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Multiplicative functions on Z” and the Ewens
Sampling Formula

By

Tatjana KARGINA* and Eugenijus MANSTAVICIUS*

Abstract

We deal with multiplicative functions defined on the additive semigroup Z’;. The purpose
is to obtain lower bounds for their mean values with respect to the Ewens Probability Measure.
They imply useful estimates of probabilities of random permutations missing some cycles. The
results are analogues to that obtained by P. Erdés, I.Z. Ruzsa, and K. Alladi for the number
theoretical functions.

§1. Introduction

Let N, Z4, R and C be the sets of natural, nonnegative integer, real and complex
numbers, n € N, and let Z} be the set of vectors 5 := (s1,...,sy), where s; € Z
and 1 < j < n. Define the mapping ¢ : Z! — Z by £(5) = 1s; + --- + ns, and set
Q(n) = £71(n). The Fwens Sampling Formula was introduced in [6] as the probability
measure on the subsets of 2(n) so that

(1.1) Pn’g(g) = ne({S} e(n) H ( )sjsi s € Q(TL),

i<n

where 6 > 0 is a parameter and (™ := (0 +1)--- (0 +n — 1). Since its introduction
in the field of mathematical genetics P, g is serving in various statistical models and
probabilistic combinatorics (see, for instance [8] and [2]).
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Let us recall another expression of (1.1). If §;, 1 < j < n, are mutually independent
Poisson random variables (r. vs) with E¢; = 6/j given on some probability space

(Q.F,P) and £ := (&,...,&,), then

Poo(5)=P(E=5]| L) =n), 5€Q(n).

This clearly shows the dependence of coordinates s;, 1 < j < n, under the probability
measure P, g. Despite to it, some recent results on the asymptotic behavior as n — oo
of distributions of the linear statistics a,181+---+apn sy, where a,; € Rand 1 < j < n,
give general conditions for weak convergence or sharp estimates of the convergence rates.
They are mainly formulated in the terminology of the theory of random permutations;
therefore, we now present the connections to the latter.

Let S,, denote the symmetric group of permutations o acting on n > 1 letters. Each
o € S, has a unique representation (up to the order) by the product of independent
cycles s;:

(1.2) o=y,

where w = w(o) denotes the number of cycles. Denote by kj(c) > 0 the number of
cycles in (1.2) of length j for 1 < j < n and k(o) := (k1(0),...,k.(c)). The latter
is called a cycle vector of the permutation o. The EFwens Probability Measure on S,, is
defined by

vno({o}) = 0¥ ses,,

where 6 > 0 is a parameter. An easy combinatorial argument (see [2]) gives the distri-
bution of the cycle vector and the coincidence:

Un.0 (k(O') = 5) = Pn,e(g)

if 5 € Q(n). Thus, dealing with statistics of random permutations expressed via k(o),
we may examine corresponding statistics of random vectors § € (n) taken with pro-
babilities (1.1).

The main advantage of such imbedding is the fact that Z"' has an additive semi-
group structure as well as the partial order defined by § = (s1,...,8,) <t = (t1,...,tn)
meaning that s; < t; for each 1 < j < n. Moreover, we may introduce the orthogonality
of 5,¢ € Z7, denoted by 5 L t, meaning that sty + --- + spt, = 0. In this way, we
come closer to probabilistic number theory dealing with random numbers taken from the
multiplicative semigroup N (see [9] and [4]) having the partial order defined by division.
The semigroup structures and the partial orders in Z and N could play the crucial
role in developing parallel theories. Nevertheless, the advance in probabilistic number
theory has not been adequately followed by the corresponding results in probabilistic
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combinatorics. For instance, the results exposed in the recent book [2] concerning the
value distribution of additive functions defined on the decomposable structures do not
reach the level of their analogs in N (compare with [4]). In the recent papers [14], [15],
and [16] (see also the references therein), the second author did some attempt to fill up
this gap.

