RIMS Koékyiroku Bessatsu
B34 (2012), 49-68

Remarks on value distributions of
general Dirichlet series

By

Trinh Khanh Duy*

Abstract

In the paper, limit theorems for general Dirichlet series on the complex plane, in the
space of analytic functions as well as in the space of meromorphic functions with explicit limit
measures are proved without assumption of linear independence of the exponents.

§1. Introduction

A general Dirichlet series is a series of the form
>
(1.1) > ame ™, s=o+iteC,
m=1

where a,, € C, and {\,,} is an increasing sequence of real numbers, lim,, oo Ay, = +00.
Suppose that the series (1.1) converges absolutely for o > o, and has the sum f(s).
Then f(s) is an analytic function in the half-plane D :={s € C: 0 > 0,}.

Limit theorems for general Dirichlet series on the complex plane, in the space of
analytic functions as well as in the space of meromorphic functions have been studied
relatively completely through papers [2, 3, 4, 5, 6, 7, 8]. Let us mention here the most
recent results. For 7' > 0, let vp(-- ) stand for the measure

vp(---) = %meas{t cl0,7]:---},

where in place of dots a condition satisfied by t is to be given. Let B(.S) be the class of
Borel sets of the space S, and H(D) be the space of analytic functions on D equipped
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with the topology of uniform convergence on compacta. Then the limit theorem for
the absolutely convergent general Dirichlet series in the space of analytic functions was
proved in [2].

Theorem A.  There ezists a probability measure P on (H(D),B(H(D))) such
that the sequence of probability measures

vr(f(s+it) e A), AeB(H(D)),
converges weakly to P as T — oo.

Suppose that f(s) is meromorphically continuable to a wider half-plane Dy := {s €
C:0>00},00 < 04. Moreover, we require that all poles of f(s) in Dy are included in
a compact set and that the following two conditions are satisfied.

(i) f(s)is of finite order in any half-plane o > o1(01 > 0¢), that is, there exist constants
a > 0 and tg > 0 such that the estimate

(1.2) flo+it) = B([t]*), [t| = to,

holds uniformly for ¢ > o;. Here and in the sequel, B is a quantity bounded by
some constant.

(ii) For o > o( such that {o + it : t € R} does not contain any pole of f(s),

T
(1.3) /_T |f(o +it)]2dt = B(T), T — oo.

Let C be the Riemann sphere CU{oo}, and d be the sphere metric on Co, defined
by

d(sy,s2) = 201 = 52| d(s,00) = 2 d(o0,00) = 0,

VI PV s VIF[sP

where s, 51,59 € C. This metric is compatible with the topology of C,. Let M (Dy) de-

note the space of meromorphic functions g: Dy — (C, d) equipped with the topology of
uniform convergence on compacta. Then the limit theorem in the space of meromorphic
functions was obtained in [3].

Theorem B.  Suppose that conditions (1.2) and (1.3) are satisfied. Then there
exists a probability measure P on (M (Dy), B(M(Dy))) such that the sequence of proba-

bility measures
vr(f(s+it) € 4), A€ B(M(Dy)),

converges weakly to P as T — oc.



REMARKS ON VALUE DISTRIBUTIONS OF GENERAL DIRICHLET SERIES 51

The limit theorem on the complex plane was obtained in [4].

Theorem C.  Suppose that conditions (1.2) and (1.3) are satisfied. Then for
each o > og, there exists a probability measure P, on (C,B(C)) such that the sequence

of probability measures
ve(f(o+it) € A), Ae B(C),

converges weakly to P, as T — oo.

