Application of the nonlinear Galerkin FEM method to the numerical solution of a reaction-diffusion system in two dimensions (Mathematical and numerical analysis for interface motion arising in nonlinear phenomena)

Author(s)
MACH, Jan

Citation
数理解析研究所講究録別冊 = RIMS Kokyuroku Bessatsu (2012), B35: 95-113

Issue Date
2012-12

URL
http://hdl.handle.net/2433/198096

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
Application of the nonlinear Galerkin FEM method to the numerical solution of a reaction-diffusion system in two dimensions

By

Jan Mach*

Abstract

This paper deals with an application of the nonlinear Galerkin method to the numerical solution of a particular reaction-diffusion system in two spatial dimensions. This method was suggested as well adapted for the long-term integration of the evolution equations and combines the time and space discretization. Here we discuss the nonlinear Galerkin approach in the framework of the finite element method and give details on how the numerical scheme is derived. The modified Runge-Kutta method with adaptive time step selection is used for the integration in time. We also present the examples of numerical results.

§1. Introduction

Consider the system of reaction-diffusion equations

\[
\frac{\partial U}{\partial t} = \mathbf{D}\Delta U + \mathbf{F}(U),
\]

where \(\mathbf{D} \in \mathbb{R}^{d,d} \) denotes a positively definite diagonal matrix, \(\mathbf{F} : \mathbb{R}^d \rightarrow \mathbb{R}^d \) is a Lipschitz continuous mapping, \(U(t, z) \) is a \(d \)-dimensional function of time \(t \geq 0 \) and of space \(z \in \Omega \subset \mathbb{R}^n \). \(\Omega \) is a bounded space domain with piecewise smooth boundary. We consider the homogeneous Neumann boundary conditions

\[
\frac{\partial U}{\partial \nu} = 0,
\]

Received October 16, 2011. Revised April 27, 2012.
2000 Mathematics Subject Classification(s): 35K15, 35K20, 35K55, 35K57, 65M20, 65M55, 65M60
Key Words: nonlinear Galerkin method, finite element method, reaction-diffusion equations, numerical simulation
*Czech Technical University in Prague, Prague, Czech republic.
e-mail: jan.mach@fjfi.cvut.cz

© 2012 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.
where ν is the unit outward normal of Ω and the initial condition

\begin{equation}
U|_{t=0} = U_0 \in \mathbf{H},
\end{equation}

where $\mathbf{H} := L^2(\Omega, \mathbb{R}^d)$ is the Hilbert space with the scalar product

\begin{equation}
(U, V) \equiv (U, V)_{\mathbf{H}} = \sum_{i=1}^{d} (U_i, V_i)_{\mathbf{H}} = \sum_{i=1}^{d} \int_{\Omega} U_i V_i,
\end{equation}

and the space $\mathbf{V} := H^{(1)}(\Omega, \mathbb{R}^d)$ as the Hilbert space with the scalar product

\begin{equation}
(U, V)_{\mathbf{V}} = \sum_{i=1}^{d} (U_i, V_i)_{H^{(1)}(\Omega)} = \sum_{i=1}^{d} \int_{\Omega} \nabla U_i \cdot \nabla V_i,
\end{equation}

where $U = (U_1, \ldots, U_d)$, $V = (V_1, \ldots, V_d)$. The weak solution of the problem (1.1)-(1.3) on the time interval $(0, T)$ is a mapping $U : (0, T) \rightarrow \mathbf{V}$ such that it satisfies the following problem in the sense of distributions

\begin{equation}
\frac{d}{dt}(U, W) + (DU, W)_{\mathbf{V}} = (F(U), W) \quad \text{in } (0, T) \forall W \in \mathbf{V},
\end{equation}

\begin{equation}
U|_{t=0} = U_0.
\end{equation}

This abstract setting covers the initial-boundary value problems for wide range of reaction-diffusion systems, see e.g. [24, 28, 22].

