g9, 0 < Ims < T for each % < o1 < o9 <1 and some
c>0asT — oo.

The main purpose of this paper is extending it to partial zeta functions which are
natural algebraic generalizations of Epstein zeta functions.

Let § be an integral ideal of the number field K. Then, J' denotes the group of
all ideals of K which are relatively prime to f and P! stands for the group of fractional
principal ideals (a) such that @ =1 mod f with a totally positive. Choose an element
A of the ray class group G' = J'/P! mod §. The partial zeta function ((s, .A) attached

to A is defined by
1

C(SaA) = 5 Res > ]_,
,;4 N(n)

where n runs through all ideals in Og and N(n) denotes the norm of n. It has a

meromorphic continuation to C with only one simple pole at s = 1 and the functional
equation

S+ am,

€(1— 5, A) = £(s. A) = D()°T(s)" [[ r( ) (s, A).

where r; is the number of real places of K, 2ry is the number of complex places of K.
The constant D(f) depends only on f and a,, takes the value 0 or 1. For details see
Chapter 7 of [8].

The Hecke L-function attached to a ray class character ¢ : G — S is defined by

L(s,v) = Z ]t[b((:))s = H (1— ]t[[}((:;))s> Res > 1.

neJf peJt

Since the functional equation of ((s,.4) does not depend on the choice of A, we can
deduce the functional equation for the Hecke L-function L(s,) by

L(s,) = > ¥(A)X(s, A).
AeGT

If we take a representative a € A, then we have

(5, A) = 3 S (@) L5, )
P

where 1) runs through all ray class characters 1) defined on G, and h = #G7.
For a positive definite quadratic form Q(m,n) with its discriminant D < 0, it is
known that

E(SvQ) = WC(st)a
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where w is the number of units of Q(\/E) and A is an ideal class corresponding Q). So,

we have

B(s,Q) = = Y (a)L(s,¥)
P

and the condition h(D) > 1 of Theorem 1.1 means that h = h(D) = #G > 1 for
the ideal class group G of Q(v/D). In other words, E(s, Q) is a linear combination of
at least two Hecke L-functions. Voronin’s proof of Theorem 1.1 is based on the joint
distribution of those Hecke L-functions in the above equation and Rouché’s theorem in
complex analysis.

Bauer [1] proved the following theorem concerning zeros of (s, .4) inside the critical
strip.

Theorem 1.2 (Bauer). If T is sufficiently large, then there is a number ¢ > 0
such that there are at least ¢T zeros of ((s,A) in the region with 3 <Res <1, [Ims| <
T.

The main ingredient of its proof is the joint universality of Artin L-functions instead
of Hecke L-functions. His argument counts the number of zeros in the strip 1 — i <
Res < 1 for k = #Gal(K/Q) because the inequality

T
/|mH%Wﬁ<T
0

is required for the proof of the joint universality of Artin L-functions and known only
for the strip 1 — 57 < Res < 1 for k = #Gal(K/Q).

§2. Joint distribution of Artin L-functions

Let K/Q be a normal extension with number field K and G be its Galois group
G(K/Q). Let p: G — GL,,(C) be a m-dimensional representation of G in the general
linear group GL,,(C). The character x : G — C of the representation p is given by

x(g) == tr(p(g))

The Artin L-function of x¥ and G is defined by the Euler product

L(s,x, K/Q) = [] Lu(s,x),  Res>1,

p:unr.

where L,(s,x) = det(I — p(c,)p~*)~! and o, denotes one of the conjugate Frobenius
automorphisms over p. This definition is independent of the specific representation p of
the character x and the chosen conjugate of the Frobenius 0.
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Brauer’s theorem states that every character y of a finite group G is a Z-linear
combination of characters v, induced from characters v; of degree 1 associated to
subgroups H; of G. Thus, for j < J we have

X5 =Y nii,
1<lo
where 1); are deduced from characters ¢; of degree 1 associated to subgroups H; of G
and n;; € Z. As a consequence, we have
(2.1) L(87Xj7K/Q) = HL(Sa'wl)nj'l
1<lo
and L(s, ;) = L(s,, H;) are Hecke L-functions over number fields contained in K.

Note that (2.1) shows that the Artin L-function L(s, x;, K/Q) has a meromorphic con-
tinuation to C.

Conjecture 2.1.  Let L(s, x, K/Q) be an Artin L-function and write
L(s,x, K/Q) = [ L(s, o)™
1<lo

for some n; € Z. Define Ny(o,T) by the number of zeros of Hecke L-function L(s,1))
on the region Res > o, 0 <Ims <T. Then, there is a constant ¢ > 0 such that

Ny, (0,T) < T3 Jog T
uniformly for o > % and 1 <.
Now, we are ready to state the joint universality of Artin L-functions.