To identify the limit probability measures in the three theorems above, some addi-
tional conditions are necessary. Suppose that the sequence of exponents {\,, } is linearly
independent over the field of rational numbers. Let v = {s € C : |s| = 1} be the unit
circle on the complex plane, and let

)
Q= H Ym
m=1

where 7, =~ for all m € N. With the product topology and point-wise multiplication
the infinite-dimensional torus €2 is a compact topological Abelian group. Therefore, on
(©,B(2)) the normalized Haar measure mpy exists, and we obtain a probability space
(Q,B(Q),mp). Let w(m) denote the projection of w € € to the coordinate space 7.
Assume further that, for o > og,

(1.4) Z |am|?e 227 (logm)? < co.

m=1

Then it was proved in [7] that for o > oy,
o0
flo,w) = Z amw(m)e *m?
m=1

is a complex-valued random variable defined on the probability space (€2, B(2), mpg).
Moreover, the limit probability measure P, in Theorem C coincides with the distribution
of the random variable f(o,w). In addition, under conditions (1.2)—(1.4), it was proved
in [8] that f(s,w) defined by

is an H(Dy)-valued random element and the limit probability measure in Theorem B
coincides with the distribution of f(s,w).

This paper is devoted to identify the limit probability measures without assumption
of linear independence of {\,,}. We will consider the probability space (€2, B(2), P) with



52 TrRINH KHANH DUy

P being a suitable probability measure. The limit probability measures in the three
theorems above are shown to coincide with the distributions of appropriate random
elements on (2, B(2),P). We point out that the condition (1.4) is not necessary, if
{Am} is linearly independent over the field of rational numbers.

The author is grateful to Professor Hiroshi Sugita and Professor Kohji Matsumoto
for many valuable comments. The author would like to thank the referees for useful
suggestions.

§2. General theory

The main aim of this section is to approximate the function f(s) by a sequence
of absolutely convergent Dirichlet series. If the function f(s) is analytic in Dy, we can
find this kind of result in [5, 6]. We begin with a result on the mean value of absolutely
convergent Dirichlet series.

Theorem 2.1 (cf. [10, §9.5]).  For any o1 > 0,4, uniformly in o > o1, we have
. 1 T <\ (2 S 2 —2Amo
lim — [ |f(o+it)Pdt =) |ap[e 7.
- m=1

The following formula may be known as Perron’s formula. We will use the Dirichlet
series defined in that formula to approximate the function f(s).

Lemma 2.2 (cf. [10, §9.43]). Ford > 0,A >0, and ¢ > 0,¢c > 0, — 0, we have

© A ( A 6))\ 1 C+’LOO w
2.1 “Ams (MmN _ 1“(—) 5% duw,
(2.1) mzz:lame e 5 /C_ioo S fls+w) w
where I' denotes the Gamma function.
Let
grs(s Z ame S _(exm(;)x’ (A> 0,0 >0).

It is clear that the Dirichlet series g s(s) is absolutely convergent for any s € C. The
sequence {gx s(s)}s approximates the function f(s) in the following sense.

Corollary 2.3. Let K be a compact subset in D. Then for fited A > 0,

lim lim sup — / sup | f(s+it) — gas(s +it)|dt = 0.
=0 T—oo seK
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Proof. Let L be a simple closed contour lying in D and enclosing the set K and let
0k denote the distance of L from the set K. It follows from Cauchy’s integral formula
that

su113|f(s—|—it) grs(s+it)] < —/ |f(z +it) — gas(z +it)||dz],
sE

then by the Cauchy-Schwarz inequality,

2
(sup|f(s+it)—g>\,5(s+it)|> < @T/ |f(z+it) — g,\g(z+zt)| |dz].

seK

Here |L| denotes the length of the contour L. Thus when T' > max,cy | Im z|,

seK

- 2
(%/0 sup |f(s+it) — gas(s+ it)|dt>

2
< —/ (Sup|f s +it) — 9A,6(8+it)|) dt

seK

f/O (s [ G+ i6) = (e + )Pl )

T
- o ), (%/0 £+ it) - gx,é<z+z~t>|2dt) i

VAN

< I / 1/2T f(Re =+ it) (Re 2 + it)2dt | |d2|
< @ AT ), ez +1i grs(Rez +i 2
4|L|2 1 [T
LF o L 180+ it) ~ gasto + 0

