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Abstract

The class of zeta distributions is one of the classical classes of probability distributions

on \mathbb{R} . For 0<u\leq 1 ,
let  $\zeta$(z, u) , z\in \mathbb{C} ,

be the Hurwitz zeta function. Zeros of zeta functions

are one of the major subjects in number theory due to the Riemann Hypothesis. The Hurwitz

zeta function  $\zeta$(z, u) has many zeros except in some conditions. In particular,  $\zeta$(z, 1) is the

Riemann zeta function. Let z= $\sigma$+\mathrm{i}t ,
where  $\sigma$>1 and t\in \mathbb{R} ,

then  $\zeta$(z, 1) does not have

zeros. In [8], it is shown that a normalized function f_{ $\sigma$,1}(t) := $\zeta$( $\sigma$+\mathrm{i}t, 1)/ $\zeta$( $\sigma$, 1) is an infinitely
divisible characteristic function. The corresponding distributions are called the Riemann zeta

distributions on \mathbb{R} and studied in [9]. A distribution with f_{ $\sigma$,u}(t) := $\zeta$( $\sigma$+\mathrm{i}t, u)/ $\zeta$( $\sigma$, u) ,

0<u\leq 1 ,
as its characteristic function is called the Hurwitz zeta distribution on \mathbb{R} . In [7],

it is proved that f_{ $\sigma$,1/2}(t)= $\zeta$( $\sigma$+\mathrm{i}t, 1/2)/ $\zeta$( $\sigma$, 1/2) is also an infinitely divisible characteristic

function and u=1/2 or 1 are the only cases to be so. Usually,  $\zeta$(z, u) is given by the

Dirichlet series or, when  $\zeta$(z, u) does not have zeros, by the Euler products. In [1], a new

multidimensional Euler product and corresponding zeta distributions on \mathbb{R}^{d} are introduced

and the infinite divisibility of them is studied. As one of the generalizations of the Dirichlet

series, the Shintani zeta functions are well‐known. In this paper, we define multidimensional

Shintani zeta functions as a further generalization of the Shintani zeta functions. We show

that the distributions on \mathbb{R}^{d} produced by them are not infinitely divisible and also give some

examples.
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§1. Introduction

§1.1. Infinitely divisible distributions

Infinitely divisible distributions are known as one of the most important class of

distributions in probability theory. They are the marginal distributions of stochastic

processes having independent and stationary increments such as Brownian motion and

Poisson processes. In 1930' \mathrm{s} ,
such stochastic processes were well‐studied by P. Lévy and

now we usually call them Lévy processes. We can find the detail of Lévy processes in

[13] but they are a bit far from our story, so we omit to comment about them any more

in this paper.

In this section, we mention some known properties of infinitely divisible distribu‐

tions.

Definition 1.1 (Infinitely divisible distribution). A probability measure  $\mu$ on

\mathbb{R}^{d} is infinitely divisible if, for any positive integer n
,

there is a probability measure

$\mu$_{n} on \mathbb{R}^{d} such that

 $\mu$=$\mu$_{n}^{n*},

where $\mu$_{n}^{n*} is the n‐fold convolution of $\mu$_{n}.

Example 1.2. Normal, degenerate, Poisson and compound Poisson distribu‐

tions are infinitely divisible. (See, also Example 1.4.)

Denote by I() the class of all infinitely divisible distributions on \mathbb{R}^{d} . Let(z) :=

\displaystyle \int_{\mathbb{R}^{d}}e^{\mathrm{i}\langle z,x\rangle} $\mu$(dx) , z\in \mathbb{R}^{d} ,
be the characteristic function of a distribution  $\mu$ ,

where \langle\cdot, \rangle
is the inner product. Write  a\displaystyle \wedge b:=\min\{a, b\}.

The following is well‐known.