Theorem 2.2. Let K be a finite Galois extension of Q and let x1,...,x be
C-linearly independent characters of the group G = Gal(K/Q). Assume Conjecture
2.1 for L(s,x;,K/Q), j < J. Let D = D,(sq) be the closed disc with center sy and
radius r such that D is contained in the vertical strip % < Res < 1. Suppose that
hi(s),...,hy(s) are analytic and nonvanishing on s € intD, and continuous on s € D.
Then, for every e > 0 we have

1
liminf — |{7 € [T, 27] : maxmax |L(s + i7, x;, K/Q) — h;(s)| < €}| > 0.
T—oo T j D

J<d se

We modify several lemmas from [1] and [6] for the proof of Theorem 2.2.

Lemma 2.3.  Assume Conjecture 2.1 for L(s,x;,K/Q), j < J. Let % <o<1
and X =T". Then,
2

2T
/ log L(o + it, x;, K/Q) — Z log Ly, (0 +it, x;)| dt =0 (T1+c(%—o))
T
p<X

for some ¢ > 0 and small enough kK > 0 and all j < J.
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Lemma 2 of [6] and (2.1) imply Lemma 2.3.

Lemma 2.4.  Assume Conjecture 2.1 for L(s, x;, K/Q), j < J. Let D = D, (sg) C
{seC:3 <Res<1}.

max max log L(s +i7, x5, K/Q) pg;( log L,(s+ir,x;)| < T~

for T € [T,2T)\ Ar, |Ap| < T 7.

Lemma 2.4 is a simple consequence of Lemma 4 of [6] and Lemma 2.3.

Define L (s,x,0) = [1,ens fo(p~e(—0p)) and fp(t) = det(I — p(o,)t)~!. Lemma
2.2 of [1] is on the disc D, (1 — 4) with 0 < r < 4%, but its proof in fact proves more
than written. So, we restate Lemma 2.2 of [1] based on its proof.

Lemma 2.5. Let x1,...,xs be C-linearly independent characters of the Galois
group G = Gal(K/Q), where K is a finite normal algebraic extension of Q. Let D =
D,(so) C {s € C: 3 < Res < 1}. Suppose that hi(s),...,hy(s) are analytic and
nonvanishing on s € intD, and continuous on s € D. Then for every pair € > 0 and
y > 0, there exists a finite set of primes M containing all primes smaller than y and a
vector € R” such that

L 0) — h; .
maxmax | L (s, x;,0) — hj(s)| <e

Lemma 2.6. Let f(s) be an analytic function on a region containing |s| < R
and o > 0. Then, we have

A S TR? //s|<R )I*dod.

This is a property of subharmonic function |f(s)|* and its proof can be found in
Lemma 3 of [6].

Lemma 2.7.

/O > apn | dt =" |an*(T + O(n)).

n<N n<N

Lemma 2.7 is well-known and we may refer [7] for its proof. Now, we are ready to
prove Theorem 2.2.

Proof of Theorem 2.2. By Lemma 2.4 and 2.5, it is enough to show that

Ellg}(gleax|logLM(s X;j,0 —glogl}p(s-l-iﬂxjﬂ <€
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for a positive proportion of 7 € [T,2T]\ Ap, where X = T" and M is a finite set of
primes containing all primes smaller than y > 0.
Define the sets C(6, M, T) and C(6, M) by

C(O,M,T)={re[T,2T]:10, — %long < g for all p e M}

and
)
C(6, M) ={(¥p) € Q: |0y —0,]| < 3 for all p € M}

where 6 = (,) € RY is as given in Lemma 2.5 and ||z|| = min{|z — n| : n € Z}. We
also use the short expression C'(6,X) = C(0,{p < X}) for a real number X > 0. By
uniform continuity, there exists § > 0 such that for 7 € C(§, M, T)

2.2 log L — log L T, Xj
(2.2) maxmax log M (85 x;5,0 ;4 0g Lp(s +1i7,x;)| <€
p

and we have
IC(6, M, T)| ~ |C(6, M)|T =6MT, T oo

by Kronecker’s theorem.

