
RIMS Kôkyûroku Bessatsu
B35 (2012), 115124

One‐Dimensional Anisotropic Surface Diffusion

By

Dieu Hung HOANG * and Michal Beneš **

Abstract

This contribution deals with the motion law of anisotropic surface diffusion of graphs
which is an important concept in epitaxial growth (see [3]). The numerical scheme is based

on the method of lines where the spatial derivatives are approximated by finite differences [1].
We implement the adaptive Runge‐Kutta‐Merson method for solving the semi‐discrete scheme.

Finally, we show computational results with various anisotropy settings.

Introduction

Crystallization is the process where solid crystals are formed from melt, solution,
or vapour phase. There are two major stages involved in the crystallization process
‐ nucleation and crystal growth. Nucleation is the stage where crystal forming units

(atoms, ions, or molecules) gather into clusters which are unstable until they reach a

critical size. Stable clusters are then called nuclei. After nuclei are created, crystal

growth begins. This is the stage where new crystal forming units are incorporated into

the crystal lattice. Seed crystals may be used to bypass the nucleation stage; thus, the

growth can start immediately.
In this contribution we deal with the growth of a thin film of single crystal material

on a single crystal substrate so that the film has the same structure as the substrate,
known as epitaxy. Here, the substrate functions as a seed crystal. According to the

theory of Burton, Cabrera, and Frank [2] atoms are first adsorbed to the crystalline

surface, where they are called adatoms, and then they diffuse freely along the surface.

Finally they can detach from or attach to the crystal (see Fig. 1), and the deposited
film takes on a lattice structure and orientation identical to those of the substrate.
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Figure 1: Atomistic view of the basic processes in epitaxy.

In general we distinguish two cases: homoepitaxy and heteroepitaxy. While in

homoepitaxy the film and substrate are made of the same material, in heteroepitaxy
the film is made of a material different from the substrate. One example of heteroepitaxy
is the growth of germanium film on a silicon substrate. The lattice parameter of the

film differs from the substrate (less then 4% for \mathrm{G}\mathrm{e}/\mathrm{S}\mathrm{i} ). Hence strains are introduced

into the heteroepitaxial film. Due to the effects of stress, the flat film surface is unstable

to small perturbations and such films can undergo a morphological instability, known

as the Asaro‐Tiller‐Grinfeld (ATG) instability.

Fig. 2 illustrates the physical mechanism of the ATG instability [7]. The surface

tends to remain flat to get the lowest surface free energy (Fig. 2\mathrm{a}). But, if elastic energy

is present in the film, the corrugated surface has lower elastic energy than the flat one

(Fig. 2\mathrm{b} ). In such a case, the elastic energy is lowered by elastic deformation so that the

film breaks into isolated islands (called quantum dots). Therefore, quantum dots are

caused by the competition between surface and elastic energies; elastic energy is reduced

as the surface area increases. Here, the mass is transported by surface diffusion.

Quantum dots have interesting electrical and optical properties, and their sizes

range from several to hundreds of nanometers. Quantum dots are widely used in op‐

tical and optoelectronic devices, quantum computation, and biology. Hence, accurate

knowledge of morphological changes in epitaxial thin films is crucial for governing the

material�s properties in applications.
A number of continuum models have been developed for modelling heteroepitaxial

growth. A continuum model was derived for the evolution of an epitaxially strained

dislocation‐free solid film on a rigid substrate by Spencer et al. [6] and on a deformable

substrate by Tekalign and Spencer [8]. Xiang and \mathrm{E} [9] derived a nonlinear approxima‐
tion equation for the surface morphology of an infinitely thick stressed solid in 2\mathrm{D}.

Our goal is to provide a suitable computational tool for studying such phenomena.
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(a) High energy. (b) Low energy.

Figure 2: ATG instability.

§1. Evolution problem

In this contribution, we deal with the motion law of anisotropic surface diffusion

in two dimensions

(1.1)  V=\triangle_{ $\Gamma$}(F-H) on  $\Gamma$,

where  $\Gamma$ is the curve in \mathbb{R}^{2}, V is the normal velocity of  $\Gamma$, \triangle_{ $\Gamma$} is the Laplace‐Beltrami

operator with respect to  $\Gamma$, H is the anisotropic mean curvature given by a prescribed

anisotropy, and F is the forcing term. In what follows we shall study the surface

evolution as the graph of the height function.

