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Stability analysis for a planar traveling wave solution

in an excitable system

By

Kota IKEDA *

§1. Introduction

Reaction‐diffusion systems have been used to describe various phenomena with

spatial or spatio‐temporal pattern formation. Propagating waves are the most important

spatial patterns appearing in reaction‐diffusion models with excitability, called excitable

systems. For example, the FitzHugh‐Nagumo system can generate impulses propagating
in nerve axon ([8] and [16]). The Oregonator model realizes target patterns and spiral

patterns in the Belouzov‐Zhabotinsky reaction, which is simply called BZ reaction ([14]).
A combustion experiment was modeled by a reaction‐diffusion system ([10], [11]). In

this experiment, various spatial patterns occurs (see Figure 1), and a planar propagating
wave can be observed. These propagating waves can be characterized by traveling wave

solutions with a pulse shape, which are simply called traveling pulses. It is well‐known

that the FitzHugh‐Nagumo system and the Oregonator model have a traveling pulse.

Similarly, it is shown that the combustion model has a traveling pulse ([10]). Hence

reaction‐diffusion systems with excitability exhibit propagating waves in common. Thus

the question in this paper is to investigate what kind of similarity traveling pulses in

excitable systems possess.

The FitzHugh‐Nagumo system

(FHN) \left\{\begin{array}{l}
 $\epsilon \tau$\frac{\partial u}{\partial t}=$\epsilon$^{2}\triangle u+f(u)-v,\\
\frac{\partial v}{\partial t}=d\triangle v+u- $\gamma$ v
\end{array}\right.
was originally introduced in [8] and [16], which is also called the Bonhoeffer‐van der

Pol model. This system with d=0 is a simplification of a class of excitable oscillatory

including the Hodgkin‐Huxley equations which were proposed in 1952 to unravel the
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dynamics ionic conductances that generate the nerve action potential. As described

in [13], the small positive parameter  $\epsilon$ does not mean anything about the magnitude
of the physical diffusion coefficient. This is simply a scaling of the space variable to

make the wave front appear steep, which is a procedure that facilitates the study of the

wave as whole. The variable  u diffuses spatially while v is not, because u represents the

membrane potential and v does a slow ionic current or gating variable. The nonlinear

term f(u) is often given as a cubic function u(1-u)(u- $\alpha$) for 0< $\alpha$<1/2.
It is well‐known [1] and [19] that (FHN) can generate a traveling pulse under a

suitable condition. These results are obtained in the case of d=0 for (FHN). Recently,

(FHN) with d>0 has been studied from a mathematical point of view, and it was

proved in [9] that (FHN) with d>0 also generates a traveling pulse via a bifurcation

from a standing pulse. Here a standing pulse is a stationary solution of (FHN) with

two transition layers. Actually, the global bifurcation diagram of a traveling pulse can

be much complicated by a suitable choice of nonlinearity as shown in Figure 10 in [9].
Recently, it was reported in [15] that a reaction‐diffusion mechanism can explain

that sutures are straight in the newborn human skull, but adult sutures are interdigi‐
tated. In this article the authors classified the key molecules that are directly involved in

osteogenic differentiation in sutural tissue, and stated that there are systems to promote

and inhibit osteogenesis in suture development. This mechanism is simply formulated as

a modified model of a FitzHugh‐Nagumo type reaction‐diffusion system with a bistable

nonlinearity. Since suture system is understood by interactions between diffusible sig‐

naling molecule and cells with random movement, the reaction‐diffusion system has two

diffusible components and exhibits the destabilization of a planar pattern in spite that

initial states have almost planar pattern. This article suggests that it is important to

study (FHN) not only mathematically but also practically.
The BZ reaction is one of the most widely studied oscillating reaction both the‐

oretically and experimentally, which indicates the possibility that chemical reactions

generate oscillatory behavior ([23]). In the meanwhile this reaction generates various

spatial patterns, which include target patterns and spiral waves. For these phenomena,
a simple reaction‐diffusion system

(BZ) \left\{\begin{array}{l}
 $\epsilon \tau$\frac{\partial u}{\partial t}=$\epsilon$^{2}\triangle u+u(1-u)-2 fv \frac{u-q}{u+q},\\
\frac{\partial v}{\partial t}=d\triangle v+u-v
\end{array}\right.
has been studied ([14]). This model is based on the Field‐Körös‐Noyes reaction mech‐

anism, a prototype that suggests the general kinetic scheme of reactions which can be

referred as the Oregonator. The small parameter  $\epsilon$ is determined by rate constants and

the concentration of hydrogen ions in [5]. Since  u and v represent concentrations of

some chemical products, this model has two diffusion terms for both u and v . Although
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(BZ) generates a solution with an oscillatory behavior, it becomes an excitable system
for a suitable parameter.

Finally we would like to introduce a combustion model given in [10], which was

proposed to theoretically answer what is the reason why diverse patterns appear in the

cinder paper in a combustion experiment when the Peclet number Pe is suitably varied.

The spatial patterns like Figure 1 were first observed at an experiment in space shut‐

tle that microgravity smoldering combustion expanding from radiative ignition exhibits

complex, unexpected patterns. Moses and his group set up the experiment to under‐

stand this complexity more qualitatively under microgravity environment, and found

that when the value of Pe is varied, various cinder patterns of the paper are observed

in spite that the gas is supplied in a uniform flow, opposite to the direction of the

front propagation and the paper undergoes uniform ignition. These patterns are qual‐

itatively classified into four types of patterns; a planar pattern, a smooth but uneven

front pattern, a fingering pattern with tip‐splitting and a fingering pattern without tip‐

splitting, respectively. In order to theoretically answer the question above, an exother‐

mic reaction‐diffusion system was proposed in [4], [10]. A simple (non‐dimensionalized)
version of the model is

\left\{\begin{array}{l}
\frac{\partial T}{\partial t}=Le\triangle T-$\lambda$_{1}\frac{\partial T}{\partial x}+ $\gamma$ k(T)pw-aT,\\
\frac{\partial p}{\partial t}=-k(T)pw,\\
\frac{\partial w}{\partial t}=d\triangle w-$\lambda$_{2}\frac{\partial w}{\partial x}-k(T)pw,
\end{array}\right.
where T, p and w are respectively the temperature in Kelvin, the density of paper and

the gas concentration of flow. In order to simplify this equation, we formally let the

function p be a constant. Under a suitable condition, we rewrite the system above into

(1.1) \left\{\begin{array}{l}
 $\epsilon$\frac{\partial T}{\partial t}=$\epsilon$^{2}\triangle T- $\epsilon \lambda$_{1}\frac{\partial T}{\partial x}+ $\gamma$ k(T)w-aT,\\
\frac{\partial w}{\partial t}=d\triangle w-$\lambda$_{2}\frac{\partial w}{\partial x}-k(T)w,
\end{array}\right.
where k(T) is the only nonlinear term included in the model, which is called the Arrhe‐

nius kinetics in chemical reactions. As an example, take

k(T)=\left\{\begin{array}{ll}
A\exp(-B/(T- $\theta$)) , & T> $\theta$,\\
0, & 0\leq T\leq $\theta$
\end{array}\right.
for some constants A, B>0 and  $\theta$\geq 0.