The Gray-Scott model is the particular example of the reaction-diffusion system exhibiting rich dynamics [25], [26], [27]. It describes the autocatalytic chemical reaction

\begin{equation}
U + 2V \rightarrow 3V, \quad V \rightarrow P,
\end{equation}

where U, V are reactants and P is the final product of the reaction. The chemical substance U is being continuously added into the reactor and the product P is being continuously removed from the reactor during the reaction.

The initial-boundary value problem for the Gray-Scott model, considered in Section 3 for numerical simulations, is the following system

\begin{equation}
\frac{\partial u}{\partial t} = D_u \Delta u - uv^2 + F(1 - u),
\end{equation}

\begin{equation}
\frac{\partial v}{\partial t} = D_v \Delta v + uv^2 - (F + k)v,
\end{equation}

in $\Omega \times (0, T)$ with the initial conditions

\begin{equation}
\begin{align*}
u(\cdot, 0) &= u_{ini}, \\
v(\cdot, 0) &= v_{ini}
\end{align*}
\end{equation}
and the zero Neumann boundary conditions

\begin{align}
(1.13) & \frac{\partial u}{\partial v} |_{\partial \Omega} = 0, \\
(1.14) & \frac{\partial v}{\partial v} |_{\partial \Omega} = 0.
\end{align}

The functions \(u, v \) are unknowns representing concentrations of the chemical substances \(U, V \). The parameter \(F \) denotes the rate at which the chemical substance \(U \) is being added during the chemical reaction, \(F + k \) is the rate of the \(V \to P \) transformation and \(a, b \) are the diffusion constants characterizing the environment of the reactor. We denote the reaction terms in the system (1.9)-(1.10) by \(F_1(u, v), F_2(u, v) \) or \(F_1, F_2 \) only. The system (1.9)-(1.13) has been studied from the viewpoint of qualitative behavior, see e.g. [24, 25, 26, 27] and of mathematical properties [28]. Mathematical consequences of these results help in the use of the presented method.

The rest of the article is organized as follows. The finite element nonlinear Galerkin scheme for the system of two reaction diffusion equations, i.e. the Gray-Scott model (1.9) - (1.10), is derived in Section 2. In Section 3 selected results of numerical solution are presented.

\section*{2. Nonlinear Galerkin method}

The long-term behavior of dissipative systems to which (1.1) - (1.3) belongs can be described by the global attractor \(A \). In the standard Galerkin method the numerical solution of the problem under consideration is searched in the space \(P_m \mathbf{H} \) spanned by \(w_1, \ldots, w_n \) and thus produces an approximation of \(A \) in the space \(P_m \mathbf{H} \). The nonlinear Galerkin method searches for the solution in an approximate inertial manifold, which is the nonlinear manifold closer to \(A \) than \(P_m \mathbf{H} \) [1, 2, 3, 4]. This is the distinguishing property and the theoretical advantage of the nonlinear Galerkin approach compared to other simple methods. It was thus suggested as well adapted for the long-term integration of evolution equations in dynamically nontrivial situations [2]. It is general and allows the use of various methods for the time and space discretization of the underlaying problem. This approach was developed initially in the context of spectral methods [1, 2, 22]. Later, it has been generalized to other spatial discretization methods, i.e. the finite element method [7, 5, 14, 15, 23] and the finite difference method [12, 21].

The nonlinear Galerkin methods have been studied extensively. They have been applied to a variety of problems so far, i.e. to the modeling of turbulence [8, 10, 18], numerical solution of Navier-Stokes equations [5, 6, 11, 13, 23], the Kuramoto-Sivashinski equation [4, 16, 20] and the Burgers equation [9, 19, 20].

It has been also applied for the numerical simulations of reaction-diffusion systems, i.e. in [21] nonlinear Galerkin method based on the finite difference method is reported.
to produce quantitatively the same results as the standard finite difference method when solving a particular reaction-diffusion system in two dimensions for parameters leading to non-trivial spatial and temporal behavior. In [22] the application of the non-linear Galerkin approach with the spectral spatial discretization to the one-dimensional Brusselator model is studied and it is reported to provide computational time savings compared to the standard Galerkin method with similar error in the numerical solution.