Let D' = Dgr(sg) be the disc containing D = D,(sg) with R > r and con-
tained in the strip 3 < Res < 1. Let o9 = min{Res : s € D'}. Take ¥ >
max{ydM(1=200"" ‘max{p € M}} and let P be the largest prime < Y. We write
Y \ M for the set {p <Y :p ¢ M}. By Kronecker’s theorem, we have

2

lim —/ log Ly,(s + 47, ;) log L,(s+it,x;)| dr
T—oo T C’(6MT) Z J png P J

2

/ > logLy(s, x;,9)| dvy---dip <
C(8,M)

pEY\M

2
<5IM|/ / Z log L, 3)@,19) H dﬁp:5|M| Z Z |ap2jmn;| ,

pEY\M pEY\M pEY\M m=1
where log L, (s, Xj) = Yoo Gpjmp~ ™. Since |ap, jm| < [K : Q] for all p, j, m, we have

2

/ Z log L, (s + 47, ;) Z log Ly(s +i7,x;)| dr < 635|M|y1_2”
T—oo T C(8,M,T) peM Pp<Y



ZEROS OF PARTIAL ZETA FUNCTIONS OFF THE CRITICAL LINE 211

for some c3 > 0. Thus, we have

2

/ // Z log Ly(s + i1, x;5) — Z log L, (s + i, x;)| dodtdr < cy6MIyl=200
C(6,M,T) D’

pEM p<Y

for some ¢4 > 0 and sufficiently large T
By lemma 2.7, we have

2T 2 2T X(O_ ) 2
/ D log Ly(s +ir,x;)| dr < 2/ EL dr + O(TY? %)
Ty <pgx T Y<p<X p
<2 Z —=(T'+ O(p)) + O(TY>~*7)
Y<p<X
< C5Tyl—20

for some c5 > 0 and all s € D’ and as a consequence

2

/ // log Ly(s + i1, x;)| dodtdr < cgTY 7270 < cgd/Mlyt=200T
C(8,M,T) Dy Sex

Then (2.3) and (2.4) yield

/ // log Ly(s +i7,x;)| dodtdr < cr8Mly1=200
C(8,M.T) peX M

where X \ M denotes the set {p < X : p ¢ M} and ¢7 > 0 is some constant. From the
simple inequality max,<n |on| < 32, <y |, we have

2

/ maX// Z log Ly(s +i7,x;)| dodtdr < < epJ oMyl =200
C ’

(6,M,7) IST pEX\M
As a consequence, we have
-0 Lsim|
T€C(5,M,T) : max Z log Ly (s + i, Xg) dodt <y27° 3| > =§™IT
J<d ’ PEX\M 2

by taking y satisfying C7Jy%_°° < % By Lemma 2.6, we have

T € C((S, M, T) . Ijngagirsneag G;MIOng(S +7:7', Xj) < m
p
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1 1

By taking a real number y satisfying myél 290 < €, we have

1
|Ep| > =M,
2
where
B =q7€C(6,M,T) : maxmax %\;long(s +iT,x5) — ;{long(s +iT,x5)| <€
p Px

Therefore, there exists a 6 > 0 and a finite set M such that

maxmax | log L(s + 7, x;, K/Q) —loghy(s)| < de

for 7 € Er \ Ar with |Er \ Ar| > |Er| — |[Ar| > 26MIT + o(T). O

8§ 3. Zeros of the partial zeta functions

We extends Theorem 1.1 to partial zeta functions subject to Conjecture 2.1 as an
application of joint universality of Artin L-functions. Let K be a number field and G7
be its ray class group. By class field theory, there is a unique Abelian extension L of K
with G ~ G(L/K). Thus, every Abelian Artin L-function is a Hecke L-function, and
vice versa. There is a unique minimal normal extension N of Q containing L.

Theorem 3.1.  Assume Conjecture 2.1 for L(s,x, N/Q) for all characters x de-
fined on G(N/Q), where the field N is as described above. Suppose that #G' > 1 and
A € G'. Then, the number of zeros of the partial zeta function ((s, A) on the rectangular
region 01 < Res < 09, 0 <Ims < T is bigger than

>T

for any fixed % <oy <og <l

Proof. Suppose that xy # 1 is an irreducible character of G(L/K) ~ G'. By
Frobenius reciprocity, we know that

X" Dawye) = 06 Lawyx)) ek = (X Dawyx)y = 0.

If we denote the irreducible characters of G(N/Q) by ¢1 := 1, ¢o, ..., ¢, then for every
non-trivial character of G(L/K) we have

k
X* = ij¢j, m; € Z;O.
Jj=2
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For the induced character 1* of the trivial character 1 defined on G(L/K), we get
(1%, Ve = (L Lawy/x))aw/x) = (1 Dawyr) = 1.
Therefore, we have
k
1* =¢1+an¢j, n; GZ)O.
j=2
So we get
k
(3.1) L(s,1) = L(s,1*,N/Q) = L(s,¢1, N/Q) [ [ L(s.¢;, N/Q)"
j=2

and for the non-trivial Abelian characters x of G(L/K)