Various theoretical and numerical results show appearance of target patterns and

spiral patterns in (FHN) and (BZ) with d=0 or small d>0 dependently on  $\epsilon$ . A wave
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(a) (b) (c) (d)

Figure 1. Cinder patterns of the paper where (a)  Pe=18, (b)Pe=15, (c)Pe=5\pm 0.5,
(d) Pe=0.45\pm 0.2 . ([18])

with pulse shape first arises around a core, a central part of the pattern, and propagate
with an almost constant speed. In the end the wave converges to a planar traveling

pulse as the time goes to infinity, which implies that the planar traveling pulse must be

stable. This has been already proved in [2] by a singular perturbation analysis in the

case of d=0 . On the other hand, a traveling pulse which uniformly propagates exhibits

destabilization in (1.1), and a fingering pattern emerges, which is observed numerically.
In spite that these systems have excitability in common, the difference of magnitude
of the diffusive coefficient strongly influences the stability of a planar pattern, and the

stability results are completely different. Thus our aim in this article is to study an

excitable system with a general nonlinearity and advection terms such as

(1.2) \left\{\begin{array}{ll}
 $\epsilon \tau$\frac{\partial u}{\partial t}=$\epsilon$^{2}\triangle u- $\epsilon \lambda$_{1}\frac{\partial u}{\partial x}+f(u, v) , & (x, y)\in(-\infty, \infty)\times D, t>0,\\
\frac{\partial v}{\partial t}=d\triangle v-$\lambda$_{2}\frac{\partial v}{\partial x}+g(u, v) , & (x, y)\in(-\infty, \infty)\times D, t>0,\\
\partial u \partial v & \\
\overline{\partial n}=\overline{\partial n}=0, & (x, y)\in(-\infty, \infty)\times\partial D, t>0,
\end{array}\right.
and see how the diffusive coefficient influences the stability of a traveling pulse, where

D\subset \mathbb{R}^{N} is a domain with a smooth boundary, n is the outward normal unit vector on

(-\infty, \infty)\times\partial D,  $\epsilon$, d,  $\tau$ are positive, and  $\lambda$_{1}, $\lambda$_{2} are nonnegative constants. Since we take

(1.1) into account, the advection terms only have the derivative of u and v with respect

to the spatial variable x . In this paper we formally reduce (1.2) to a free boundary

problem (2.3) and prove the existence and stability of a traveling pulse solution in (2.3).
Since we have already studied the stability of a planar traveling pulse in the case of

d=0 as described above, we focus on the case of d>0 in this article. Our main results

will be stated in Section 2.

The stability of a traveling pulse in one dimension was studied in [12] and [22],
where the FitzHugh‐Nagumo system without the diffusive coefficient d was the object.
The linearized eigenvalue problem in these papers induces a complex function which



Stability analysis for a planar traveling wave solution 1N an excitable system 129

is called Evans function ([3]), and is defined as the Wronskian. The zero points of the

Evans function completely correspond to the eigenvalues in the complex plane out of the

essential spectrums. In order to look for the zero points, it is vital to bring out various

properties of the traveling pulse, which can be verified by many calculations. Hence

the analysis of the Evans function may be complicated and difficult. So we reduce our

system to a free boundary problem and simplify the eigenvalue problem.
This paper is organized as follows; In Section 2, we state our results (Theorems 2.1,

2.2). In addition we describe several assumptions and notation used throughout this

paper. In Section 3, we construct a traveling pulse and prove Theorem 2.1. Finally, we

derive the linearized eigenvalue problem associated with (2.3) and prove Theorem 2.2.

§2. Assumptions and Main Results

In this section we describe several assumptions and notation used throughout this

paper. At first, the nonlinear terms f, g are supposed to have suitable conditions, which

give us a sufficient condition to guarantee the existence of a traveling pulse. We point
out that the specific systems, (FHN), (BZ), and (1.1) satisfy the following assumptions
under suitable conditions of parameters.

Suppose that the nonlinear terms f, g satisfy the following conditions;

(a) (b)

Figure 2. Nullclines of f and g . The figure (a) shows the nullcline of the nonlinearity
in the FitzHugh‐Nagumo system and (b) does that in the combustion model. The

functions T, w in (1.1) are replaced into u, \overline{v}-v in the right figure. The constant \overline{v} is a

given parameter, which originally appears in a boundary condition (see [11]).
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(A1) f(u, v) , g(u, v) are defined on an open subset \mathcal{O}\subset \mathbb{R}^{2} and smooth with respect to

u, v.

(A2) There are v_{0}>0 and smooth functions h_{\pm}(v) , h(v) on [0, v_{0}](h_{-}(v)<h_{0}(v)<
h_{+}(v)) such that the nullcline \{(u, v) \in \mathcal{O}|f(u, v)=0\} consists of three curves C_{i}

(i=-, 0, +) defined by C_{i}=\{(u, v)\in \mathcal{O}|u=h_{i}(v), v\in[0, v_{0}]\} (see Figure 2).

(A3) (0,0) is a unique solution of f(u, v)=g(u, v)=0 in \mathcal{O}.

(A4) It holds true that f_{u}(h_{\pm}(v), v)<0 on v\in[0, v_{0}].

(A5) Let J(v)=\displaystyle \int_{h_{-}(v)}^{h_{+}(v)}f(s, v)ds for v\in[0, v_{0}] ,
then J'(v)<0 on v\in[0, v_{0}] ,

and there

is v^{*}\in(0, v_{0}) such as J(v^{*})=0.