- (271'(5[() o>o 4T

where 01 = min,<;, Rez > 0,. Now, uniformly in o > o1,

2T
lim —/ |f(o +it) — gm (o +it)] Z Iam|2 2)\mo _e_(exm(;)x)Q,
—2T

by applying Theorem 2.1 to the function f(s) — gx.s(s). Therefore,

2
1 (T
lim sup (f/ sup |f(s+it) — grs(s+ it)|dt>
0

T—o0 seK

oo

2
24|§| 7 2 lanfe™ (0 L—e (T2,
oK)

2e72Am%1 < oo for any 6 > 0, and each

The above series is dominated by >~ |am|%e
term converges to 0 as 6 — 0. Thus by the dominated convergence theorem, we arrive

at

lim lim sup — / sup |f(s +it) — gxs(s +it)|dt = 0.
=0 T—oo seK
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The proof is complete. O

If there is no pole in Dy or f(s) is analytic in Dy, we have the following version of
Theorem 2.1.

Theorem 2.4 (cf. [10, §9.51]).  Let f(s) denote the analytic continuation of the
function f(s),o > o, to the half-plane 0 > «. Assume that f(s) is reqular and of finite
order for o > «, and that

T
(2.2) / |f(o+it)]2dt = B(T), T — .
-T
Then
1 T 2 2
(2.3) :Flgrlooﬁ/_Tlf(aJrzt 2dt = Z |ty |22

for o > a, and uniformly in any strip o < o1 < o < 3.

Consequently, if f(s) is analytic in Dg, the statement of Corollary 2.3 is still true
for any compact subset K of Dy. We are now in a position to extend Corollary 2.3 to
our considering case in which all poles of f(s) in Dy are included in a compact set. It
then follows that the number of poles are finite. Denote the poles and their orders by
$1,...,8 and nq,...,n,, respectively.

Proposition 2.5. Let K be a compact subset in Dy. Then for fited A\ > o, —

0'0—|—1,
T

1
lim lim sup — sup |f(s+it) — gxs(s+it)|dt =0,
=0 Too to s€K

where ty is a positive real number satisfying

mm{Im s} +1to > max{Ims,...,Ims,}.
seK

Proof. From Corollary 2.3, we can assume without loss of generality that the
compact subset K is included in the strip o9 < ¢ < g, + 1. Let L be a simple closed
contour lying in the strip og < o < 0, + 1, enclosing the set K and

mlil{lm s} +1to > max{Ims,...,Ims,}.

IS

Then L lies in the strip 01 < o < 09, where 07 = minger Res > o9 and o9 =
maxser, Res < o, + 1. Choose a € (0¢,01) such that all poles sq,...,s, lie in the

half-plane o > «a.
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For s = o + it with o € [01,02] and s & {s1,..., S, }, by moving the contour in the
formula (2.1) to Rew = o — o, we pass a pole at w = 0, with residue Af(s), poles at
w=8—8,...,w =8 —8. Since A > 0 — &, no other pole is passed. Therefore, by the
residue theorem, we obtain

a—o+100
ans(s) — f(s) = 1. / L(=)f(s+w)d “dw

(2.4) =:1(s) + J(s).
Observe that

(%)

)
S§5—S8

s () = 52 252 ()

where ®) denotes the kth derivative with respect to w and

a(k,s;) = v lim {(f(s +w)(w — (s5 — 8))nj)(nj_k—l)(w):| ‘

(nj —k—1)l wos;j—s
Thus, for fixed § > 0,
- S;— 8
(2.5) J(s)=B (Z‘P(k)("T)D, n = max{ny,...,n,} — 1.
k=0
Now, an argument similar to the one used in the proof of Corollary 2.3 shows that

- 2
(%/t sup |f(s+it) — grs(s+ it)|dt>

o SEK

1 2T
=B sup  — |f(o+it) —grs(o+ it)|?dt | ,
o€lo1,02] AT t1

where t; = mingez {Im s} + ¢y > max{Im s;,...,Ims,}. For o € [01,02] and ¢t > 3, the
point s = o + it does not belong to the set {s1,...,s,}, thus the relation (2.4) implies

lgas(o+it) = flo+ )2 <2(|(o + i) +|T(o +it)[?).