Reduction of the computational time for the same level of error was frequently reported as a computational advantage of the nonlinear Galerkin methods over the standard methods in other studies as well, see e.g. [4, 10, 11, 23]. Reported computational time gains varies between 25% – 55% depending on the particular nonlinear Galerkin scheme definition, implementation details and the studied problem. Some authors were not able to reproduce these positive results when using more sophisticated time integration methods with the adaptive time stepping [16, 20]. For comparison of different time integration methods in the context of nonlinear Galerkin methods see [17], where the author concludes that efficient integration in time is needed to avoid premature conclusion about the computational advantages of nonlinear Galerkin methods and to allow reliable comparison with the standard methods. Variable step-size variable formula BDF method was suggested as an efficient method for the time integration of those compared.

In our work we study whether the theoretical advantages can be converted into the computational ones for a particular nonlinear Galerkin method based on the finite element discretization in space. The finite element nonlinear Galerkin method is applied to the numerical integration of the system of two reaction-diffusion equations in two spatial dimensions. We provide details on how the the numerical scheme for the example problem is derived.

For \(L > 0 \) we denote

\[
\Omega \equiv (0, L) \times (0, L)
\]

the square domain and remind here the notation \(\mathbf{H} = L^2(\Omega, \mathbb{R}^2) \) and \(\mathbf{V} = H^{(1)}(\Omega, \mathbb{R}^2) \).

We consider the finite dimensional subspace \(\mathbf{V}_h \) of \(\mathbf{V} \) as in the usual Galerkin finite element method. In the nonlinear Galerkin method discussed here, \(\mathbf{V}_h \) is decomposed into the coarse (large eddy) space \(\mathbf{V}_{2h} \), and the correction space \(\mathbf{W}_h \), as described in Section 2.1. That is \(\mathbf{V}_h = \mathbf{V}_{2h} + \mathbf{W}_h \). The weak solution of the problem (1.6)-(1.7) is approximated by

\[
U_h(t) = Y_h(t) + Z_h(t),
\]

where \(\forall t > 0, Y_h(t) \in \mathbf{V}_{2h} \) and \(Z_h(t) \in \mathbf{W}_h \). The function \(Y_h(t) \) and \(Z_h(t) \) are solutions
of the following equations, see i.e. \cite{2, 22},

\begin{align}
(2.3) & \quad \frac{d}{dt}(Y_h, \tilde{Y}_h) + (D Y_h + D Z_h, \tilde{Y}_h)_V = (F(Y_h + Z_h), \tilde{Y}_h), \quad \forall \tilde{Y}_h \in V_{2h}, \\
(2.4) & \quad (D Y_h + D Z_h, \tilde{Z}_h)_V = (F(Y_h) + F'(Y_h) \cdot Z_h, \tilde{Z}_h), \quad \forall \tilde{Z}_h \in W_h, \\
(2.5) & \quad (U|_{t=0}, \tilde{Y}_h) = (U_0, \tilde{Y}_h), \quad \forall \tilde{Y}_h \in V_{2h}.
\end{align}

The values of $Z_h(t)$ are known to be small for h small. At each time t, $U_h(t) \simeq Y_h(t)$, but the effect of the $Y_h(t)$ add up due to the sensitivity of reaction diffusion equation on the initial data and is thus effective on large intervals of time. The definition of functions $Y_h(t)$ and $Z_h(t)$ other than (2.3)-(2.5) is possible \cite{16, 20}.

The choice of the spaces V_{2h}, W_h is given by the particular method of the space discretization - the finite element method in the case of this article, or the spectral method or the finite difference method, see \cite{1, 2, 12, 21}.