(A6) The function G_{+}(v)\equiv g(h_{+}(v), v) satisfies G+(v)>0 and G_{+}'(v)<0 on [0, v_{0}],
while the function G_{-}(v)\equiv g(h_{-}(v), v) satisfies either G_{-}'(v)<0 or G_{-}(v)\equiv 0 on

[0, v_{0}].

Under these assumptions we can define traveling wave solutions of

(2.1) \left\{\begin{array}{ll}
 $\tau$ c_{1}(v)$\phi$_{1}'=$\phi$_{1}''-$\lambda$_{1}$\phi$_{1}'+f($\phi$_{1}, v) , &  $\xi$\in(-\infty, \infty) ,\\
$\phi$_{1}(-\infty)=h_{-}(v) , $\phi$_{1}(+\infty)=h_{+}(v) , & 
\end{array}\right.
and

(2.2) \left\{\begin{array}{ll}
 $\tau$ c_{2}(v)$\phi$_{2}'=$\phi$_{2}''-$\lambda$_{1}$\phi$_{2}'+f($\phi$_{2}, v) , &  $\xi$\in(-\infty, \infty) ,\\
$\phi$_{2}(-\infty)=h_{+}(v) , $\phi$_{2}(+\infty)=h_{-}(v) & 
\end{array}\right.
for any v\in[0, v_{0}] , respectively ([7]). As stated in [7], $\phi$_{1}, $\phi$_{2} are monotonic functions.

Here the wave speeds are denoted by c_{i}=c_{i}(v)(i=1,2) . The condition (A5) implies
that  $\tau$ c_{1}(v^{*})+$\lambda$_{1}= $\tau$ c_{2}(v^{*})+$\lambda$_{1}=0 ,

and  $\tau$ c_{1}(v)+$\lambda$_{1}>0 and  $\tau$ c_{2}(v)+$\lambda$_{1}<0 on [0, v^{*}],
while  $\tau$ c_{1}(v)+$\lambda$_{1}<0 and  $\tau$ c_{2}(v)+$\lambda$_{1}>0 on [v^{*}, v_{0}] . A traveling pulse is supposed
to have two transition layers with a positive speed and be characterized by c_{1}(v) , c_{2}(v) ,

and a function v . In this paper we call the transition layer $\phi$_{1}($\phi$_{2}) a forward fr ont (a
backward fr ont). Since the pulse maintains its shape, these transition layers have to

move with the same velocity, from which we need the following condition;

(A7) The wave speed c_{1}(0) is positive. In addition, there is v_{\max}\in(v_{*}, v_{0} ] such that

c_{1}(0)=c_{2} (vmax).

(A8) For any v\in[0, v_{\max}], $\phi$_{1}, $\phi$_{2} satisfy

\displaystyle \int_{-\infty}^{\infty}f_{v}($\phi$_{1}, v)$\phi$_{1}'e^{-( $\tau$ c_{1}(v)+$\lambda$_{1}) $\xi$}d $\xi$<0, \int_{-\infty}^{\infty}f_{v}($\phi$_{2}, v)$\phi$_{2}'e^{-( $\tau$ c_{2}(v)+$\lambda$_{1}) $\xi$}d $\xi$>0.
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From (A7) and (A8), we know that for any v_{1}\in[0, v^{*}] ,
there exists v_{2}=v_{2}(v_{1})\in[v^{*}, v_{0}]

such as c_{1}(v_{1})=c_{2}(v_{2}(v_{1})) . The assumption (A8) implies the monotonicity of C(v)
and C(v) with respect to v so that v(v) is well‐defined. This notation will be used

in Section 3. In addition, we can obtain cí(0) <0 due to (A8), which is a key fact to

determine the stability of a planer traveling pulse. In the assumption (A7) we implicitly

suppose that $\lambda$_{1} must be small to some extent.

Since it is much complicated to directly treat (1.2) and prove the stability of a

traveling pulse, we would like to simplify (1.2). Then we formally reduce the reaction‐

diffusion system (1.2) to a free boundary problem given in the following. Here we explain
some notation included in the problem. Since we would like to study the stability of a

traveling pulse, we only consider solutions which consist of two interfaces $\Gamma$_{1}(t) , $\Gamma$_{2}(t)
given by

$\Gamma$_{i}(t)=\{(x, y)\in(-\infty, \infty)\times D|x=$\gamma$_{i}(y, t)\} (i=1,2) .

Here the functions $\gamma$_{1}=$\gamma$_{1}(y, t) , $\gamma$_{2}=$\gamma$_{2}(y, t) are defined on y\in D, t>0 . Since we

only consider the stability of a traveling pulse with two transition layers in this paper,

we naturally assume that $\gamma$_{1}, $\gamma$_{2} are almost constant at t=0 and $\gamma$_{1}(y, t)<$\gamma$_{2}(y, t) for

any y\in D and t>0 if exist. If $\gamma$_{i} is sufficiently smooth, the mean curvature $\kappa$_{i} can

be defined. Similarly, we are able to define the normal velocities of $\Gamma$_{i}(t) ,
denoted by

N_{i}(x, y, t) ,
where the normal vector on $\Gamma$_{1}(t)($\Gamma$_{2}(t)) points from $\Omega$_{+}(t)((t)) to $\Omega$_{-}(t)

($\Omega$_{+}(t)) . By these notations, G(v) is defined by

G(v)=\left\{\begin{array}{ll}
G_{-}(v) , & (x, y)\in$\Omega$_{-}(t) ,\\
G_{+}(v) , & (x, y)\in$\Omega$_{+}(t)
\end{array}\right.
for a function v=v(x, y, t) defined on (-\infty, \infty)\times D and t>0 ,

where $\Omega$_{+}(t) is a domain

enclosed by $\Gamma$_{1}(t) , $\Gamma$_{2}(t) ,
and (-\infty, \infty)\times\partial D ,

and $\Omega$_{-}(t)=((-\infty, \infty)\times D)\backslash \overline{$\Omega$_{+}(t)} . Set

D(t)=$\Omega$_{+}(t)\cup$\Omega$_{-}(t) . Note that D(t) is divided into three simply connected domains

which are separated by the two interfaces $\Gamma$_{i}(t)(i=1,2) .

