
RIMS Kôkyûroku Bessatsu
B34 (2012), 2737

Surveying some notions of complexity for finite and

infinite sequences

By

Jean‐Paul Allouche*

Abstract

We survey some ways of approaching the �complexity� of finite or infinite sequences. We

emphasize in particular the notion of �inconstancy� of a sequence.

§1. Introduction

Given a finite or infinite sequence, how to recognize that it is ((\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d}
�

(or
�complex�), ((random�, �chaotic�? How to compare the ((complexity�, the �random‐

ness�, the �chaos� of two sequences? Is it reasonable to consider that the sequence

0000. . . is ((simpler� than the sequence 010101. . .

,
and that this last sequence is sim‐

pler than a binary eventually periodic sequence like 000001001001. . . ? Also should a

�random� sequence be �complicated�? Among the many studies devoted to these

complicated questions, we will survey quickly some notions of complexity for sequences

taking only finitely many values; then we will end with a notion related to an old the‐

orem of Cauchy and Crofton and recently adressed in a paper of L. Maillard‐Teyssier
and the author: the inconstancy of a sequence.

§2. Algorithmic complexity

One way of measuring the complexity of a sequence is to evaluate how difficult it is

to generate that sequence. The difficulty is measured, e.g., by the quantity of instruc‐

tions needed to generate the sequence (typically the length of a computer program), or
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by the time needed to compute the nth term or the first n terms of the sequence (typ‐
ically the time for running a computer program). Of course the interesting measure is

the smallest quantity of instructions, or the smallest computing time. In particular it is

usually the case that only upper bounds can be given for such a measure of complexity.

The Kolmogorov‐Solomonoff‐ Chaitin complexity of a sequence is the size of the

shortest program (on a Turing machine) generating that sequence. In particular this

notion is related to the compressibility of the sequence. To give a simple example, the

shortest way of describing the �complicated� finite sequence 0010101100010 might
well bejust to pronounce it, while the finite sequence 01010101010101010101

can be quickly described as �repeat the pattern 01 ten times�. A standard reference for

the Kolmogorov‐Solomonoff‐ Chaitin complexity is the book [45].

In a similar vein, the algorithmic complexity or the computational complexity de‐

termine the time and space resources needed for a computation using a given algorithm
and given data sizes. Two references are [25] on the analysis of algorithms, and [8]
more focused on the complexity classes. In connection with analysis of algorithms, it is

impossible not to cite the fascinating book on analytic combinatorics by Flajolet and

Sedgewick [32]

Remark. We give two more references: [36] compares several notions related

to the computational complexity or to the Kolmogorov‐Solomonoff‐Chaitin complex‐

ity (also see the references given there), while [27] shows how to approximate the

Kolmogorov‐Solomonoff‐Chaitin complexity of words of small length. Finally we cite

the theory of simplicity (J.‐L. Dessalles) for which we refer to

http: //\mathrm{w}\mathrm{w}\mathrm{w} . simplicitytheory. \mathrm{o}\mathrm{r}\mathrm{g}/

and the references therein.

§3. Combinatorial complexities

Another way of looking at whether a sequence is complicated is to look for its

combinatorial properties (combinatorial in the sense of combinatorics on words), e.g.,

counting subwords, palindromes, squares, etc., occurring in the sequence. The first

example of such a complexity is the block complexity (the sequences are supposed to

take finitely many values).

\bullet The block —or factor— complexity (sometimes just called complexity) counts how

many distinct blocks (also called factors/subwords) of each length occur in the

sequence. In particular, the complexity of any ultimately periodic sequence is ul‐

timately constant, while �random� sequences (i.e., almost all sequences for the
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Lebesgue measure) have the maximal number (i.e., all) blocks of each length. Three

surveys on the block complexity are [3, 30, 31].

Variations on the block complexity are the following.

\bullet The repetition complexity counts the amount of repetitions in a sequence, see, e.g.,

[44]. (Many other papers deal with related questions, see, e.g., [54, 34, 35]

\bullet The palindrome complexity counts the number of palindromes of each length, see,

e.g., [5].