Proposition 1.3 (LévyKhintchine representation (see, e.g. [13])). (i) If $\mu$\in I(\mathbb{R}^{d}) ,

then

(1.1) \displaystyle \hat{ $\mu$}(z)=\exp[-\frac{1}{2}\langle z, Az\rangle+\mathrm{i}\langle $\gamma$, z\displaystyle \rangle+\int_{\mathbb{R}^{d}}(e^{\mathrm{i}\langle z,x\rangle}-1-\frac{\mathrm{i}\langle z,x\rangle}{1+|x|^{2}})v(dx)], z\in \mathbb{R}^{d},

where A is a symmetric nonnegative‐definite dd matrix, v is a measure on \mathbb{R}^{d} satisfy ing

(1.2) v(\{0\})=0 and \displaystyle \int_{\mathbb{R}^{d}}(|x|^{2}\wedge 1)v(dx)<\infty,
and  $\gamma$\in \mathbb{R}^{d}.

(ii) The representation of \hat{ $\mu$} in (i) by A, v
,

and  $\gamma$ is unique.

(iii) Conversely, if  A is a symmetric nonnegative‐definite d\times d matrix, v is a

measure satisfy ing (1.2), and  $\gamma$\in \mathbb{R}^{d} , then there exists an infinitely divisible distribution

 $\mu$ whose characteristic function is given by (1.1).



Zeros oF zeta functions and zeta distributions 0N \mathbb{R}^{d} 41

The measure v and (A, v,  $\gamma$) are called the Lévy measure and the LévyKhintchine

triplet of  $\mu$\in I(\mathbb{R}^{d}) , respectively.

Example 1.4. The characteristic functions of distributions given in Example
1.2 are the following.

(i) Let $\mu$_{\mathrm{N}\mathrm{o}\mathrm{r}} be a normal distribution on \mathbb{R}^{d} with covariance matrix A
,

which is a

symmetric positive‐definite d\times d matrix, and mean vector  $\gamma$\in \mathbb{R}^{d} . Then,

\displaystyle \hat{ $\mu$}_{\mathrm{N}\mathrm{o}\mathrm{r}}(z)=\exp(-\frac{1}{2}\langle z, Az\rangle+\mathrm{i}\langle $\gamma$, z\rangle) , z\in \mathbb{R}^{d}
(ii) Let $\mu$_{ $\gamma$}=$\delta$_{ $\gamma$} ,

where $\delta$_{ $\gamma$} is a degenerate distribution at  $\gamma$\in \mathbb{R}^{d} . Then,

\hat{ $\mu$}_{ $\gamma$}(z)=\exp(\mathrm{i}\langle $\gamma$, z\rangle) , z\in \mathbb{R}^{d}

(iii) Let $\mu$_{\mathrm{P}\mathrm{o}} be a Poisson distribution with mean c>0 . Then,

\hat{ $\mu$}_{\mathrm{P}\mathrm{o}}(z)=\exp(c(e^{\mathrm{i}z}-1)) , z\in \mathbb{R}.

(iv) Let $\mu$_{\mathrm{C}\mathrm{P}\mathrm{o}} be a compound Poisson distribution. Then, for some c>0 and for some

distribution  $\rho$ on \mathbb{R}^{d} with  $\rho$(\{0\})=0,

\hat{ $\mu$}_{\mathrm{C}\mathrm{P}\mathrm{o}}(z)=\exp(c(\hat{ $\rho$}(z)-1)) , z\in \mathbb{R}^{d}

The Poisson distribution is a special case when d=1 and  $\rho$=$\delta$_{1}.

§1.2. Riemann and Hurwitz zeta distributions

Zeta functions play one of the key roles in number theory. The Riemann zeta

function is regarded as the prototype. First results about this function were obtained

by L. Euler in the eighteenth century. It is named after B. Riemann, who in the

memoir �On the Number of Primes Less Than a Given Magnitude�, published in 1859,
established a relation between its zeros and the distribution of prime numbers.

In this section, we introduce the Riemann and Hurwitz zeta distributions and some

known properties.

Definition 1.5 (Riemann zeta function (see, e.g. [2])). A function  $\zeta$(z) is called

the Riemann zeta function if

 $\zeta$(z)=\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^{z}} ,
where z= $\sigma$+\mathrm{i}t,  $\sigma$>1, t\in \mathbb{R}.
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The Dirichlet series of  $\zeta$(z) converges absolutely in the half‐plane  $\sigma$>1 and uni‐

formly in each compact subset of this half‐plane. It is known that the Riemann zeta

function is a meromorphic function on the whole complex plane, which is holomorphic

everywhere except for a simple pole at z=1 with residue 1.