In order to incorporate the anisotropy into the model we replace the isotropic
Euclidean norm in \mathbb{R}^{2} by another norm exhibiting the desired anisotropy. Following

[4] we consider a nonnegative function  $\Phi$ : \mathbb{R}^{2}\rightarrow \mathbb{R}_{0}^{+} which is smooth, strict convex,

C^{2}(\mathbb{R}^{2}\backslash \{0\}) and satisfying

 $\Phi$(t $\eta$)=|t| $\Phi$( $\eta$) , t\in \mathbb{R},  $\eta$\in \mathbb{R}^{2},

 $\lambda$| $\eta$|\leq $\Phi$( $\eta$)\leq $\Lambda$| $\eta$|,

where  $\lambda$,  $\Lambda$>0 . The function given by

$\Phi$^{0}($\eta$^{*})=\displaystyle \sup\{$\eta$^{*}\cdot $\eta$| $\Phi$( $\eta$)\leq 1\}

is its dual. They satisfy the relations

$\Phi$_{ $\eta$}^{0}(t$\eta$^{*})=\displaystyle \frac{t}{|t|}$\Phi$_{ $\eta$}^{0}($\eta$^{*}) , $\Phi$_{ $\eta \eta$}^{0}(t$\eta$^{*})=\frac{1}{|t|}$\Phi$_{ $\eta \eta$}^{0}($\eta$^{*}) , t\in \mathbb{R}-\{0\},
 $\Phi$( $\eta$)=$\Phi$_{ $\eta$}( $\eta$)\cdot $\eta,\ \Phi$^{0}($\eta$^{*})=$\Phi$_{ $\eta$}^{0}($\eta$^{*})\cdot$\eta$^{*},  $\eta,\ \eta$^{*}\in \mathbb{R}^{2},

where the index  $\eta$ means the derivative with respect to  $\eta$ (i.e., $\Phi$_{ $\eta$}^{0}=(\partial_{$\eta$_{1}}$\Phi$^{0}, \partial_{$\eta$_{2}}$\Phi$^{0}
We define the map T^{0}:\mathbb{R}^{2}\rightarrow \mathbb{R}^{2} as

T^{0}($\eta$^{*}) :=$\Phi$^{0}($\eta$^{*})$\Phi$_{ $\eta$}^{0}($\eta$^{*}) for $\eta$^{*}\neq 0,

T^{0}(0):=0.
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It allows to define the  $\Phi$‐gradient of a smooth function  u as follows

\nabla_{ $\Phi$}u:=T^{0}(\nabla u)=$\Phi$^{0}(\nabla u)$\Phi$_{ $\eta$}^{0}(\nabla u)=[T_{1}^{0}(\nabla u), T_{2}^{0}(\nabla u)],

where \nabla=[\partial_{x}, \partial_{y}] . We assume that there is a function P:\mathbb{R}^{1+1}\rightarrow \mathbb{R} such that

 $\Gamma$(t)=\{[x, y]\in \mathbb{R}^{2}|y=P(t, x)\in(a, b

Let U(x, y)=P(t, x)-y=0 . Then the anisotropic mean curvature is given by

H=\displaystyle \nabla\cdot(\frac{\nabla_{ $\Phi$}U}{$\Phi$^{0}(\nabla U)})=\nabla\cdot(\frac{T^{0}(\nabla U)}{$\Phi$^{0}(\nabla U)})=\nabla\cdot(\frac{T^{0}(\partial_{x}P,-1)}{$\Phi$^{0}(\partial_{x}P,-1)})
=\displaystyle \partial_{x}(\frac{T_{1}^{0}(\partial_{x}P,-1)}{$\Phi$^{0}(\partial_{x}P,-1)})

Other quantities are expressed as follows

Q(\partial_{x}P)=\sqrt{1+|\partial_{x}P|^{2}} (area element),

\displaystyle \mathrm{N}=[N, N_{2}]=[\frac{\partial_{x}P}{Q(\partial_{x}P)}, \displaystyle \frac{-1}{Q(\partial_{x}P)}] (normal vector),

V=\displaystyle \frac{1}{Q(\partial_{x}P)}\frac{\partial P}{\partial t} (normal velocity).

By substituting these quantities into the Eq. (1.1) we obtain the evolution equations

(1.2) \displaystyle \frac{\partial P}{\partial t}=\partial_{x}(Q(\partial_{x}P)(\partial_{x}(F-H)-(\partial_{x}(F-H)\cdot N)N)) on (a, b)\times(0, T) ,

(1.3) H=\displaystyle \partial_{x}(\frac{T_{1}^{0}(\partial_{x}P,-1)}{$\Phi$^{0}(\partial_{x}P,-1)}) on (a, b)\times(0, T) .

The boundary and initial conditions are given by

(1.4) \partial_{x}P=0, \partial_{x}H=0 on \{a, b\}\times(0, T) ,

(1.5) P|_{t=0}=P_{ini} on [a, b].

§2. Numerical solution

The numerical scheme is based on the method of lines. The spatial derivatives are

first discretized and the time variable is left continuous. This leads to a system of ordi‐

nary differential equations (ODEs) which can be solved by the adaptive Runge‐Kutta‐
Merson method (see [5]). We consider the computational domain (a, b) and introduce
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the following notation:

h=\displaystyle \frac{b-a}{N} (mesh size),

u_{i}=u(a+ih) ,

$\omega$_{h}=\{a+ih|i=1, N-1\} (grid of internal nodes),

Then we propose a semi‐discrete scheme [4]

\overline{ $\omega$}_{h}=\{a+ih|i=0, N\}

$\gamma$_{h}=\{a, b\},

u_{x,i}=\displaystyle \frac{u_{i+1}-u_{i}}{h}
u_{\overline{x},i}=\displaystyle \frac{u_{i}-u_{i-1}}{h}

\mathcal{P}_{h}g=g|_{!_{h}}

(grid of all nodes),

(forward difference),

(backward difference),

(projection operator).