Using the notation above, we formally introduce a free boundary problem given by

(2.3)\{
N_{i}=c_{i}(v)- $\epsilon \kappa$_{i}, (x, y)\in$\Gamma$_{i}(t) , t>0,

\displaystyle \frac{\partial v}{\partial t}=d\triangle v-$\lambda$_{2}\frac{\partial v}{\partial x}+G(v) , (x, y)\in(-\infty, \infty)\times D(t) , t>0,

\displaystyle \frac{\partial v}{\partial n}=0, (x, y)\in(-\infty, \infty)\times\partial D, t>0,

\displaystyle \lim_{x\rightarrow-\infty}v(x, y, t)=0, \displaystyle \lim_{x\rightarrow\infty}|v(x, y, t)|<\infty, y\in D, t>0

(see [6]). In this paper we only consider this free boundary problem instead of (1.2) and

prove the existence and stability of a traveling pulse although we do not derive (2.3)
from (1.2) rigorously. Since a traveling pulse is a planar pattern, we neglect the variable
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y in (2.3) to study the existence of a traveling pulse. For example, we let the mean

curvature $\kappa$_{i} be 0 in this case.

Next we consider the existence of a traveling pulse ($\gamma$_{1}, $\gamma$_{2}, v) . We say that ($\gamma$_{1}, $\gamma$_{2}, v)
=($\gamma$_{1}(t), $\gamma$_{2}(t), v(x, t)) is a traveling pulse in (2.3) if there are a wave speed c, \mathrm{a}

width of the pulse  $\rho$ ,
and a bounded function  V=V(z)\in C^{1}(-\infty, \infty) such that

($\gamma$_{1}(t), $\gamma$_{2}(t), v(x, t))=(-ct, -ct+ $\rho$, V(x+ct)) satisfies (2.3). The variable z=x+ct

is called a moving coordinate. From this definition, the function V must be a solution

of

(2.4) cV'=dV''-$\lambda$_{2}V'+G(V) , z\in(-\infty, \infty) .

We impose boundary conditions on V such as

(2.5) V() =0, \displaystyle \lim_{z\rightarrow\infty}|V(z)|<\infty.
In (2.4), the nonlinear term G(V) is more simply given by

G(V)=\left\{\begin{array}{ll}
G_{-}(V) , & z\in(-\infty, 0)\cup( $\rho$, \infty) ,\\
G_{+}(V) , & z\in(0,  $\rho$) .
\end{array}\right.
In the equation (2.4), we have to find a wave speed c

,
a width of the pulse  $\rho$ ,

and a

function  V . To begin with, we state the existence of a traveling pulse and determine

the behavior of V as d\rightarrow 0.

Theorem 2.1. Under Assumptions (A1)(A8), there is a traveling pulse (-ct, -ct+

 $\rho$, V) in (2.3) for small d>0 . In addition, the function V converges as d\rightarrow 0 in C^{1}-

sense.

In this theorem, we assume the smallness of d . In this paper we do not pay attention

to the situation that the diffusive coefficient d is large because the traveling pulse may

be unstable even in one dimension or never exists. According to the result in [9], there

is $\tau$_{0}>0 such that a traveling pulse bifurcates from a standing pulse at  $\tau$=$\tau$_{0} in (1.2)
with $\lambda$_{1}=$\lambda$_{2}=0 and a nonlinearity of the FitzHugh‐Nagumo type, and no traveling

pulse exists for  $\tau$>$\tau$_{0} around the bifurcation point. Roughly speaking,  $\tau$ plays the

same role as \sqrt{d} ,
and then the traveling pulse may not exist for large d . This is why we

do not treat the case that d is large.
The traveling pulse given by Theorem 2.1 can be a solution in the cylindrical domain

(-\infty, \infty)\times D . We derive an eigenvalue problem with respect to the planar traveling

pulse and study the distribution of eigenvalues. We substitute

$\gamma$_{1}(y, t)=-ct+r_{1}$\varphi$_{k}(y)e^{ $\mu$ t},

$\gamma$_{2}(y, t)=-ct+ $\rho$+r_{2}$\varphi$_{k}(y)e^{ $\mu$ t},

v(x, y, t)=V(x+ct)+ $\psi$(x+ct)$\varphi$_{k}(y)e^{ $\mu$ t}
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into (2.3) and linearize it, where (-ct, -ct+ $\rho$, V) is the traveling pulse given in Theorem

2.1 and $\varphi$_{k}=$\varphi$_{k}(y) is the k‐th eigenfunction of -\displaystyle \triangle_{y}=-\sum_{i=1}^{N}\partial^{2}/\partial^{2}y_{i} in D with the

Neumann boundary condition. More precisely, there is an eigenvalue $\omega$_{k}(k=0,1, \ldots)
such that ($\omega$_{k}, $\varphi$_{k}) is a solution of

\left\{\begin{array}{ll}
-\triangle_{y}$\varphi$_{k}=$\omega$_{k}$\varphi$_{k}, & y\in D,\\
\frac{\partial$\varphi$_{k}}{\partial n}=0, & y\in\partial D.
\end{array}\right.
Without loss of generality, we assume that  0=$\omega$_{0}<$\omega$_{1}\leq$\omega$_{2}\leq\cdots ,

and $\omega$_{k}\rightarrow\infty as

 k\rightarrow\infty . Then the eigenvalue problem is given by

(2.6) \left\{\begin{array}{l}
 $\mu$ r_{1}=-c_{1}'(v_{1})(V'(0)r_{1}+ $\psi$(0))- $\epsilon \omega$_{k}r_{1},\\
 $\mu$ r_{2}=-c_{2}'(v_{2})(V'( $\rho$)r_{2}+ $\psi$( $\rho$))- $\epsilon \omega$_{k}r_{2},\\
 $\mu \psi$=d$\psi$''-d$\omega$_{k} $\psi$-(c+$\lambda$_{2})$\psi$'+G'(V) $\psi$, z\in(-\infty, 0)\cup(0,  $\rho$)\cup( $\rho$, \infty) ,\\
d($\psi$'(+0)-$\psi$'(-0))=(G_{+}(v_{1})-G_{-}(v_{1}))r_{1},\\
d($\psi$'( $\rho$+0)-$\psi$'( $\rho$-0))=-(G_{+}(v_{2})-G_{-}(v_{2}))r_{2},
\end{array}\right.
where v_{1}=V(0) , v_{2}=V( $\rho$) ,

and the variable z=x+ct is the moving coordinate

for the wave speed c given in Theorem 2.1. We show that the planar traveling pulse is

unstable for small d>0.