Put

f_{ $\sigma$}(t):=\displaystyle \frac{ $\zeta$( $\sigma$+\mathrm{i}t)}{ $\zeta$( $\sigma$)}, t\in \mathbb{R},
then f(t) is known to be a characteristic function. (See, e.g. [5].)

Definition 1.6 (Riemann zeta distribution on \mathbb{R} ). A distribution $\mu$_{ $\sigma$} on \mathbb{R} is said

to be a Riemann zeta distribution with parameter  $\sigma$ if it has  f(t) as its characteristic

function.

The Riemann zeta distribution is known to be infinitely divisible. The characteristic

functions and the Lévy measures of them can be given of the form as in the following.

Proposition 1.7 (See, e.g. [5]). Let \mathbb{P} be the set of all prime numbers and $\mu$_{ $\sigma$}

be a Riemann zeta distribution on \mathbb{R} with characteristic function f_{ $\sigma$}(t) . Then, $\mu$_{ $\sigma$} is

compound Poisson on \mathbb{R} and

\displaystyle \log f_{ $\sigma$}(t)=\sum_{p\in \mathbb{P}}\sum_{r=1}^{\infty}\frac{p^{-r $\sigma$}}{r}(e^{-\mathrm{i}rt\log p}-1)
=\displaystyle \int_{0}^{\infty}(e^{-\mathrm{i}tx}-1)N_{ $\sigma$} (dx),

where N_{ $\sigma$} is given by

N_{ $\sigma$}(dx)=\displaystyle \sum_{p\in \mathbb{P}}\sum_{r=1}^{\infty}\frac{p^{-r $\sigma$}}{r}$\delta$_{r\log p} (dx ),

where $\delta$_{x} is the delta measure at x.

As a generalization of the Riemann zeta function, the following function is well‐

known.

Definition 1.8 (Hurwitz zeta function (see, e.g. [2])). For 0<u\leq 1 ,
a function

 $\zeta$(z, u) is called the Hurwitz zeta function if

 $\zeta$(z, u)=\displaystyle \sum_{n=0}^{\infty}\frac{1}{(n+u)^{z}} ,
where z= $\sigma$+\mathrm{i}t,  $\sigma$>1, t\in \mathbb{R}.

In number theory, the Hurwitz zeta function, named after A. Hurwitz, is one of the

well‐known zeta functions. The Dirichlet series of  $\zeta$(z, u) converges absolutely in the
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half‐plane  $\sigma$>1 . The Hurwitz zeta function is analytically continuable to a meromor‐

phic function, which has a simple pole at z=1 with residue 1 as same as the property
of the Riemann zeta case. Let  $\Gamma$(u) , u>0 ,

be the gamma function. Lerch showed that

[\displaystyle \frac{d}{dz} $\zeta$(z, u)]_{z=0}=\log $\Gamma$(u)-\frac{1}{2}\log(2 $\pi$) .

Hence  $\Gamma$(u) can be written by the Hurwitz zeta function.

We put the corresponding normalized function and a discrete one‐sided random

variable X_{ $\sigma$,u} as follows.

f_{ $\sigma$,u}(t):=\displaystyle \frac{ $\zeta$( $\sigma$+\mathrm{i}t,u)}{ $\zeta$( $\sigma$,u)}, t\in \mathbb{R},
and

\displaystyle \mathrm{P}\mathrm{r}(X_{ $\sigma$,u}=\log(n+u))=\frac{(n+u)^{- $\sigma$}}{ $\zeta$( $\sigma$,u)} for n\in \mathbb{N}\cup\{0\}.

Then f_{ $\sigma$,u} is known to be a characteristic function of -X_{ $\sigma$,u}.

Proposition 1.9 ([7]). (i) The Laplace‐Stieltjes transfO rm of X_{ $\sigma$,u} is $\Psi$_{ $\sigma$,u}(s)=
 $\zeta$( $\sigma$+s, u)/ $\zeta$( $\sigma$, u) , s>1- $\sigma$.

(ii) The characteristic function of-X_{ $\sigma$,u} is f_{ $\sigma$,u}.

Therefore, we can define the following distribution.

Definition 1.10 (Hurwitz zeta distribution on \mathbb{R} ). A distribution $\mu$_{ $\sigma$,u} on \mathbb{R} is

said to be a Hurwitz zeta distribution with parameter ( $\sigma$, u) if it has f_{ $\sigma$,u} as its charac‐

teristic function.