(2.1) \displaystyle \frac{\partial P^{h}}{\partial t}=(Q(P_{\frac{}{x}}^{h})((F-H^{h})_{\overline{x}}-((F-H^{h})_{\overline{x}}\cdot N^{h})N^{h}))_{x},
(2.2) H^{h}=(\displaystyle \frac{T_{1}^{0}(P_{\frac{}{x}}^{h},-1)}{$\Phi$^{0}(P_{\frac{}{x}}^{h},-1)})_{x}, N^{h}=\frac{P_{\frac{}{x}}^{h}}{Q(P_{\frac{}{x}}^{h})}.
The boundary and initial conditions are written as follows

(2.3) P_{\frac{}{x},0}^{h}=P_{\frac{}{x},N}^{h}=0, H\displaystyle \frac{h}{x},0=H\frac{h}{x},N=0 in (0, T) ,

(2.4) P^{h}|_{t=0}=\mathcal{P}_{h}P_{ini} on \overline{ $\omega$}_{h}.

The scheme (2.1) can be rewritten in the form

\displaystyle \frac{\mathrm{d}P^{h}}{\mathrm{d}t}=f(t, P^{h}) .

Then, the algorithm of the Runge‐Kutta‐Merson method for solving this system is

described in Algorithm 1.

§3. Numerical results

In this section we present several numerical results with various anisotropy settings.
We shall explore the long‐time behaviour of Eq. (1.1). In all computations, we consider

the domain (0,2) ,
the step size h=0.01 ,

and the forcing term F=-100/P.
Example 1. We consider the initial condition P_{ini}(x)=1+0.1\cos(12 $\pi$ x) and

$\Phi$^{0}(-\nabla P, 1)=\sqrt{(\nabla P)^{2}+1} . The solution at different times is displayed in the Fig. 3

which shows an evolution towards island formation. Here, the solution is first smoothed

out and then an array of islands is created.
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Algorithm 1 Runge‐Kutta‐Merson method

1. Compute the coefficients

k_{1,i}= $\tau$ f(t, P^{h})_{i},

k_{2,i}= $\tau$ f(t+\displaystyle \frac{ $\tau$}{3}, P^{h}+\frac{ $\tau$}{3}k_{1})_{i},
k_{3,i}= $\tau$ f(t+\displaystyle \frac{ $\tau$}{3}, P^{h}+\frac{ $\tau$}{6}k_{1}+\frac{ $\tau$}{6}k_{2})_{i},

k_{4,i}= $\tau$ f(t+\displaystyle \frac{ $\tau$}{2}, P^{h}+\frac{ $\tau$}{8}k_{1}+\frac{3 $\tau$}{8}k_{3})_{i},
k_{5,i}= $\tau$ f(t+ $\tau$, P^{h}+\displaystyle \frac{ $\tau$}{2}k_{1}-\frac{3 $\tau$}{2}k_{3}+2 $\tau$ k_{4})_{i}

for i=0 ,
. . .

,
N.

2. Evaluate the local truncation error

E=i0,\displaystyle \ldots,N\max_{=}\{\frac{|2k_{1}-9k_{3}+8k_{4}-k_{5}|}{30}\}
3. If  E< $\epsilon$ then compute

 t=t+ $\tau$,

P_{i}^{h}=P_{i}^{h}+\displaystyle \frac{1}{6}(k_{1,i}+4k_{4,i}+k_{5,i}) for i=0 ,
. . .

,
N.

4. Update the step size

 $\tau$=0.8 $\tau$(\displaystyle \frac{ $\epsilon$}{E})^{0.2}

Example 2. We consider $\Phi$^{0}(-\nabla P, 1)=\sqrt{05(\nabla P)^{2}+1} and the same initial

condition as in the example 1. In this example, we observe the early smoothing effect

too but the density of islands is larger than the density in the previous example (see
Fig. 4).

Example 3. For $\Phi$^{0}(-\nabla P, 1)=\sqrt{01(\nabla P)^{2}+1} and the same initial condition as

in the previous examples we do not observe the smoothing effect. On the contrary, from

the beginning and evolve towards crack formation (see Fig. 5).
Example 4. Fig. 6 displays solutions with another initial condition and various

anisotropy settings.
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Figure 3: Example 1. Solutions for $\Phi$^{0}(-\nabla P, 1)=\sqrt{(\nabla P)^{2}+1} at different times.
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Figure 4: Example 2. Solutions for $\Phi$^{0}(-\nabla P, 1)=\sqrt{(05\nabla P)^{2}+1} at different times.
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Figure 5: Example 3. Solutions for $\Phi$^{0}(-\nabla P, 1)=\sqrt{01(\nabla P)^{2}+1} at different times.

§4. Conclusion

The influence of surface energy anisotropy on the dynamics of heteroepitaxial

growth has been studied by the method of lines combined with the finite difference

method. The Runge‐Kutta‐Merson method for solving a system of ODEs is reliable

and its use for the anisotropic surface diffusion has been described. Finally, we have

shown several computational experiments.
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