Theorem 2.2. Fix k\geq 1 arbitrarily, and let d>0 be small dependently on

k . Then, under Assumptions (A1)(A8), there is a positive eigenvalue in (2. 6) for

sufficiently small  $\epsilon$>0 ,
that is, the traveling pulse given in Theorem 2.1 is unstable.

Here we point out that Theorem 2.2 is similar to previous results associated with the

instability of interfaces in reaction‐diffusion systems, which are composed of two com‐

ponents with positive diffusive coefficients. In [17], the stability analysis was succeeded

for stationary solutions with pulse shape in higher dimension, where a free boundary

problem was induced from the FitzHugh‐Nagumo system with a piecewise linear term.

The authors in [21] generalized a nonlinearity in [17] to a wider class, and characterized

an eigenvalue with the largest positive real part and the corresponding wave number.

Since this wave number becomes dominant for deformations of a destabilized planar

interface, it is called the fastest growth wavelength. These works treat only stationary
interfaces. Actually, it was shown in [20] that a traveling wave solution is unstable

in higher dimension in a reaction‐diffusion system with a bistable nonlinearity. These

works strongly suggest that the planar interfaces be destabilized by the diffusive effect.

Theorem 2.2 shows the instability of the traveling pulse in higher dimension for

small d>0 . This is similar to the results in [17], [21] and [20]. On the other hand, the

traveling pulse is stable for d=0 as shown in [2]. Hence the traveling pulse loses its
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stability immediately no matter how weakly the diffusive effect influences. The smallness

of the diffusive coefficient d implies that the two interfaces in the pulse interact each

other weakly. Then the instability of the traveling pulse in higher dimension results from

that of the forward front. Indeed, the instability of the forward front will determine the

existence of a positive eigenvalue in (2.6) (see Section 4).

§3. Existence of a traveling wave pulse

In this section we prove Theorem 2.1, which gives us a one‐dimensional traveling

pulse of (2.3). In the following we divide (-\infty, \infty) into three parts, (, 0) , (0,  $\rho$) ,
and

( $\rho$, \infty) ,
and construct a solution of (2.4) in each interval by applying a perturbation

method. Since d is close to 0 ,
it seems that a singular perturbation theory should be

applied. In fact, it is unnecessary because the wave speed c is strictly positive due to

(A7) and does not tend to 0 as d\rightarrow 0 . Eventually we will show that V(z) converges

piecewisely in each interval in C^{0} ‐space and V'(z) is uniformly bounded in d . In this

section, C represents a general constant independent of d.

First we would like to find a bounded solution of

(3.1) \left\{\begin{array}{l}
dV''-(c+$\lambda$_{2})V'+G_{-}(V)=0, z\in (, 0) ,\\
V(-\infty)=0, V(0)=v_{1}
\end{array}\right.
for any given v_{1} in C^{1} ‐space as d\rightarrow 0 ,

denoted by V_{1}=V_{1}(z) . Note that the wave

speed c is determined by v_{1} ,
that is, c=c_{1}(\mathrm{v}_{1}) . However it is hopeless to obtain a

uniformly bounded solution in (3.1) in d>0 in C^{1} ‐sense and we see that V_{1}'(0) tends

to \infty as  d\rightarrow 0 if the solution exists for v_{1}>0 independent of d . Then we replace v_{1} in

(3.1) into dv_{1} so that V_{1} and V_{1}' are uniformly bounded in d>0.

In the case of G_{-}(v)\equiv 0 on [0, v_{0}], V_{1}=dv_{1}e^{(c+$\lambda$_{2})z/d} . Next we assume G_{-}'(v)<0
on [0, v_{0}] . We define a function  $\psi$ by  $\psi$=dv_{1}e^{ $\kappa$ z} with an exponent  $\kappa$=((c+$\lambda$_{2})+

\sqrt{(c+$\lambda$_{2})^{2}-4dG_{-}'(0)})/2d . Then we set V= $\psi$+R ,
and find a solution R in

(3.2) \left\{\begin{array}{ll}
LR\equiv dR''-(c+$\lambda$_{2})R'+G_{-}'(0)R=F(R, z) & z\in (, 0) ,\\
R(-\infty)=R(0)=0, & 
\end{array}\right.
where F(R, z)=-(G_{-}( $\psi$+R)-G_{-}'(0)( $\psi$+R If d is small, the function F satisfies

(3.3) \displaystyle \Vert F(R_{0}, z)\Vert_{C_{ $\kappa$}^{0}}\leq Cd, \Vert F(R_{1}, z)-F(R_{2}, z)\Vert_{C_{ $\kappa$}^{0}}\leq\frac{1}{2}\Vert R_{1}-R_{2}\Vert_{C_{ $\kappa$}^{0}}
for \Vert R_{i}\Vert_{C_{ $\kappa$}^{0}}\leq\sqrt{d}(i=0,1,2) ,

where \Vert \Vert_{C_{ $\kappa$}^{0}} is a norm defined by \displaystyle \Vert $\varphi$\Vert_{C_{ $\kappa$}^{0}}=\sup_{z\in(-\infty,0)}
| $\varphi$(z)e^{- $\kappa$ z}| for a function  $\varphi$ . Also, we set \Vert $\varphi$\Vert_{C_{ $\kappa$}^{1}}=\Vert $\varphi$\Vert_{C_{ $\kappa$}^{0}}+\Vert$\varphi$'\Vert_{C_{ $\kappa$}^{0}}.
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Lemma 3.1. Fix v_{1}>0 arbitrarily. If d>0 is small and under Assumptions

(A1)(A3), (A6), and (A7), there is a solution R of (3.2) such that \Vert R\Vert_{C_{ $\kappa$}^{1}}\leq Cd^{2} as

d\rightarrow 0 for a constant C>0 independent of d>0.