Note that in the proof of Theorem 2.4 (see [10, §9.51]), we have the following

1 T
o I(o +it)|*dt = B(6%7 >
o7 | e+l (627722
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uniformly with respect to T' and o € [0, 09]. It follows that

2T
lim limsup  sup |I(o +it)|*dt
0—0 700 o€lo1,02] 4T tq
2T
< lim limsup sup I(o + it)|?dt < lim B(62°172%) = 0.
=0 T oo o€lo1,02] 4T —2T| ( )| 6—0 ( )

On the other hand, by Stirling’s formula, there is a constant A > 0 such that uniformly
in the strip o/ < o < ¢”, we have

IT(o +it)| = Ble™ ), ¢ — oo,

where o/ < min;{Re((s; — 02)/A)} and ¢’ > max;{Re((s; — o1)/\)} are chosen first.
This, together with (2.5), implies that

1 27 1 2T B
limsup sup J(o +it)]?dt = B | limsup — e Mdt | =0
T—o0 O'E[C"l 0'2] 4T t1 | ( | T—o0 4T t1
The proof is complete by combining the two estimates above. O

As a consequence of Proposition 2.5, we have the following.

Proposition 2.6. Let K be a compact subset in Dy. Then for fited A\ > o, —
(o)) —|— 1

lim lim sup — / sup d(f(s +1it), gxs(s +it))dt = 0.
=0 T—oo seK

§ 3. Probability space associated with {\,,}

For T' > 0, we define a probability measure Qp on (2, 5(2)) by
Qr(A) =vr((e ™) nen € A), A€ B(Q).

If {\,,} is linearly independent over the field of rational numbers, then it is well known
that {Qr} converges weakly the Haar measure mpg as T — oo, [5, 6, 7, 8]. Without
assumption of linear independence of {\,,}, the sequence {Qr} still converges weakly,
but the limit probability measure, in general, is not my at all. The proof of this general
case is not different so much.

Theorem 3.1.  There exists a probability measure P on (2, B(?)) such that the
sequence of probability measures {Qr} converges weakly to P as T — oo. If {\,} is
linearly independent over the field of rational numbers, then P coincides with the Haar
measure myy.
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Proof. The dual group of € is isomorphic to €,y Zm, where Z,, = Z for all
m € N. k= {kn : m € N} € @, cry Zm, where only a finite number of integers k,, are
non-zero, acts on €2 by

o0
w— Wk = H whm(m),  weq.
m=1

Then, the Fourier transform g7 (k) of the measure Qp is of the form

00 T 0o
o) = | (H w’fm(m)> aQr = /0 (H e—mmkm> dt

1, if >0 Amkm =0,

=9 exp{—iTY °  Amkm} -1 ..
= f Amk 0.
S ke e Ak #

Hence, the limit

17 if oo_ PV O,
g(k) == lim gp(k) = ?Zglmm
T 00 0, if Y07 Amkm #0,

exists for every k. A continuity theorem for probability measures on locally compact
group implies that there exists a probability measure P on € such that {Qr} converges
weakly to P as T' — oco. Moreover, g(k) is the Fourier transform of P. Now, if {\,,} is
linearly independent over the field of rational numbers, then Z;’le Amkm = 0 holds iff
k., = 0 for all m. It then follows that P coincides with the Haar measure my;. O

Lemma 3.2.  {w(m)}men is an orthonormal system in L?(Q,P), that is,

1, if my = ma,

0, if my # mo.

E®) [w(ml Jw(mse)| =

Here E®) denotes the expectation with respect to P.

Proof. Let my # my. Take k = {k,, : m € N} such that k,,, = 1,kp,, = —1 and
the others are zero. We have Z;f:l Amkm = Am, — Am, 7# 0. Therefore

E® [w(m1)w(ms)] = g(k) = 0,
which completes the proof. O

The following lemma is fundamental in probability theory but useful.
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Lemma 3.3.  Let {Ay}men C C and >0 | |An|? < co. Then there exists a
random variable F': Q0 — C such that