The same could be said about the development of a theory of multiplicative func-
tions in combinatorics. Having this in mind, we now raise reader’s attention to the
lower estimates of the mean values of multiplicative functions related to the so-called
small sieve problem. The results established in the present paper are analogous to that
achieved by P. Erdés and I.Z. Ruzsa [5] and K. Alladi [1] in number theory.

Let us recall necessary definitions. A mapping G : Z! — C, G(0) =1, is called a
multiplicative function if G(5+t) = G(5)G(t) for every pair 5, € Z' such that 5 L ¢. If
€j :=(0,...,1,...,0), where the only 1 stands at the jth place, then the multiplicative
function G has the decomposition

= [[ Gkjey) =[] 9i(ky)
j<n j<n
Conversely, given a complex two-dimensional array {g;(k)}, 1 < j <n,k > 0, satisfying
the condition ¢;(0) = 1, by the last equality, we can define a multiplicative function.
If gj(k) = gj(1) =: g; for all kK > 1 and j < n, the function G is called strongly
multiplicative and, similarly, if g;(k) = gf and 0° := 1, then G is called completely
multiplicative. Denote, respectively, by 91, 91, and M. the sets of just introduced
multiplicative functions. Observe that if G € M, and g; € {0,1}, then G € M, and,
conversely, the latter together with g; € {0,1} implies G € M.. The multiplicative

(k) =[] (§>M%,

j<n

function

depending on 6, plays a special role in the sequel.
If G € M, then its mean value with respect to P, ¢ is

n!

M,o(G):= > G(k)P,q(k) = o) > G((k)
%eﬂ(n) kEQ(n)
(1) - © G 42 - mbnzwo),
keQ(n) i<n
where
Z(x; II<1+§:(> )
§>1 r>1

and [z"]Z(x) denotes the nth coefficient of the formal power series Z(x). We also assume
that My ¢(G) =1 for every G € M.
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We are interested in estimates of M, ¢(G) holding uniformly in G' belonging to
some subclass of G € M. If G € M. and 0 < 0~ < g; <O < oo for all j < n, then we
have [12]

(1.4) M1 (G) xexp{zgj._l}, n>1.

j<n

Here and afterwards ¢ < b means that a < b and b < a while @ < b or b > a are the
analogs of a = O(b). In (1.4), the involved constants depend on 6~ and 6. Afterwards,
the constants in these symbols as well as positive constants ¢ and ¢;, ¢+ > 0, will be
dependent at most on 6.

If G(k) takes the zero value rather often, the lower estimation of M,, 1(G) becomes
rather involved and, in general, the lower bound as it is stated in (1.4) is false. The
second author has achieved a satisfactory result only for G(k) € {0,1} (see [10] and
[11]). We now extend these results. For simplicity, we assume that G € M. As it
is demonstrated in Corollaries, an extension to general multiplicative functions can be
achieved by some convolution argument.

§1.1. Results

Let us start from an easier problem to estimate the averaged mean values

— 1 g(m)
M, o(G)i==— > — M (G),

r
n,0 0<m<n

where

(m) o
Iy i= Z em! - F(9n+ 1) (1 * O(%)>

0<m<n

for n > 1 and 0(©) := 1. The quantity J,\\/[/n,g(G) is just the mean value of G with respect
to the measure defined via P, ¢(5) = II(5)/I';, o and supported by the set {5 € Z} : 0 <
£(5) < n}. To check this, it suffices to observe that s; = 0 if £(5) < j < n and apply an
appropriate combinatorial identity.

Theorem 1.1.  Let 0 > 0 and G € M, be defined via sequence 0 < g; < 1 where

1<j<n. Then
— 1
M, 9(G) < exp{ez gJT}

Jj<n
The main result of the paper is the next theorem.

Theorem 1.2. Let 0 > 1 and G € M, be defined via sequence 0 < g; < 1 where
1<j<n If

(1.5) 3 170 o g

jen Y
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for some K > 0, then there exist positive constants co and c together with a function
N : R, — N such that

(1.6) Y(K) := inf{ M, o(G) : n > N(K)} > cpexp{—eX}.