Proof. At first we prove the invertibility of L and \Vert L^{-1}f\Vert_{C_{ $\kappa$}^{0}}\leq C\Vert f\Vert_{C_{ $\kappa$}^{0}} for any

continuous function f with \Vert f\Vert_{C_{ $\kappa$}^{0}}<\infty . The negativity of  G_{-}' enables us to apply the

Lax‐Milgram theorem to a differential equation

\left\{\begin{array}{ll}
L $\varphi$=f, & z\in(-\infty, 0) ,\\
 $\varphi$(-\infty)= $\varphi$(0)=0 & 
\end{array}\right.
for any function f with \Vert f\Vert_{C_{ $\kappa$}^{0}}<\infty . From the usual regularity argument, the solution

 $\varphi$ belongs to  C^{2} space. Here we see \Vert $\varphi$\Vert_{C_{ $\kappa$}^{0}}\leq C\Vert f\Vert_{C_{ $\kappa$}^{0}} . From the boundary conditions,
the maximum of  $\varphi$ must be nonnegative. Suppose that there is a point  z_{0}\in (, 0)
such that  $\varphi$ attains the maximum at  z=z_{0} . Thanks to $\varphi$'=0 and $\varphi$''\leq 0 at z=z_{0},

we have G_{-}'(0) $\varphi$\geq f . Since G_{-}'(0)<0 and  $\varphi$>0, f must be negative at z=z_{0} . Hence

0< $\varphi$(z_{0})e^{- $\kappa$ z_{0}}\leq C|f(z_{0})|e^{- $\kappa$ z_{0}}\leq C\Vert f\Vert_{C_{ $\kappa$}^{0}}

Similarly, we easily see  $\varphi$(z)e^{- $\kappa$ z}\geq-C\Vert f\Vert_{C_{ $\kappa$}^{0}} for any z . So \Vert $\varphi$\Vert_{C_{ $\kappa$}^{0}}\leq C\Vert f\Vert_{C_{ $\kappa$}^{0}}.
By (3.3), the estimate of L^{-1} obtained above, and the contraction mapping prin‐

ciple, we easily find a fixed point R=L^{-1}F(R, z) . Then we see \Vert R\Vert_{C_{ $\kappa$}^{0}}\leq Cd be‐

cause of the estimate of F and L^{-1} . In addition, from this inequality and the fact of

|F(R, z)|\leq C(|R|^{2}+| $\psi$|^{2}) for any function \mathrm{R} with \Vert R\Vert_{C_{ $\kappa$}^{0}}\leq Cd ,
the solution R satisfies

\Vert R\Vert_{C_{ $\kappa$}^{0}}\leq Cd^{2} . Hence it suffices to estimate \Vert R'\Vert_{C_{ $\kappa$}^{0}} in order to conclude Lemma 3.1.

We rewrite (3.2) into an integral form

R(z)=$\alpha$_{+}$\varphi$_{+}-\displaystyle \frac{d}{\sqrt{(c+$\lambda$_{2})^{2}-4dG_{-}'(0)}}$\varphi$_{-}\int_{-\infty}^{z}e^{-\frac{c+$\lambda$_{2}}{d}s} $\varphi$+F(R, s)ds
+\displaystyle \frac{d}{\sqrt{(c+$\lambda$_{2})^{2}-4dG_{-}'(0)}} $\varphi$+\int_{0}^{z}e^{-\frac{c+$\lambda$_{2}}{d}s}$\varphi$_{-}F(R, s)ds,

where  $\varphi$\pm(z)=e^{ $\beta$\pm z} for  $\beta$\pm=(c+$\lambda$_{2}\pm\sqrt{(c+$\lambda$_{2})^{2}-4dG_{-}'(0)})/2d ,
and the constant

 $\alpha$+\mathrm{i}\mathrm{s} given by

 $\alpha$+=\displaystyle \frac{d}{\sqrt{(c+$\lambda$_{2})^{2}-4dG_{-}'(0)}}\int_{-\infty}^{0}e^{-\frac{c+$\lambda$_{2}}{d}s} $\varphi$+F(R, s)ds
because of the boundary conditions in (3.2). Then we see

R'(z)=$\alpha$_{+}$\varphi$_{+}'-\displaystyle \frac{d}{\sqrt{(c+$\lambda$_{2})^{2}-4dG_{-}'(0)}}$\varphi$_{-}'\int_{-\infty}^{z}e^{-\frac{c+$\lambda$_{2}}{d}s} $\varphi$+F(R, s)ds
+\displaystyle \frac{d}{\sqrt{(c+$\lambda$_{2})^{2}-4dG_{-}'(0)}}$\varphi$_{+}'\int_{0}^{z}e^{-\frac{c+$\lambda$_{2}}{d}s}$\varphi$_{-}F(R, s)ds.
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Estimating the three terms in the right‐hand side of this integral form one by one, we

show | $\alpha$+|\Vert$\varphi$_{+}'\Vert_{C_{ $\kappa$}^{0}}\leq Cd^{2} ,
and

\displaystyle \Vert$\varphi$_{-}'\int_{-\infty}^{z}e^{-\frac{c+$\lambda$_{2}}{d}s} $\varphi$+F(R, s)ds\Vert_{C_{ $\kappa$}^{0}}\leq Cd^{2}, \displaystyle \Vert$\varphi$_{+}'\int_{0}^{z}e^{-\frac{c+$\lambda$_{2}}{d}s}$\varphi$_{-}F(R, s)ds\Vert_{C_{ $\kappa$}^{0}}\leq Cd^{2},
where we used the fact that \Vert $\psi$\Vert_{C_{ $\kappa$}^{0}}\leq Cd ,

and \Vert R\Vert_{C_{ $\kappa$}^{0}}\leq Cd^{2} . These inequalities imply

\Vert R'\Vert_{C_{ $\kappa$}^{0}}\leq Cd^{2} ,
which concludes Lemma 3.1. \square 

Next we construct a solution V_{3}=V(y) of

(3.4) \left\{\begin{array}{ll}
dV''-(c+$\lambda$_{2})V'+G_{-}(V)=0, & y\in(0, \infty) ,\\
V(0)=v_{2}(dv) , \lim_{z\rightarrow\infty}|V(z)|<\infty. & 
\end{array}\right.
By using V_{3} ,

the solution in the third interval ( $\rho$, \infty) can be represented as V_{3}(z- $\rho$) .

Here v(v) has been defined in Section 2. In the following lemma we prove the existence

of V_{3} such that V_{3} is uniformly bounded in d>0 in C^{1} ‐sense.