The infinite divisibility of $\mu$_{ $\sigma$,u} is studied in [7].

Proposition 1.11 ([7]). The Hurwitz zeta distribution $\mu$_{ $\sigma$,u} is infinitely divisible

if and only if

u=\displaystyle \frac{1}{2} or u=1.

The Lévy measure of $\mu$_{ $\sigma$,\frac{1}{2}} is also given as follows.

Proposition 1.12 ([7]). The Hurwitz zeta distribution $\mu$_{ $\sigma$,\frac{1}{2}} is compound Pois‐

son (infinitely divisible) with its Lévy measure N_{ $\sigma$,\frac{1}{2}} given by

N_{ $\sigma$,\frac{1}{2}} (dx)=\displaystyle \sum_{p>2}\sum_{r=1}^{\infty}\frac{p^{-r $\sigma$}}{r}$\delta$_{r\log p} (dx ),

where the first sum is taken over all odd primes p.
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§2. Shintani zeta functions and zeta distributions on \mathbb{R}^{d}

§2.1. Multidimensional Shintani zeta function

The Riemann zeta function  $\zeta$(z, 1) does not vanish when  $\sigma$>1 by the Euler prod‐
uct. According to  $\zeta$(s, 1/2)=(2^{s}-1) $\zeta$(s, 1) ,

the Hurwitz zeta function  $\zeta$(z, 1/2) also

does not vanish in the region of absolute convergence. On the other hand, Davenport
and Heilbronn [4] showed that if u is rational or transcendental except the case u=1/2
or 1, then  $\zeta$(z, u) has infinitely many zeros in the region  $\sigma$>1 . Moreover, Cassels [3]
showed that  $\zeta$(z, u) has the same property when u is algebraic irrational. Hence we

have the following.

Proposition 2.1. The Hurwitz zeta function  $\zeta$(z, u) does not vanish in the re‐

gion  1< $\sigma$ if and only if

 u=\displaystyle \frac{1}{2} or u=1.

This result should be compared with Proposition 1.11. Actually, we can see that

the Hurwitz zeta distribution $\mu$_{ $\sigma$,u}, u\neq 1 or 1/2, is not infinitely divisible by Proposition
2.1 and the following well‐known fact.

Proposition 2.2 (See, e.g. [13]). If  $\mu$ is infinitely divisible, then \hat{ $\mu$}(z) has no

zero, that is, \hat{ $\mu$}(z)\neq 0 for any z\in \mathbb{R}^{d}.

Thus we obtain another proof of the one side of Proposition 2.1 proved by Hu

et al. [7]. We consider this method for other zeta functions. So that we define the

following multidimensional Shintani zeta function as a generalization of the Hurwitz

zeta function.

Definition 2.3 (Multidimensional Shintani zeta function, Z_{S}(\vec{s}) ). Let d, m,  r\in

\mathbb{N},  $\xi$>0, \vec{s}\in \mathbb{C}^{d} and (nl, . . .

, n_{r} ) \in \mathbb{Z}_{\geq 0}^{r} . For $\lambda$_{lj}, u_{j}>0, \vec{c_{l}}\in \mathbb{R}_{\geq 0}^{d} ,
where 1\leq j\leq r and

1\leq l\leq m ,
and a function  $\theta$(n_{1}, \ldots, n_{r})\in \mathbb{C} with  $\theta$(n_{1}, \ldots, n_{r})\not\equiv 0 and | $\theta$(n_{1}, \ldots, n_{r})|=

O((n_{1}+\cdots+n_{r})^{ $\xi$}) ,
we define a multidimensional Shintani zeta function given by

(2.1) Z_{S}(\displaystyle \vec{s}) :=\sum_{n_{1},\ldots,n_{r}=0}^{\infty}\frac{ $\theta$(n_{1},\ldots n_{r})}{\prod_{l=1}^{m}($\lambda$_{l1}(n_{1}+u_{1})+\cdots+$\lambda$_{lr}(n_{r}+u_{r}))^{\langle\vec{c}_{l},s $\gamma$}},
where \Re\langle\vec{c_{l}}, s )\rightarrow>(r+ $\xi$)/m.