\bullet The arithmetical complexity counts the number of words of each length occurring
in the arithmetical subsequences of the sequence, see, e.g., [9].

\bullet The pattern complexity of a sequence for a given pattern  S (i.e., a finite subset of

the integers) is the number of distinct restrictions of the sequence to S+n (with
n=0 , 1, 2, ,

while the maximal pattern complexity is the function of k defined as

the maximal value of the pattern complexity for all patterns of length k
, see, e.g.,

[41, 42]; also see the papers [43, 40].

\bullet The window complexity of a sequence counts the number of contiguous factors of

each length, see [38, 20].

Let us also mention properties of sequences that are related to some sort of com‐

plexity: quasi‐periodicity, recurrence and uniform recurrence (also called repetitivity
and uniform repetitivity), some definitions of pseudo‐randomness, e.g., [49], the study
of certain subsequences of the given sequence‐in particular the measure of automaticity
introduced by Shallit et al., see, e.g., Chapter 15 of [7].

Remark.

‐ Among the works comparing these combinatorial complexities, we would like to

cite the paper [39] that looks at block complexity, maximal pattern complexity and

minimal pattern complexity.

‐ One can define the  VC‐dimension (i.e., the va pnik‐Chervonenkis dimension) of a

sequence; this dimension is related to the above complexities, see in particular [52].

‐ The definition of block‐complexity for a sequence inspired the notion of permuta‐
tion complexity, see in particular [33] and [48]; also see [61] for the case of the Thue‐Morse

word.

‐ Another interesting notion of complexity for sequences was defined in relation

with symbolic dynamics, namely the heaviness, see [12, 55, 56].
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‐ Finally we would like to mention the visibility graph of a sequence studied in

particular in [46, 47].

§4. Number‐theoretical complexity

With a sequence of numbers (say integers) taking finitely many values one can

associate a real number whose digits in some integer base are given by the sequence,

a formal power series whose coefficients are given by the sequence or by its reduction

modulo some prime number, or a real number whose continued fraction expansion is

given by the sequence (or the sequence translated by some integer to have only positive

integers).

It is tempting to relate complexity properties of the sequence to algebraic properties

(e.g., being rational or algebraic) of these associated real numbers, formal power series,
or continued fractions. But what should be expected? Algebraic irrational real numbers

are conjectured to have very complicated expansions in integer bases: these expansions
are suspected to be normal in any integer base b

, i.e., to be such that any block of

length n occurs with the frequency 1/b^{n} ; see in particular the paper [11] of Borel about

the digits of \sqrt{2} in base 10. In other words the expansion of an irrational algebraic
number is expected to look like the expansion of a random number. On the other

hand, generating power series of combinatorial objects are expected to be algebraic
when these objects have a strong structure. Finally the algebraicity of formal power

series with coefficients in a finite field is equivalent to a combinatorial property of the

sequence of their coefficients, namely to be automatic: this is a theorem of Christol [23],
completed by Christol, Kamae, Mendès France and Rauzy [24].

In other words, algebraicity of reals or formal power series associated with a given

sequence depends on the type of expansion considered, as well as on the ground field,
thus yielding quite distinct notions of complexity. For more on these questions we refer

to the survey [4] and to the references therein. For more on the block complexity of

expansions of algebraic irrationals, one can read in particular [2, 1, 14] and the references

therein.

§5. Inconstancy

Now another kind of complexity of a sequence is whether it varies �softly� or

((crazily�. What is a fluctuating (finite or infinite) sequence? How is it possible to

detect and define sequences that admit large variations or fluctuations? A classical

criterion is the residual variance of a sequence: this is a measure of the �distance�

between the piecewise affine curve associated with the sequence and its linear regression
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line. Residual variance does not discriminate between a sequence that oscillates wildly
and a sequence that grows very rapidly. We thus proposed in [6] to bring to light an

old result of Cauchy and Crofton, in order to define what we called the inconstancy of

a sequence. This definition is based upon the idea that a complicated curve is cut by a

�random� straight line in many more points than a �quasi‐affine� curve. We give below

some more details. (For the original work concerning the Cauchy‐Crofton theorem for

curves, see [21, 22, 26], see also [57, 29] and the references in [6].)