(3.2)

||::]w

¢J7N/Q

Since the irreducible characters ¢; are linearly independent, we apply Theorem 2.2
to L(s, x;,N/Q) with 1 < j < k. For any € > 0, there exists a set A. C [T, 27 with

|
(3.3) l;fniloréf T |Ac] >0

such that

L(s+i1,¢1, N/Q) — s—so—ZX <€
pal!
and

|L(s+i1,¢;, N/Q) — 1| <€

for any 2 < j < k, s € Dgy(r) C {z € C: 01 < Rez < 02} and 7 € A, and for an
integral ideal a € A. By (3.1) and (3.2), we have

L(s+it,1) — s—so—ZX <e€
x#1

and for y # 1 we find
|L(s+ir,x) — 1] <e€

for all s € Dy, (r) and 7 € A..
Note that

(3.4)

D‘I*—‘

SR
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for some a € A and h = #G'. We have

S — 80
h

’C(s + i1, A) —

< % Z Ix(a)L(s 4+ it,x) — x(a)| + |L(s +it,1) — (s — 8o — Z )| | <e
x#1 x#1

for all s € Dy, (r) and all 7 € A.. Suppose that € < 7, then

. S — 8o S — 8o
’C (s+it, A) - ;
on the circle |s — sg| = r. Inside the disc |s — so| < 7, there is exactly one zero of
((s +1it, A) by Rouché Theorem for each 7 € A.. By (3.3), we complete the proof of
Theorem 3.1. O

Let Ne¢(s,4)(01,02;T) be the number of zeros of ((s,.A) on the rectangular region
o1 <Res < 02,0 <Ims <T. Theorem 3.1 gives a lower bound for N¢(, 4y(01,02;T)
on the assumption of Conjecture 1. What can we say about an upper bound for
N¢(s,ay(01,02;T)?7 The following theorem gives an answer.

Theorem 3.2.  Let K be a number field and G' be its ray class group. Assume
Conjecture 1 for all Hecke L-functions L(s,x) with x : G' — S*. Suppose that #GF > 1
and A € G'. Then, the number of zeros of the partial zeta function ((s, A) on the
rectangular region Res > 0o, 0 <Ims < T is less than

<T
for any fixed og > %
Proof. By Littlewood’s lemma, we have
0o T
2n [ N(uT)du = [ loglo(o + it A)dt + O(log ),
o 0
where N (u,T") denotes the number of zeros of ((s,.4) on the region Res > u, 0 < Im s <

T. Thus, it is enough to show that the integral on the right is less than < T'.
We are going to use a simple inequality. First,

1 1
— o< = | < .
J;g: Z| S Jj§<JIZJ| < max|z|
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Take logarithms on both sides, then

1
log | =

(3.5) :

2%
J<J
By (3.4) and (3.5), we have
T
/ log |C(o + it, A)|dt <
0

Apply Lemma 2 of [6], then we have

T T
/ max log |L(o + it, x)|dt g/ max
0o X 0o X

T
+ / max
0 X

<§X:/O

+ZX:/OT

where X =T", 0 < k < %, a(p, x)
inequality and Lemma 2 of [6], we have

T
/ log |L(o +it, x)|dt — Re Z
0

p<X

a—l—zt

T
< VT / log|L(o +it, x)|dt — Re Z
0

and by Lemma 2.7

[ 5

p<X

X)

= ZNp:p,Mp X(p)v |a’(p7 X)' <

dt < VT /OTZ

T
/ max log |L(o + it, x)|dt.
0 X

log|L(c + it, x)|dt —Re » mt) dt
p<X
R Z O'—|—lt
p<X
log |L(o + it, x)|dt — Re Z aﬂt) dt

p<X

a(p, x)
po—l—it

2.

p<X

dt,

[K : Q]. By Cauchy’s

)dt

Nl=

\_/

o—l—zt dt < T’
p<X
1
2 2
a(p, x)
o+t dt
p<X
1
2
a’ b
VT [ 3 2®0F 0y o) <«

p<X
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Thus, the proof is complete. O

§4. Concluding remarks

The author [5] improved Theorem 1.1 by obtaining asymptotic formula ¢T" + o(T)
for the number of zeros of Epstein zeta function FE(s, () on the rectangular region
% < 01 < Res < 09, 0 < Ims < T with the constant ¢ has an integral formula
c= f;f p(o)do for some density function p(o). The main ingredient of the proof is the
method given by Borchsenius and Jessen [2]. Based on Theorems 3.1 and 3.2, we expect
the following statement.

Conjecture 4.1. Let K be a number field and let G' be its ray class group.
Let A € GF. Then, the number of zeros of partial zeta function ((s, A) on the region
%<01<Res<02,0<ImS<Tis

=cT +o(T),
where ¢ = f;f w(o)do for some density function p(o) depending on A.

The simplest case K = Q is considered and completed by the author with Haseo
Ki [3].
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