Remark.  An instance given in [10] shows that apart of the constants the estimate
(1.6) is sharp if § = 1. Also, the lower bound for n, that is, the use of n > NM(K) in (1.6)
is unavoidable. Without such a bound, given K > 1, one can assure condition (1.5) for
some function G € M, such that g; = 0 for each 1 < j < eX~1. Then M, ¢(G) = 0 for
each 1 < n < ef-1

One can now derive lower bounds of probabilities of the vectors in 2(n) with some
zero coordinates. Speaking in the other terminology (see the recent book by A.L.
Yakimyv [17]), they concern the probabilities of A-permutations. When 6 = 1, the
Corollaries presented below have proved to be very useful in [13] and [14].

Let J C{l,...,n} and Q(n;J) ={k € Q(n): k; =0V j € J}.

Corollary 1.3. Let60 >1, K >0, and J be such that

1
s %
Then
Ppg(Qn; J)) = coexp { — e}
forn > N(K). Here ¢, co, and N(K) are the same as in Theorem 1.2.

Proof. Apply Theorem 1.2 for the strongly multiplicative indicator function G (k)
defined via g; = 0 if j € J and g; = 1 otherwise. O

The next corollary involves two types of sifting (one with respect to the indexes
and another with respect to the value of coordinates) of the vectors from Q(n). The
following result for 6 = 1 has been stated without a proof as Lemma 5 in [14].

Corollary 1.4. Letf > 1, K > 0, and J be as in Corollary 1.3. Denote I =
{1,...,n} \ J. Then there exists a positive constant R(K) such that

(1.8) Poo(keQn;J): k; <1Viel) > R(K),
provided that n > N1(K) is sufficiently large.

Now, the indicator function of the examined event is not strongly multiplicative;
therefore, we leave the proof of this corollary to the end of the paper.
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§2. Proof of Theorem 1.1

Proof. Estimating from above, we examine an arbitrary G € 9 such that 0 <
gj(k) <1for j,k > 1 with g; := ¢;(1). Applying (1.3), we obtain

m G 1 | | 2 : 0 ng(T)
. < - — .
[x ]Z(x, ) B (1+ (]) r!
7 j<n r>1
Since 0 < G(5) < 1, the infinite product

T (14 ()2 )

j>1 r>1

1
’ T
™0 0<m<n

converges uniformly in G. Thus the previous estimate implies

— 1 - 1
M, .¢(G) < [ eXP {02 “(;—‘7} < exp{ez gjj }
n,0

j<n j<n

as claimed.

To obtain the desired lower estimate, we define the M&bius function pu(k) on Z7
related to the mentioned partial order. If k = (ky,..., k) € 7, then we set

1 if k=0,
plk) = 1T wi(ky),  where pi(k) =4 0 if k>2,
J=n -1 if k=1.

Given G € M, we introduce its dual function G* € M defined by g =1 — g; for
each 1 < j < n. Then

GF) =3 0G0 = [[0-g). Gk = 3 uHG" (@)

— - gl
i<k s <k

By (1.3), ‘
m! O
M g(p?) = 27— [""] (1 + — >

Hence, as it has been shown in [12], M, ¢(1?) < 1 for m > 0. This implies ]\A/.fn,g(ﬁ) =1
for n > 1.
If £(k) =m <n and p?(k) = 1, then £ < k implies £ L k — ¢ =: 5. Hence

Y GO k-t = [[(g+9) =1

— <n
=1

i<k i
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and TI(k) = TI( + 3) = II(£)I1(5). Consequently,

L Moali®) = o 30 iR Y GOG (-1
7 pk)<n <k
<o 3 GONE x Y WAEHE E))
" o<n ¢(s)<n

Il
=)

— N 1— o
,G(G)Fn,OMn,O(G*Mz) < Mn’g(G) exp {9 Z —g]}

j<n Y

In the last step we applied already proved upper estimate.
The theorem is proved. U