§5.1. Cauchy‐Crofton�s theorem. Inconstancy of a curve

Let  $\Gamma$ be a plane curve. Let \ell( $\Gamma$) denote its length and let  $\delta$( $\Gamma$) denote the perimeter
of its convex hull. Any straight line in the plane can be defined as the set of (x, y) such

that x\cos $\theta$+y\sin $\theta$- $\rho$=0 ,
where  $\theta$ belongs to [0,  $\pi$ ) and  $\rho$ is a positive real number,

and hence is completely determined by ( $\rho$,  $\theta$) . Letting  $\mu$ denote the Lebesgue measure

on the set \{( $\rho$,  $\theta$) ,  $\rho$\geq 0,  $\theta$\in[0,  $\pi$ the average number of intersection points between

the curve  $\Gamma$ and straight lines is defined to be the quantity

\displaystyle \int_{D\in $\Omega$( $\Gamma$)}]( $\Gamma$\cap D)\frac{\mathrm{d} $\rho$ \mathrm{d} $\theta$}{ $\mu$( $\Omega$( $\Gamma$))}
where  $\Omega$( $\Gamma$) is the set of straight lines which intersect  $\Gamma$.

The following result can be found in [26, p. 184185], see also the papers of Cauchy

[21, 22].

Theorem 5.1 (Cauchy‐Crofton). The average number of intersection points be‐

tween the curve  $\Gamma$ and the straight lines in  $\Omega$( $\Gamma$) satisfies the equality

\displaystyle \int_{D\in $\Omega$( $\Gamma$)}]( $\Gamma$\cap D)\frac{\mathrm{d} $\rho$ \mathrm{d} $\theta$}{ $\mu$( $\Omega$( $\Gamma$))}=\frac{2l( $\Gamma$)}{ $\delta$( $\Gamma$)}.
Remark. The reader will have noted the relation between this theorem and the

Buffon needle problem (see [13, p. 100104]).

The theorem of Cauchy‐Crofton suggests the following definition.

Definition 5.2. Let  $\Gamma$ be a plane curve. Let \ell( $\Gamma$) be its length and  $\delta$( $\Gamma$) the

perimeter of its convex hull. The inconstancy of the curve  $\Gamma$
,

denoted \mathcal{I}( $\Gamma$) ,
is defined

by

\displaystyle \mathcal{I}( $\Gamma$):=\frac{2l( $\Gamma$)}{ $\delta$( $\Gamma$)}.
Remark. The minimal value of \mathcal{I}( $\Gamma$) is 1. It is obtained when  $\Gamma$ is a segment.
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§5.2. Inconstancy of sequences. First results

The inconstancy of the sequence (u_{n})_{n\geq 0} is defined as the inconstancy of the broken

line joining the points (0, u_{0}) , ( 1, u_{1}) , ( 2, u_{2}) In [6] we compare inconstancy with resid‐

ual variance for very simple sequences. Then we compute the inconstancy of classical

infinite sequences. We give some of our results below.

Theorem 5.3. Let (u_{n})_{n\geq 0} be an infinite sequence taking two values 0 and h>

0 ,
with u_{0}=0 . We make the assumption that the frequencies of occurrences of the blocks

00, hh, 0h , h0 in the sequence exist and are respectively equal to \mathcal{F}_{00}, \mathcal{F}_{hh}, \mathcal{F}_{0h}, \mathcal{F}_{h0}.
Then

\mathcal{I}((u_{n})_{n\geq 0})=\mathcal{F}_{00}+\mathcal{F}_{hh}+(\sqrt{1+h^{2}})(\mathcal{F}_{0h}+\mathcal{F}_{h0})=1+(\sqrt{1+h^{2}}-1)(\mathcal{F}_{0h}+\mathcal{F}_{h0}) .

Remark. A similar result holds with sequences taking any finite number of values.

Before stating a corollary, we recall the definitions of three classical sequences (see,
e.g., [7] for more on these sequences).