L*(QP) —
F = ZAmw(m),

m=1

2
where < @P), means that the equality holds in L*(Q, P). Assume further that

converges P-a.e. Then

§4. Limit theorems for general Dirichlet series on the complex plane

§4.1. Absolutely convergent case

For o > 0,, we define a random variable f(o,:): Q@ — C as
o0
flo,w) = Z ame 7 w(m).
m=1

Then f(o,w) is continuous as a mapping from Q to C because the series f(o,w) is
dominated by

o
Z | |e ™7 < o0,
m=1

Note that f (o, (e7*!),,en) = f(o+it). In addition, it follows from the continuity
of f(o,w) that the sequence of probability measures {Q7f(c,:)"1} on C converges
weakly to P f(o,-)~!, the distribution of f(o,w) under P, as T — oc.

Theorem 4.1.  For o > o,
ve(f(o+it) € ) 4, Pf(o,)' as T — oo,

d .
where “—” denotes the weak convergence of probability measures.

§4.2. General case

Lemma 4.2.  For o > 0y, we have
1T >
(4.1) T]l_I)IéO 7 /to |f(o +it)|2dt = Z |am|?e™22m7 < o0,

m=1

where to is a number such that {o + it :t > to} N{s1,...,s.} = 0.
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Proof. This lemma is an easy consequence of Proposition 2.5 with K = {c}. O

Fix A > 0, — 09 + 1. For each n € N, we define

oo oo
gn(s) = gxe>n (3) = Z Am, exp{_e(Am—An)A}e—Ams — Z amv(m,n)e—)\ms.

The Dirichlet series g,, is absolutely convergent for s € C. Thus, given o > oq, the

infinite sum

= Z amv(m,n)e " 7w(m)

is convergent for each w € Q. By Lemma 3.3, we see

2 (e e}
gn(0,0) T ET ST apu(mn)e 7 w(m).

m=1

Besides, the relation (4.1) implies that there exists f(o,-) € L?(Q2, P) such that
L(QP) w— N
flo,w) = Z ame” "m%w(m).
m=1

Lemma 4.3. For o > 0q, the sequence {g,(o,w)} converges in L*(Q,P) to
flo,w) as n — oo.

Proof. We have

Hgn(a,w) U w HL2 Z |Cbm| |1—’U m n)| 2072 Amo

—2X

The above series is dominated by > °°_, |a,,|?e ?*"7 < co. Moreover, for any fixed m,

it is clear that v(m,n) — 1 as n — co. Therefore, | g, (o, w) — f(o,w)[|7: — 0 as n — oo
by using the dominated convergence theorem. O

Theorem 4.4. For o > o,

I/T(f(a+it)€-)i>Pf(a,w)_l as T — 0.

Proof. Let Op: (Q,lg) — [0,7] be a random variable uniformly distributed on
[0,T]. We put
X7 (o) == gn(o +i07).

First, by Theorem 4.1,

(4.2) X7rn N gn(o,w) as T — oo.
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Secondly, Lemma 4.3 implies that
(4.3) gn(o,w) 4, flo,w) as n— oo.

Thirdly, take K = {¢} in Proposition 2.5, we find that

1 /7T
lim limsup — |f(o +it) — gn(o +it)|dt =0,

n—00 oo to

then it follows from Chebyshev’s inequality that for any € > 0,

(4.4) lim lim sup 13(|XT’n —Yr|>¢e)=0,

=0 T oo

where Yp := f(o + ). Finally, by Theorem A.5, (4.2)—(4.4) are enough to deduce
Yy -% flo,w) as T — 0.
U

Remark 1.  Theorem 4.4 and Theorem 5.5 below are extensions of the main results
in [7] and [8], respectively. Comparing with proofs in [7, 8], the basic idea does not
change but a number of arguments are reduced. For instance, we use L?-convergence
instead of using the tightness of measures and ergodic theory.

§4.3. In the case of linearly independent {),,}

When {\,,} is linearly independent over the field of rational numbers, the proba-
bility measure P coincides with the Haar measure my. Under P, the sequence {w(m)}
becomes independent.

Theorem 4.5. For o > 0q, the series
oo
flo,w) = Z ame 7 w(m)
m=1

converges almost everywhere and converges in L*(Q, P).