This is a multidimensional case of the Shintani multiple zeta function, when  $\theta$(n_{1}, \ldots, n_{r})
in (2.1) is a product of Dirichlet characters, considered by Hida [6].
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Put

\vec{s}:=\vec{ $\sigma$}+\mathrm{i}t\rightarrow,\vec{ $\sigma$}, t\in \mathbb{R}^{d}\rightarrow

It is important to note the following.

Lemma 2.4. The series defined by (2.1) converges absolutely in the region \Re\langle\vec{c_{l}}, s )
\rightarrow

>0 and- $\xi$+\displaystyle \sum_{l=1}^{m}\langle\vec{c_{l}}, \vec{ $\sigma$}\rangle>r.

Proof. Put  $\lambda$:=\displaystyle \min\{$\lambda$_{lj}\} and u:=\displaystyle \min\{u_{j}\} . Obviously, we have

($\lambda$_{l1}(n_{1}+u_{1})+\cdots+$\lambda$_{lr}(n_{r}+u_{r}))^{-1}\leq$\lambda$^{-1}(n_{1}+\cdots+n_{r}+ru))^{-1}

Then,

|Z_{S}(\displaystyle \vec{s})|\leq\sum_{n_{1},\ldots,n_{r}=0}^{\infty}\frac{$\lambda$^{-$\Sigma$_{l=1}^{m}\langle\vec{c}_{l}\vec{ $\sigma$}\rangle}(n_{1}.+\cdots+n_{r}+ru)^{ $\xi$}}{\prod_{l=1}^{m}(n_{1}'+\cdot\cdot+n_{r}+ru)^{\langle\vec{c}_{l},\vec{ $\sigma$}\rangle}}
\displaystyle \leq\sum_{n_{1},\ldots,n_{r}=0}^{\infty}\frac{$\lambda$^{-$\Sigma$_{l=1}^{m}\langle\vec{c}_{l},\vec{ $\sigma$}\rangle}}{(n_{1}+\cdots+n_{r}+ru)^{- $\xi$+$\Sigma$_{l=1}^{m}\langle\vec{c}_{l},\vec{ $\sigma$}\rangle}}
\displaystyle \leq$\lambda$^{-$\Sigma$_{l=1}^{m}\langle\vec{c}_{l},\vec{ $\sigma$}\rangle}((ru)^{ $\xi-\Sigma$_{l=1}^{m}\langle\vec{c}_{l},\vec{ $\sigma$}\rangle}+\int_{0}^{\infty}\cdot\cdot\int_{0}^{\infty}\frac{dx_{1}\cdots dx_{r}}{(x_{1}+\cdots+x_{r}+ru)^{- $\xi$+$\Sigma$_{l=1}^{m}\langle\vec{c}_{l},\vec{ $\sigma$}\rangle}})
<\infty

since - $\xi$+\displaystyle \sum_{l=1}^{m}\langle\vec{c_{l}}, \vec{ $\sigma$}\rangle>r. \square 

Remark 1. This type of generalization of the Euler product is given in [1]. The

multidimensional zeta distribution on \mathbb{R}^{d} is also introduced and the infinite divisibility
of them is studied.

By Lemma 2.4.1 of [6], we can show that Z_{S}(\vec{s}) converges absolutely and uniformly
on any compact subset in the region \Re\langle\vec{c_{l}}, s )\rightarrow>(r+ $\xi$)/m for all 1\leq l\leq m . Moreover,
when d=m, c_{1}=(1,0, \ldots, 0) ,

. . .

, c_{m}=(0, \ldots, 0,1) and  $\theta$(n_{1}, \ldots, n_{r}) is a product of

Dirichlet characters, it is proved that Z_{S}(\vec{s}) can be continued to the whole space \mathbb{C}^{d} as

a meromorphic function in [6].

Example 2.5. (i) When d=m=r=$\lambda$_{11}=u_{1}=c_{1}=1,  $\theta$(n)=-\log(n+1) ,

we have

(2.2) Z_{S}(\displaystyle \vec{s})=-\sum_{n=1}^{\infty}\frac{\log n}{n^{s}}=$\zeta$'(s) ,

the derivative of the Riemann zeta function.
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(ii) When d=m=r=$\lambda$_{11}=c_{1}=1 and  $\theta$(n)=e^{2 $\pi$ \mathrm{i}vn} ,
where v\in \mathbb{R} ,

we have

(2.3) Z_{S}(\displaystyle \vec{s})=\sum_{n=0}^{\infty}\frac{e^{2 $\pi$ \mathrm{i}vn}}{(n+u)^{s}},
the Lerch zeta function which is a generalization of the Hurwitz zeta functions.