As described in the proof of Lemma 3.1, we explicitly have the solution V_{3} in the

case of G_{-}(v)\equiv 0 . So we only consider the case that G_{-}'(v) is strictly negative. Let V_{0}
be a solution of

(3.5) \left\{\begin{array}{ll}
-(c+$\lambda$_{2})V'+G_{-}(V)=0, & y>0,\\
V(0)=v_{2}(dv_{1}) . & 
\end{array}\right.
By substituting V=V_{0}+R into (3.4), R must be a solution of

(3.6) \left\{\begin{array}{ll}
LR\equiv dR''-(c+$\lambda$_{2})R'+G_{-}'(V_{0})R=F(R, z) , & y>0,\\
R(0)=R(\infty)=0, & 
\end{array}\right.
where F(R, z)\equiv-dV_{0}''-(G_{-}(V_{0}+R)-G_{-}(V_{0})-G_{-}'(V_{0})R) . The straightforward
calculation gives us

(3.7) \displaystyle \Vert F(R_{0}, z)\Vert_{C_{ $\kappa$}^{0}}\leq Cd, \Vert F(R_{1}, z)-F(R_{2}, z)\Vert_{C_{ $\kappa$}^{0}}\leq\frac{1}{2}\Vert R_{1}-R_{2}\Vert_{C_{ $\kappa$}^{0}}
for \Vert R_{i}\Vert_{C_{ $\kappa$}^{0}}\leq\sqrt{d}(i=0,1,2) if d is small, where \Vert \Vert_{C_{ $\kappa$}^{0}} is a norm defined by \Vert $\varphi$\Vert_{C_{ $\kappa$}^{0}}=
\displaystyle \sup_{y\in(0,\infty)}| $\varphi$(y)e^{ $\kappa$ y}| for a small exponent  $\kappa$>0 fixed independently of d . Also we put

\Vert $\varphi$\Vert_{C_{ $\kappa$}^{1}}=\Vert $\varphi$\Vert_{C_{ $\kappa$}^{0}}+\Vert$\varphi$'\Vert_{C_{ $\kappa$}^{0}} . By the same argument as in the proof of Lemma 3.1, we

have the following lemma.

Lemma 3.2. Fix v_{1} arbitrarily. Under Assumptions (A1)(A3), (A6) and (A7),
there is a solution R of (3.6) such that \Vert R\Vert_{C_{ $\kappa$}^{1}}\rightarrow 0 as d\rightarrow 0.
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Finally we construct a solution in the second interval, denoted by V_{2} . Now we do

formal calculations in

(3.8) \left\{\begin{array}{ll}
dV''-(c+$\lambda$_{2})V'+G_{+}(V)=0, & z\in(0,  $\rho$) ,\\
V(0)=dv_{1}, V( $\rho$)=v_{2}(dv) , V'( $\rho$)=V_{3}'( $\rho$) , & 
\end{array}\right.
and obtain an approximated solution in this equation. In (3.8), c and v_{2}(dv) have been

determined by v_{1} . The width of the pulse  $\rho$ is defined as follows. It is easy to see that

the equation

(3.9) \left\{\begin{array}{ll}
-(c+$\lambda$_{2})V'+G_{+}(V)=0, & z>0,\\
V(0)=dv_{1} & 
\end{array}\right.
has a monotonically increasing solution V_{0}=V(z) due to (A6). Then V_{0} achieves

v_{2}(dv) at some z>0 ,
denoted by  $\rho$ . Eventually, the free parameter in (3.8) is only

 v_{1} . Note that usual elliptic equations are supposed to have two boundary conditions in

one‐dimension while (3.8) has three boundary conditions.

By using the lowest order term V_{0} ,
the solution V is thought to be expressed as

V=V_{0}+R ,
where R is thought as a higher order term. However it cannot be because

the function V_{0} satisfies only the first and second boundary conditions in (3.8), and

may not do the third one. Then we introduce, what we call, an inner solution at z= $\rho$.

We define  $\psi$(z)=d(V_{3}'( $\rho$)-V_{0}'( $\rho$)-R'( $\rho$))(e^{(c+$\lambda$_{2})(z- $\rho$)/d}-1)/(c+$\lambda$_{2}) for a function

R\in C^{1}[0,  $\rho$] ,
which will be taken in Lemma 3.3. Note that  $\psi$ satisfies  $\psi$( $\rho$)=0 ,

and

can be estimated such as \Vert $\psi$\Vert_{C^{0}}\leq Cd(1+\Vert R\Vert_{C^{1}}) and \Vert$\psi$'\Vert_{C^{0}}\leq C(1+\Vert R\Vert_{C^{1}}) ,
where

\Vert \Vert_{C^{0}} and \Vert \Vert_{C^{1}} are usual norms in C^{0} and C^{1} ‐spaces. Instead of V_{0}+R ,
we set

V(z)=V_{0}(z)+ $\chi$(z) $\psi$((z- $\rho$)/d)+R(z) ,
and see that V satisfies all the boundary

conditions of (3.8), where  $\chi$ is a cut‐off function defined by

 $\chi$(z)=\left\{\begin{array}{ll}
1, & z\in(\frac{3 $\rho$}{4},  $\rho$) ,\\
0, & z\in(0, \frac{ $\rho$}{2}) .
\end{array}\right.
Without loss of generality,  $\chi$ is supposed to be smooth.

Finally it is sufficient to find a solution  R of

(3.10) \left\{\begin{array}{ll}
LR\equiv dR''-(c+$\lambda$_{2})R'+G_{+}'(V_{0})R=F(R, z) , & z\in(0,  $\rho$) ,\\
R(0)=R( $\rho$)=0 & 
\end{array}\right.
which satisfies \Vert R\Vert_{C^{1}}\rightarrow 0 as d\rightarrow 0. F(R, z) is defined by

F(R, z)=-dV_{0}''-d$\psi$'$\chi$'-d $\psi \chi$''-(c+$\lambda$_{2}) $\psi \chi$'-(G_{+}(V_{0}+ $\chi \psi$+R)-G+(V_{0})-G_{+}'(V_{0})R) .
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Note that

(3.11) \displaystyle \Vert F(R_{0}, z)\Vert_{C^{0}}\leq Cd, \Vert F(R_{1}, z)-F(R_{2}, z)\Vert_{C^{0}}\leq\frac{1}{2}\Vert R_{1}-R_{2}\Vert_{C^{1}}
for \Vert R_{i}\Vert_{C^{1}}\leq\sqrt{d}(i=0,1,2) . By the similar argument to the proofs of the previous two

lemmas and Assumption (A6), we easily find a solution of (3.10), and have the following
lemma. So we omit the details of the proof.