§3. Proof of Theorem 1.2

Proof. Let the truncated strongly multiplicative function GG, be defined from G €
M, by setting g; = 1 for each r < j < n, where 1 <r < n+ 1. Then G,y = G,
and G1(k) = 1. Apart from the vectors €;, we introduce &” = (1,...,1,0,...0) € Z",
where the zeroes start at the r-th, » > 1, place. By k At we denote the vector with the
coordinates min{k;,¢;} for all 1 < j <n. Observe that

B =Y une .
t<kner
Ifn/2<j<nandk=¢;+t€Qn),thent e Qn—j), e Lt and
n! n! 6

(3.1) Pag(F) = gy e = g 5 T1()

Now, if 1/n < § < 1/2 is arbitrary and r = m := [(1 — §)n], then, summing over a part
of vectors, we obtain

Mn,@(Gm) > Z Gm(éj + E)Pn,e(éj + t_)

E(Ej-‘,-f):n
m<j<n

g X 5 Y cono

m<g<n L(t)=n—j

6 n! —~
> EWI‘[M]’G Mi51,6(G)
(3.2) > ¢10% exp{—0K},

where K > 0 is as in (1.5). In the last step we used #(™ /n! < nf~1if n > 1 and
Theorem 1.1. Recalling our agreement that Mg ¢(G,,) = 1, we observe that (3.2) also
holds for 0 < 4§ < 1/n.
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The next identity is crucial in the forthcoming induction argument. We have

on! g; 9=9)
(33) Mn’g(G,«) == Mn,G(G) ‘I— W <Z< ] WMn 7, Q(G )
r<js<n

for an arbitrary G € M and n/2 < r < n. Indeed, the formal identity

1—ﬁ1—0@ 204J1_[1—04Z s> 1,
j=1 =
implies

()~ G =G, ()1~ Hg)— b(1- 11 <1—g;>)

r<]<n
_1 _1
=G:(k) 3 g7 ] (=9 = > gGik
r<j<n r<i<j—1 r<j<n

kyj=1 k=1 k=1

for each k € Q(n). By virtue of (3.1), we obtain the mean value of the last sum:

D 9 2. Puo(k)L{k; = 1}G;(k 9<n> > gﬂ S G0

r<j<n  keQ(n) T<J<n teQ(n—j)

on! g; 0n=9)
. == > LM,
(3-4) o0 2o ()] 5.0(Gj)-

Combining this with the equality above, we complete the proof of (3.3).
Up to the end of the proof of Theorem 1.2, we fix the notation m = [(1 — J)n],

—-K-C

where § = e and C' > 1 is a constant to be chosen later. For # > 1, we have

(3.5) (nt/0™) - (609 /(n — 5)1) < 1.

Hence and from (1.5) and (3.2) we obtain

Mn,G(G) >Mn0 —0 Z _. n— 30 )
m<g<n
(3.6) > e e 20K _g Z g—J > a(C)e 20K,
- J
m<j<n

where a(C) := (c1/2)e~%C, provided that

95 _
A=y 7?g(oz(o)/e)e 20K
m<j<n
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If ¢ > 26, the bound (3.6) for all K > 0 is better than that given in Theorem 1.2 with
N(K) =2 and ¢y < a(C)/0.

In what follows, we assume that A\ > (a(C)/0)e 2K, We will bound v(K) from
below applying the real type induction on K. To verify the initial step, we argue as in
obtaining (3.3). We firstly notice that

. I I G N B’
D0 PusB{k; 213 < Y7 kiPag(k) = gy = < 2
keQ(n) keQ(n)

where the first moment formula found in [2] (p. 96, (5.6)) and inequality (3.5) are used.
Using this, we obtain

Mno(G)= > Poolk) J] 1—1—gy))

FEQ(n) L
- % mo(i- Lo IT «)
E; cQ (n ) ]g‘jsznl ikSijz—ll

>1-> g5 > Pua(k)1{k; > 1}

Jj<n keQ(n)
>1-0) 9 >1-0K
Js<n
forn > 1. If 0K < 1/2, this is better than the desired estimate (1.6) with any ¢ > 0
and ¢y < 1.