(iii) When d=m=r, $\lambda$_{11}=\cdots=$\lambda$_{mr}=1, \vec{c}_{1}=(1,0, \ldots, 0) ,
. . .

, \vec{c}_{m}=(0, \ldots, 0,1) ,

and  $\theta$(n_{1}, \ldots, n_{m})=1 if n_{1}>\cdots>n_{r}>0 otherwise  $\theta$(n_{1}, \ldots, n_{m})=0 ,
then one has

Z_{S}(\displaystyle \vec{s})=\sum_{n_{1}>\cdots>n_{r}>0}^{\infty}\frac{1}{(n_{1}+u_{1})^{s_{1}}(n_{2}+u_{2})^{s_{2}}\cdots(n_{r}+u_{r})^{s_{r}}}
(2.4)

=\displaystyle \sum_{n_{1},\ldots,n_{r}=1}^{\infty}\frac{1}{(n_{1}+\cdots+n_{r}+u_{1})^{s_{1}}(n_{2}+\cdots+n_{r}+u_{2})^{s_{2}}\cdots(n_{r}+u_{r})^{s_{r}}},
the Euler‐Zagier‐Hurwitz type of multiple zeta function.

§2.2. Shintani zeta distributions on \mathbb{R}^{d}

In this section, we introduce a new probability distribution on \mathbb{R}^{d} produced by Z_{S}
and consider their infinite divisibility. Let  $\theta$(n_{1}, \ldots, n_{r}) be a nonnegative or nonpositive
definite function and write \vec{c_{l}}=(c_{l1}, \ldots, c_{ld})\in \mathbb{R}_{\geq 0}^{d} in Definition 2.3. Again, we use the

notation \vec{s}:=\vec{ $\sigma$}+\mathrm{i}t\rightarrow,\vec{ $\sigma$}, t\in\rightarrow \mathbb{R}^{d}.

Definition 2.6 (Multidimensional Shintani zeta distribution). For (nl, . . .

, n_{r} )

\in \mathbb{Z}_{\geq 0}^{r} and  $\sigma$\rightarrow satisfying \Re\langle\vec{c_{l}}, s )\rightarrow>0 and - $\xi$+\displaystyle \sum_{l=1}^{m}\langle\vec{c_{l}}, \vec{ $\sigma$}\rangle>r as in Lemma 2.4, we define

a multidimensional Shintani zeta random variable X_{\vec{ $\sigma$}} with probability distribution on

\mathbb{R}^{d} given by

\displaystyle \mathrm{P}\mathrm{r}(X_{\vec{ $\sigma$}}=(-\sum_{l=1}^{m}c_{l1}\log($\lambda$_{l1}(n_{1}+u_{1})+\cdots+$\lambda$_{lr}(n_{r}+u_{r})) ,

. . .

, -\displaystyle \sum c_{ld}\log($\lambda$_{l1}(n_{1}+u_{1})+\cdots+$\lambda$_{lr}(n_{r}+mu_{r}))))l=1

= \displaystyle \frac{ $\theta$(n_{1},\ldots,n_{r})}{Z_{S}(\vec{ $\sigma$})}\prod_{l=1}^{m}($\lambda$_{l1}(n_{1}+u_{1})+\cdots+$\lambda$_{lr}(n_{r}+u_{r}))^{-\langle\vec{c}_{l},\vec{ $\sigma$}\rangle}
It is easy to see these distributions are probability distributions since

\displaystyle \frac{ $\theta$(n_{1},\ldots,n_{r})}{Z_{S}(\vec{ $\sigma$})}\prod_{l=1}^{m}($\lambda$_{l1}(n_{1}+u_{1})+\cdots+$\lambda$_{lr}(n_{r}+u_{r}))^{-\langle\vec{c}_{l},\vec{ $\sigma$}\rangle}\geq 0
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for each (nl, . . .