Proof. For M € N, let
M
Xy (w):= Z ame 7 w(m).
m=1

Then {Xas}aen is a martingale because {w(m)} is a sequence of independent random
variables with means 0. We have

M 00
E(P)“XM|2] _ Z |am|2€—2>\ma < Z |am|26—2>\mo < 0.
m=1 m=1
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Therefore, by Doob’s martingale convergence theorem, the sequence {Xjs}aren con-
verges almost everywhere and converges in L?(Q, P). O

§5. Limit theorems for general Dirichlet series in functional spaces

§5.1. Absolutely convergent case

Recall that D = {s € C : ¢ > o,} and H(D) denotes the space of analytic
functions on D equipped with the topology of uniform convergence on compacta. For
se€ D,w e let

f(s,w) = i ame m5w(m).
m=1

Then f(s,w) is an H(D)-valued random element defined on the probability space
(Q,B(Q2),P). In addition, we will prove that f(s,w) is continuous as a mapping from
Q to H(D). Indeed, let {w(™} be a sequence converging to w in Q. We need to prove
that {f(s,w™)} converges to f(s,w) in H(D). Given a compact subset K C D, let
01 = mingex Res > o,. We have

sup |£(s, W) = f(s,w0)] < Y lamle” 7w (m) —w(m)).
sE m=1

Since > >°_, |am|e ™1 < oo, it follows from the dominated convergence theorem that

sup |f(s,w™) = f(s,w)| = 0 as n — oo.
seK

Thus, the mapping f(s,w) is continuous. Consequently, the sequence of probability
measures {Qr f(s,w) 1} on (H(D),B(H(D))) converges weakly to P f(s,w) 1 as T —
00. Obviously, we have

vr(f(s+it) € A)=Qr(w: f(s,w) € A), A€ B(H(D)).
Therefore, we have just proved the following theorem.
Theorem 5.1.  The sequence of probability measures
vr(f(s+it) e A), AeB(H(D)),

converges weakly to Py as T — oo, where Py denotes the distribution of the H(D)-
valued random element f(s,w).
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§5.2. General case

Recall that Dy = {s € C: 0 > ogg}. There is a sequence {K,,} of compact subsets
of Dy such that (i) Dy = .o Ky; (ii) K, C Kp4q; (ili) if K is a compact set and
K C Dy, then K C K,, for some n. Then for f,g € H(Dy), let

yn_SWacic, 11(5) = 9(s)
" Tosuber, 1) — g

NE

p(f,g) =

S
Il

The topological space H(Dy) becomes a complete separable metric space. Similarly, for
f.9 € M(Dy), let

p(f.g) = g 2 subser. d(F(5), 9(s))

3

Then M (D) becomes a separable metric space.
For each M € N, we define an H(Dg)-valued random element fy/(s,w) as

M
fm(s,w) = Z ame 5 w(m).
m=1

Lemma 5.2.  There is an H(Dy)-valued random element f(s,w) such that

lim B [p(far (-, w), ()] = 0.

M—o0
In particular, for any fized s € Dy,

2 oo
f(s,w) @) Z ame mSw(m).

m=1
Proof. Let K be a compact subset in Dg. For M < M’, denote

har v (w) == sup | far(s,w) — farr (s, w)].
seK

Let L be a simple closed contour lying in Dy and enclosing the set K and let & denote
the distance of L from the set K. For each w € 2, Cauchy’s integral formula implies
that

hasar () = sup far(5,) = for (5:0)] € 5z [ |far(z.0) = a0l

then by the Cauchy-Schwarz inequality,

@I < iy [ 1) = fur (2Pl
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Let 09 = min,cr, Rez > 0¢. For z = o +it(oc > o1), it follows from the orthogonal
property of the sequence {w(m)} that

M’ M’
EPfu(z0) = o)) = 3 lanfe ™7 < 3 janfe e

Consequently,

E@mMMMMMSE@ﬂ'” /uwzw fwwwnuﬂ

L
:@gpéﬂmWMWﬁﬂmVMWW4
LE S~ e
< > law[Pemm
(27md)? ey

—0 as M,M — co.