Let K > 1/2 and n > 1/5. We further examine the set ' of vectors k € Q(n)
having a coordinate k; > 1 for some én < j < n/2. The indicator function of this set is

1{k € @} =max {1{k: k; > 1}: on < j <n/2}.

By virtue of 4(k) = n, the equality 1{k : k; > 1} = 1 holds for at most 1/§ of
J € [6n,n/2]. Hence

ket >6 > 1{k: ki >1}.

Sn<j<n/2

If k € O, then k = &; + ¢, where t € Q(n — j). Moreover,
Gy =g; [] 912" = 9;6(%).
e
Similarly, due to n > j(t; + 1) > dn(t; + 1), we have t; +1 < 1/6 and

0 n! 6n—J) c20
Pn €; t) = - - Pn— io(t) > —P,_j(l
,G(ea +1) ](t]‘ +1) H(n) (n—j)! 3,9(_) ] 3,6’(3
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for on < j < n/2. Here we have applied the estimate 0" /r! < =1 if € N. Hence
M,o(G)> Y G(k)Pg(k)1{k € '}
keQ(n)

>4 Z gj Z G(t)Pho(ej +1)

n<j<n/2 1teQ(n—j)

>e0? Y E N GOP D)

n<j<n/2 J teQ(n—j)

(3.7) =6 Y EM, 4(0).

sn<j<n/2
We now assume that the claim of Theorem 1.2 is proved for K — A =: K —
(a(C)/0)e™2K  that is,
(3.8) V(K — A) > ¢gexp{—eE=AN

and V(K — A) is found in the latter. Here ¢ > 20 and 0 < ¢y < min{l,«(C)/6} are
constants. The task now is to extend this lower estimate for K and define N'(K). We
apply (3.8) for the mean values on the right-hand side of (3.7).

If on < j < n/2, then

9; 9i
Lo K i K ZN< K —
‘Z.i_K ZZ K-A<K-A
<n—j m<i<n
by our earlier agreement on A and the definition of m. Set
N(z) = max{efTC 2N (K — A)}

f()l K — A <3§'< K II ]L>N(-l<)and (;nS]Sn/27 t]]S]] n_] >N( ) H ,
b:? (38) - -l< - A ence
M“’ J»Q(G) Z )(K — A) > CO exp{_eC(K—A)}.

Consequently, (3.7) implies

1—g*

M, 6(G) > cocad® exp{—e“ K2} 3~ 9;
n<j<n/2 J

Ch

> coead® eXp{—edK‘“}( —log(20) - = - K>

> cocod? exp{—ec(K_A)}(C —log2—C4)

where C; > 0 is an absolute constant. The choice of C' = (log2 + Cy + 1)/cq is at our

disposal. It gives
M, 9(G) > 902 exp{—ecE=2)1,
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Now, if
(3.9) e 2K 20 oxp{—e®E=A)) > exp{—e°K}

for all K > 1/(20) and for some sufficiently large ¢ > 26, from the last inequality, we
obtain the desired estimate (1.6) with this very c.
Inequality (3.9) is equivalent to

eF(1—e ) > 2K +2C.
Assuming that ¢ > 0a(C) ™1, we see that the last inequality follows from
oK (1 — e_e_29K> > 2K 4+ 2C.
Furthermore, due to xe™ <1 — e~ % for x > 0, this is implied by
(200K g—e ™2 > 2K +2C
and, further, by
ele 200K =1 — 2KH+2C oxpl(c — 20 — 2)K — 2C — 1} > 2K + 2C.

It is evident that the last inequality holds for all K > 1/(20) if (¢c—26—-2)/(20) > 2C+1.
Therefore, to assure this and validity of the previous cases, it suffices to chose

c = max{fa(C)™ 1,2 +40(C + 1)}.