\bullet The Thue‐Morse sequence (m_{n})_{n\geq 0} is defined by m_{n}:=s_{n} mod2, where s_{n} is the

sum of the binary digits of the integer n.

\bullet The Shapiro‐Rudin sequence (r_{n})_{n\geq 0} is defined by r_{n}:=e_{n} mod2, where e_{n} is the

number of (possibly overlapping) blocks 11 in the binary expansion of the integer
n.

\bullet The regular paperfO lding sequence is the sequence (z_{n})_{n\geq 0}\mathrm{o}\mathrm{f}((\mathrm{h}\mathrm{i}\mathrm{l}\mathrm{l}\mathrm{s}
�

(1) and ((\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{y}\mathrm{s}
�

(0) obtained by unfolding a strip of paper folded an infinite number of times. It can

be defined by the relations: for all n\geq 0, z_{4n}=0, z_{4n+2}=1, z_{2n+1}=z_{n}.

Corollary 5.4. We have in particular the following results for binary sequences

(taking only values 0 and 1). Let (m_{n})_{n\geq 0} be the Thue‐Morse sequence; let (r_{n})_{n\geq 0} be

the Shapiro‐Rudin sequence; let (z_{n})_{n\geq 0} be the regular paperfO lding sequence. Then

\mathcal{I}((01)^{\infty}) =\sqrt{2} =1.414\ldots
\displaystyle \mathcal{I}((0^{2}1)^{\infty}) =\frac{1+2\sqrt{2}}{3}=1.276\ldots
\displaystyle \mathcal{I}((m_{n})_{n\geq 0})=\frac{1+2\sqrt{2}}{3}=1.276\ldots
\displaystyle \mathcal{I}((0^{3}1)^{\infty}) =\frac{1+\sqrt{2}}{2}=1.207\ldots
\displaystyle \mathcal{I}((r_{n})_{n\geq 0})=\frac{1+\sqrt{2}}{2}=1.207\ldots
\displaystyle \mathcal{I}((z_{n})_{n\geq 0})=\frac{1+\sqrt{2}}{2}=1.207\ldots
\displaystyle \mathcal{I}((u_{n})_{n\geq 0})=\frac{1+\sqrt{2}}{2}=1.207\ldots (for almost all sequences (u_{n})_{n\geq 0} )
\mathcal{I}(0^{\infty})) =1.
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Remark. For binary sequences taking values 0 and 1, the minimal inconstancy
is obtained for the constant sequences 0000 and 1111 while the inconstancy of the

sequences 01010101 and 10101010 is maximal.

§5.3. Possible applications

We began checking whether inconstancy is a pertinent measure of fluctuation, or

even a prediction tool in different domains: variations of BMI (body mass index) and

metabolic syndrome (trying to address, using inconstancy, the relation with cardio‐

vascular diseases, studied, e.g., in [60]), smoothness of musical themes, and fluctuations

of the stockmarket.

§6. Miscellaneous addenda

We give in this section a sample of other notions of complexity or entropy that the

reader might find interesting.

\bullet The authors of [37, 19, 18] study the folding complexity of finite binary sequences:

this is the minimal number of folds required to obtain a given pattern of �mountains

and valleys� by repeatedly folding a strip of paper.

\bullet In [53] the authors propose and study an �aperiodicity measure�, which compares

a given sequence with its (non‐identical) shifts.

\bullet The authors of [16] study the �conditional entropy� of classical sequences. This

work was extended in [10], then in e.g., [58, 59, 17, 15].

§7. Conclusion

We could only mention a few notions in the huge field of complexity which concerns

both mathematics and computer science. Furthermore we restricted this survey to

(some) complexities of sequences. It would be interesting to compare some of these

notions with more �philosophical� notions, for example the work of Edgar Morin, in

particular the eight avenues of complexity that he proposes in [50]: one of these avenues

is �the irreducible character of randomness or disorder� which can be compared with

the incompressibility of sequences in relation with the Kolmogorov‐Solomonoff‐Chaitin

complexity. To know more about the work of Morin, the reader can read [51], see also

[28].
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