, n_{r} ) \in \mathbb{Z}_{\geq 0}^{r} when  $\theta$(n_{1}, \ldots, n_{r}) is nonnegative or nonpositive definite,
and

\displaystyle \sum_{n_{1},\ldots,n_{r}=0}^{\infty}\frac{ $\theta$(n_{1},\ldots,n_{r})}{Z_{S}(\vec{ $\sigma$})}\prod_{l=1}^{m}($\lambda$_{l1}(n_{1}+u_{1})+\cdots+$\lambda$_{lr}(n_{r}+u_{r}))^{-\langle\vec{c}_{l},\vec{ $\sigma$}\rangle}=\frac{Z_{S}(\vec{ $\sigma$})}{Z_{S}(\vec{ $\sigma$})}=1
by Lemma 2.4.

The characteristic function of X_{\vec{ $\sigma$}} is as follows.

Theorem 2.7. Let X_{\vec{ $\sigma$}} be a multidimensional Shintani zeta random variable.

Then its characteristic function f_{\vec{ $\sigma$}} is given by

 f_{\vec{ $\sigma$}}(t]=\displaystyle \frac{Z_{S}(\vec{ $\sigma$}+\mathrm{i}t]}{Z_{S}(\vec{ $\sigma$})}, t\in \mathbb{R}^{d}\rightarrow
Proof. By the definition, we have

 f_{\vec{ $\sigma$}}(t]= \displaystyle \sum\displaystyle \infty e^{\mathrm{i}\langle tX_{\vec{ $\sigma$}}\rangle}\frac{ $\theta$(n_{1},\ldots,n_{r})}{Z_{S}(\vec{ $\sigma$})}\rightarrow,\prod^{m}($\lambda$_{l1}(n_{1}+u_{1})+\cdots+$\lambda$_{lr}(n_{r}+u_{r}))^{-\langle\vec{c}_{l},\vec{ $\sigma$}\rangle}
n_{1},\ldots,n_{r}=0 l=1

=\displaystyle \frac{Z_{S}(\vec{ $\sigma$}+\mathrm{i}t]}{Z_{S}(\vec{ $\sigma$})}.
This completes the proof. \square 

This theorem shows that our definitions of multidimensional Shintani zeta function

and distribution give a new generalization of zeta distributions on \mathbb{R} mentioned in

Section 1.2 to \mathbb{R}^{d} ‐valued.

For multidimensional Shintani zeta distributions, we have the following theorem by

Proposition 2.2.

Theorem 2.8. Multidimensional Shintani zeta distributions with f_{\vec{ $\sigma$}} having ze‐

ros in the region \Re\langle\vec{c_{l}}, s )\rightarrow>0 and- $\xi$+\displaystyle \sum_{l=1}^{m}\langle\vec{c_{l}}, \vec{ $\sigma$}\rangle>r are not infinitely divisible.

By the theorem above, we can see that zeta distributions produced by following
functions are not infinitely divisible:

1. Partial zeta functions \displaystyle \sum_{n\leq N}n^{-s} for some suitable integer N,

2. The derivative of the Riemann zeta function (2.2),

3. For some Dirichlet series with periodic coefficients, which contains the Hurwitz zeta

functions with u\neq 1/2 and v are rational, treated by Saias and Weingartner [12],

4. Euler‐Zagier‐Hurwitz type of multiple zeta functions (2.4) when u_{1} ,
. . .

, u_{r} are al‐

gebraically independent over \mathbb{Q} proved in Proposition 3.2 of [10].
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It should be noted that Saito and Tanaka [11] showed that the distributions defined

by Euler‐Zagier multiple zeta star functions are not infinitely divisible by reformulating
the method used in [7].

Throughout this paper, we have treated zeta distributions on \mathbb{R}^{d} and multiple
zeta functions having zeros by defining the multidimensional Shintani zeta functions.

Though, in one dimensional case, there exist some zeta functions which appear not to

have zeros. In such cases, zeta functions may have Euler products. So that it seems to be

quite natural to consider zeta functions not having zeros in multidimensional cases. As

mentioned in Remark 1, we have also introduced a new multidimensional Euler product
for them and defined new multidimensional zeta distributions on \mathbb{R}^{d} produced by them.

We have also studied the infinite divisibility of them in [1].
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