The theorem is proved. |

§4. Proof of Corollary 1.4

As we have mentioned, the proof of Corollary 1.4 is based on the convolution
argument combined with a few simple lemmas.

Lemma 4.1.  Assume that

X;(z) = Zajnz”, j>1,
n>2
are entire functions satisfying |a;,| < C¥/n! for all j > 1 and n > 0, where Cy > 0 is
a constant. Then

L0+ x) < Ta k=1,

Jj=1

where Cg is a positive constant depending on Cy only.
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Proof. This is essentially Lemma 6 from [7], where the case of x;(z) not depending
on j has been examined. The proof in more general case goes by the repetition of the
same argument. O

Lemma 4.2. Let F(k) be a complex valued multiplicative function defined via
fi(s) such that |f;j(s)| <1 for all j > 1 and s > 1. Define the completely multiplicative
function G(k) by setting g; = f;(1), j > 1. If Z(2; F) and Z(z; G) are the corresponding
generating functions, then

(4.1) MH(2) = ")(Z2(2 F) ) 2(%:G)) < k2, k> 1.

Proof. We write

= [Te 07 (1 py A ) =TT (4 x7/9)-

sgl
j>1 s>1 J j>1

-3 3 (:) —g1) fi(s) = D agnz"

n>2 " r4s=n n>2
- r,s>0

Here

are entire functions. Moreover, |a;,| < (20)"/n!. By Lemma 4.1, this implies (4.1).
The lemma is proved. |

Lemma 4.3. Let G € M, be as in Theorem 1.2 and 2 < T < \/n be arbitrary.
Then there exist positive constants cs and Ry(K) such that

_ F(@) 1+ZT g] —Zj/'l’L —c3
Mn,e(G)—2—m/1 . z9 exp 9; , dz—l—O(Rl( )T >

Proof. This is a corollary of Proposition in [3]. Checking its proof, one could find
an expression of Ry (K).

Lemma 4.4.  Suppose G € M, be as in Theorem 1.2. Then
(4.2) My, o(G) — M, o(G) < n”““Ry(K)

uniformly in n —/n <m <n. Here Ry(K) = max{R;(K),e’X}.

Proof. We apply twice the integral representation given in the last lemma and
compare the integrands. Let z=1+4+1it, t € R, |t| <T,and 2 <T < +/n, then

Z gJ —z]/n - Z gJ —zg/m < — + Z ’1 . e—zj(n—m)/mn

i<n j<m j<m
Tlogn
< g

vn
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forn—yn<m<n IT< n1/3, this and Lemma 4.3 imply

Mm,e(G)—Mn,e(G)<<T(lLf1°g" {GZ _gj}+R(K)T

i<n

1/4

Now we chose T'= n'/* to complete the proof of (4.2).

The lemma is proved. O

We now prove Corollary 1.4.

Proof. The indicator of the event in (1.8) is the multiplicative function F(k) de-
fined by
0 ifjed,
fi(k)=140 ifjelandk>2,
1 otherwise.

Introduce also the multiplicative indicator function G' € M. N M so that g; = f;(1)
where 7 < n. The corresponding generating functions satisfy the following relation

Z(z F) = Z(%,G)H(2),

where, by Lemma 4.2, hy, := [2*|H(2) < k=2 for k > 1.
Applying Lemma 4.4, we obtain

F):( >+ > )han—k,O(G)

k<y/n n<k<n
= (M p(G) + O(n *Ry(K))) > hk+0( > 1?12)
k<\/n Vn<k<n
= H(1)M, 0(G) +O(n"*Ry(K)) + O(n~1/2).

By definition,

He—l/a(l—l— ) 2};[2(1—%2) =%.

Inserting this and the estimate obtained in Corollary 1.3 into the previous inequality,
we complete the proof.
Corollary 1.4 is proved. O

Remark. It would be interesting to extend the claim of Theorem 1.2 for 6 < 1.
Unfortunately, so far, we could prove it if the stronger condition

Zl_,engK

j<n Y

is satisfied.
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