Lemma 3.3. Fix v_{1}\geq 0 arbitrarily. If d>0 is sufficiently small, then there

exists a solution R in (3.10) such that \Vert R\Vert_{C^{1}}\rightarrow 0 as d\rightarrow 0.

In order to obtain a smooth solution of (2.4) in (-\infty, \infty) ,
the functions V_{1} and V_{2}

need to match smoothly at z=0 . Owing to V_{1}(0)=V_{2}(0)=dv_{1} ,
we only have to check

the condition V_{1}'(0)=V_{2}'(0) by picking up v_{1} suitably. Here we study the behavior of

these terms as d\rightarrow 0 . Owing to Lemma 3.1, we see that \displaystyle \lim_{d\rightarrow 0}V_{1}'(0)=(c_{1}(0)+$\lambda$_{2})v_{1}.
On the other hand, V_{2}'(0) is close to V_{0}'(0) ,

where V_{0} is given as a solution of (3.9).
Because of \displaystyle \lim_{d\rightarrow 0}V_{2}'(0)=G_{+}(0)/(c_{1}(0)+$\lambda$_{2}) and by the implicit function theorem,
there exists a continuous function v_{1}=v_{1}(d) such as v_{1}(0)=G_{+}(0)/(c_{1}(0)+$\lambda$_{2})^{2} ,

and

V_{1}'(0)=V_{2}'(0) for small d>0 . Therefore a traveling pulse has been constructed.

§4. Stability of a planar traveling pulse

The stability of the traveling pulse given in Theorem 2.2 can be governed by the

distribution of eigenvalues in the eigenvalue problem (2.6). To prove Theorem 2.2, we

only have to find a positive eigenvalue in (2.6).
The eigenvalue problem includes the k‐th eigenvalue of Laplacian -\triangle_{y} with the

Neumann boundary condition. As stated in Section 2, $\omega$_{k} goes to infinity as k\rightarrow\infty.

Then we let X=d$\omega$_{k} and think of X as a small positive parameter independent of d.

Actually, we can construct an eigenvalue  $\mu$= $\mu$(X) for small X>0 such that  $\mu$(0)=0
and  $\mu$(X) is smooth in X>0 . This fact can be rigorously proved by a similar technique
in [11] and the implicit function theorem. So we omit the details of the proof. Note

that (2.6) has a simple zero eigenvalue for $\omega$_{0}=0 because (r_{1}, r_{2},  $\psi$)=(-1, -1, V') is

a unique eigenfunction up to multiplications by constants.

Now we calculate $\mu$'(0) and see that  $\mu$(X) is positive for small X>0 . As seen in

the statement of Theorem 2.2,  $\epsilon$ is supposed to be sufficiently small so that we simply

put  $\epsilon$=0 in (2.6). Differentiating the both sides of (2.6) with respect to X
,

and setting
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X=0 ,
we have

(4.1) \left\{\begin{array}{l}
-$\mu$'=-c_{1}' (dvl) (V'(0)R_{1}+ $\Psi$(0)) ,\\
-$\mu$'=-c_{2}'(v_{2}(dv_{1}))(V'( $\rho$)R_{2}+ $\Psi$( $\rho$)) ,\\
($\mu$'+1)V'=d$\Psi$''-(c+$\lambda$_{2})$\Psi$'+G'(V) $\Psi$, z\in(-\infty, 0)\cup(0,  $\rho$)\cup( $\rho$, \infty) ,\\
d($\Psi$'(+0)- $\Psi$(-0))=(G_{+}(dv_{1})-G_{-}(dv_{1}))R_{1},\\
d($\Psi$'( $\rho$+0)- $\Psi$( $\rho$-0))=-(G_{+}(v_{2}(dv_{1}))-G_{-}(v_{2}(dv_{1})))R_{2}.
\end{array}\right.
Here we set R_{1}=dr_{1}/dX|_{X=0}, R_{2}=dr_{2}/dX|_{X=0} ,

and  $\Psi$=\partial $\psi$/\partial X|_{X=0} . In addition,

Multiply V'e^{-\frac{c+$\lambda$_{2}}{d}z} to the third equation and integrate it over (-\infty, \infty) by parts. Using
the first and second equation above, we have

($\mu$'+1)<V', V'e^{-\frac{c+$\lambda$_{2}}{d}z}>

=-(G_{+}(dv_{1})-G_{-}(dv_{1}))\displaystyle \frac{$\mu$'}{c_{1}'(dv_{1})}+e^{-\frac{c+$\lambda$_{2}}{d} $\rho$}(G_{+}(v_{2}(dv_{1}))-G_{-}(v_{2}(dv_{1})))\frac{$\mu$'}{c_{2}'(v_{2}(dv_{1}))},
where <\cdot, \cdot>\mathrm{i}\mathrm{s} the usual inner product in L^{2}(-\infty, \infty) . Then $\mu$' is explicitly expressed

by

(4.2) $\mu$'=-\displaystyle \frac{<V',V'e^{-\frac{c+$\lambda$_{2}}{d}z}>}{<V',V'e^{-\frac{c+$\lambda$_{2}}{d}z}>+\frac{(G_{+}(dv_{1})-G_{-}(dv_{1}))}{c_{1}(dv_{1})}-e^{-\frac{c+$\lambda$_{2}}{d}$\rho$_{\frac{G_{+}(v_{2}(dv_{1}))-G_{-}(v_{2}(dv_{1}))}{c_{2}'(v_{2}(dv_{1}))}}}}.
Since <V', V'e^{-\frac{c+$\lambda$_{2}}{d}z}> goes to 0 as d\rightarrow 0 due to Lemmas 3.1, 3.2 and 3.3, we have

\displaystyle \lim_{d\rightarrow 0}\frac{$\mu$'}{<V',V'e^{-\frac{c+$\lambda$_{2}}{d}z}>}=-\frac{c_{1}'(0)}{(G_{+}(0)-G_{-}(0))}>0.
Note that v_{1} tends to 0 as d\rightarrow 0 . Thanks to $\mu$'(0)>0 ,

we see that  $\mu$(X) is positive.
In the calculations above, we assume  $\epsilon$=0.

Actually, we also have the same result in  $\epsilon$>0 by a simple argument. So we

conclude Theorem 2.2.
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