The above result holds for any compact subset K in Dy. Therefore, taking into account
the definition of the metric p, we obtain

lim  B® | p(far (), farr ()] =0,

Since H(Dy) is a complete separable metric space, there is an H(Dy)-valued random
element f(s,w) such that

Jim B p(far(. ). f(0)?] =0

It follows that there exists a subsequence {fas, (s,w)}r converging to f(s,w) P-a.e. as
k — oo, that is,

kllrgo P(ka(',w), f(vw)) =0, P-ae.

In particular, for any fixed s € Dy,
khm |ka (S,LU) - f(va)| = 07 P_a"e'a
which implies

2 >
f(s,w) L@p) Z ame NS w(m).
m=1

The lemma has been proved. O

For each n € N, we define a random element g, (s,w): Q@ — H(Dg) as

Z amv(m,n)e  *w(m).
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Lemma 5.3.
lim E(P) [p(gn(7w)7f(aw))2] =0.

n—oo

Proof. This proof is similar to the proof of Lemma 5.2. Therefore, we only need
to show that for a given compact subset K of Dy,

(5.1) lim E®)[|h, (w)|?] =0,

where

hn(w) = sup |gn(s,w) — f(s,w)].
seK

To prove (5.1), let L be a simple closed contour lying in Dy and enclosing the set K and
let 6 denote the distance of L from the set K. For w € Q for which f(s,w) € H(Dy),
Cauchy’s integral formula implies that

() = sup g5, ) — F5,)| < 52 /L gn(2,) — F(zw)][dz],

seK

then by the Cauchy-Schwarz inequality, we obtain

2
2 5 /|gn zZ,w) (z,w)|*|dz|.

Let 0y = min,ec; Rez > 0g. For z = 0 +it(oc > o07), from Lemma 5.2, we have

h2

2 o0
fzw) EEP ST ae P ntw(m),

m=1
which implies
E®)|g,(z,0) - Z |am[?[1 = v(m, n)[?e=?Am?
< |am|?[1 — v(m, n)|?e 221 < oo,
m=1
Therefore,
L
B W) < B | [ (i) - SwPlas
(274)?
= o [P lgn(e.) — Fe) P
(2m6)* J1, ’ ’
o
< |L|2 Z |CL |2|1—v(m n)|26—2)\m01
~ (270)? " ’ '

m=1

Once again, our desired result (5.1) follows by using the dominated convergence theorem.
The proof is complete. O
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Corollary 5.4. (i) For any ¢ > 0,
lim P(p(gn(-,w),f(-,w)) > 8) =0.
n—oo
(i)
(5.2) P, 4, Py as n— oo,

where P, and Py denote the distributions of the H(Dy)-valued or M (Dy)-valued ran-
dom elements g, and f, respectively.

Proof. (i) follows from Lemma 5.3 by Chebyshev’s inequality. (ii) follows from (i)
by Theorem A .4. O

For every compact subset K of Dy, Proposition 2.6 claims that

lim limsup — / sup d(gn (s + it), f(s +it))dt = 0.

n—/0 T 500 seK

Thus, by Chebyshev’s inequality, for any € > 0,

(5.3) limtim sup vy (p(gn (- + it), (- + i) > =) = 0.

n—oo T—00

Since the Dirichlet series g,(s) is absolutely convergent in Dy, it follows from Theo-
rem 5.1 that

(5.4) vr(gn(s +1it) € +) 4, P, as T — oo,

where the weak convergence is still true in the space of meromorphic functions M (Dy).
Therefore, (5.2)—(5.4) imply the limit theorem for f(s) in M (Dy).

Theorem 5.5.  Suppose that conditions (1.2) and (1.3) are satisfied. Then there
exists an H(Dg)-valued random element f(s,w) such that

2 o0
f(s,w) LHGP) Z ame *m*w(m), s € Dy.
m=1

Moreover, the sequence of probability measures
vr(f(s+it) € 4), A€ B(M(Dy)),

converges weakly to Py as T'— oo, where Py denotes the distribution of f(s,w).
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Remark 2. If the strip D1 = {s € C: 01 < 0 < 02}(0p < 01 < 02 < 00) contains
no pole of f(s), then in view of the proof of Theorem 5.5 we can assert the following.
“The sequence of probability measures

vr(f(s+it)e A), Ae B(H(D,)),

converges weakly to Py as T — oo, where Py denotes the distribution of the H(Dy)-
valued random element f(s,w).”

Remark 3. Assume that the series
o0
(5.5) flo1,w) = Z ame 1w (m)
m=1

converges almost everywhere for any o1 > 0¢. Then for P-a.e. w € (), the series
x
f(s,w):= Z ame A5 w(m)
m=1

converges uniformly on each compact subset of the half-plane {s € C: ¢ > o1}. Let
A,, denote the set of w € Q for which the series f(s,w) converges uniformly on compact
subsets of the half-plane {s € C: o > g9 + 1/n}. Obviously, P(4,) =1 for all n € N.

Now if we take -
A= () 4,
n=1

then P(A) = 1, and, for w € A, the series f(s,w) converges uniformly on compact
subsets of Dg. It follows that f(s,w) is an H(Dg)-valued random element defined on
the probability space (Q,B(Q2),P). In other words, for P-a.e. w € ), the sequence
{fm(s,w)} converges to f(s,w) in H(Dy) as M — oo. This implies that the function
f(s,w) here coincides with the function defined in Lemma 5.2. The following two cases
ensure the assumption (5.5).

(i) If {\,} is linearly independent over the field of rational numbers, then the condi-
tion (5.5) is automatically satisfied (Theorem 4.5).

(ii) In general case, if the series

e.e]

Z |am|26—2>\ma(10g m)2

m=1

converges for o > o, then the condition (5.5) is also satisfied. Indeed, let X, :=

—Amo

ame w(m). Then {X,,} becomes a sequence of orthogonal random variables

and
x

> E[| X/ (logm)? < co.

m=1
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Therefore, by [9], the series
> X
m=1

converges almost everywhere.

8§ Appendix A. Convergence of probability measures on metric spaces

Let (S, p) be a separable metric space and let { X, }neny and X be S-valued random
elements defined on the probability space (2, F, P).

Definition A.1. The sequence {X, },en converges in probability to X if for
every € > (),
lim P(p(X,,X)>¢)=0.

n—oo

Definition A.2. The sequence {X,},en converges weakly to X if for every
bounded continuous function f: (S, p) — R,

lim E[f(X,)] = E[f(X)].

n—oo
Lemma A.3 ([1, Theorem 2.1]).  The sequence {X,,}nen converges weakly to X
if and only if
lim E[f(X,)] = E[f(X)]

n—oo

for every bounded uniformly continuous function f: (S, p) — R.

Theorem A.4.  The convergence in probability implies the weak convergence.

Proof. Suppose that {X,, }n,en converges in probability to X. Let f: (S,p) — R
be a bounded uniformly continuous function. Then given £ > 0, there exists a § > 0
such that

|f(z) = fy)l <e, if p(z,y) <o

Now we have

E[|f(X,) — f(X)[] = / (X)) — F(X)|dP

Q

- / F(X) — F(X)|dP + / F(Xa) — F(X)|dP
p(Xn,X)<0 p(Xn,X)>0

< & 4 2MP(p(X,. X) = ),
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where M :=sup,cg|f(z)| < co. Therefore,

limsup E[| f(Xy) — f(X)[]] <e.

n—oo

By letting ¢ — 0, we obtain

limsup [E[f(X;)] — E[f(X)]| < limsup E[|f(X,) — f(X)[] =0,

n—oo n—oo

which completes the proof of Theorem A .4. O

(i)

(i)

Let {Y,,},, and {Xg »}kn be S-valued random elements.
Theorem A.5 ([1, Theorem 3.2]).  Assume that

d
Xign — X as n — 00;

in>X as k — oo;

(iii) for every e >0

lim limsup P{p(Xkn,Yn) >} =0.

k—oo nooo

ThenYni>X as n — oo.
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