The framework of the convergence analysis for the nonlinear Galerkin method is given in \cite{2, 3}, and is elaborated for the reaction-diffusion systems in \cite{22}, and the finite-element method applied to them in \cite{33}.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{grid.png}
\caption{Numerical grid for the realization of the finite element nonlinear Galerkin method in two spatial dimensions.}
\end{figure}

\section{Discretization by the finite element method}

In this section we describe details of the spatial discretization within the finite element nonlinear Galerkin method. For the square domain Ω (2.1), $N \in \mathcal{N}$, $h = L/2N$
we consider regular square mesh of nodes \(x_{i,j} = [ih, jh], i = 0, \ldots, 2N, j = 0, \ldots, 2N, \) see Fig. 1. Let \(\mathcal{E}_{2h} \) denote set of (black) node indices \([2i, 2j], i = 0, \ldots, N, j = 0, \ldots, N. \) In a similar manner we denote \(\mathcal{E}_h \) the set of (white) node indices \([2i + 1, 2j + 1], i = 0, \ldots, N - 1, j = 0, \ldots, N - 1, \) \([2i, 2j + 1], i = 0, \ldots, N, j = 0, \ldots, N - 1 \) and \([2i + 1, 2j], i = 0, \ldots, N - 1, j = 0, \ldots, N. \)

The piecewise linear finite elements are used to construct the corresponding spaces. First, we define the nodal (hat) functions \(\varphi_O, \forall O \in \mathcal{E}_{2h} \) that are equal to one at nodes \(x_O \) and are equal to zero at all other nodes \(x_M, \forall M \in \mathcal{E}_{2h}, M \neq O. \)

Next, we define the nodal (hat) functions \(\psi_P, \forall P \in \mathcal{E}_h \) that are equal to one at nodes \(x_P \) and are equal to zero at all other nodes \(x_M, \forall M \in \mathcal{E}_h, M \neq P. \)

We define

\[
(2.6) \quad \psi^{(1)}_{2i,2j} = \left(\begin{array}{l} \psi_{2i,2j} \\ 0 \end{array} \right), \psi^{(2)}_{2i,2j} = \left(\begin{array}{l} 0 \\ \psi_{2i,2j} \end{array} \right) \quad \text{for } i = 0, j = 0 \to N, N,
\]

\[
(2.7) \quad \psi^{(1)}_{2i+1,2j} = \left(\begin{array}{l} \psi_{2i+1,2j} \\ 0 \end{array} \right), \psi^{(2)}_{2i+1,2j} = \left(\begin{array}{l} 0 \\ \psi_{2i+1,2j} \end{array} \right) \quad \text{for } i = 0, j = 0 \to N-1, N,
\]

\[
(2.8) \quad \psi^{(1)}_{2i,2j+1} = \left(\begin{array}{l} \psi_{2i,2j+1} \\ 0 \end{array} \right), \psi^{(2)}_{2i,2j+1} = \left(\begin{array}{l} 0 \\ \psi_{2i,2j+1} \end{array} \right) \quad \text{for } i = 0, j = 0 \to N, N-1,
\]

\[
(2.9) \quad \psi^{(1)}_{2i+1,2j+1} = \left(\begin{array}{l} \psi_{2i+1,2j+1} \\ 0 \end{array} \right), \psi^{(2)}_{2i+1,2j+1} = \left(\begin{array}{l} 0 \\ \psi_{2i+1,2j+1} \end{array} \right) \quad \text{for } i = 0, j = 0 \to N-1, N-1,
\]

as the 2-dimensional vector-valued finite element basis functions. The basis of \(\mathbf{V}_{2h} \) consists of functions (2.6). The space \(\mathbf{W}_h \) is spanned by functions (2.7), (2.8) and (2.9). The union of the bases of \(\mathbf{V}_{2h} \) and \(\mathbf{W}_h \) provides a hierarchical (induced) basis of \(\mathbf{V}_h. \)

Specifying \(Y_h = (u_h, v_h) \) and \(Z_h = (z_h, w_h) \) in the numerical approximation (2.2) we have

\[
(2.10) \quad u_{2h} = \sum_{i=0,j=0}^{N,N} u_{2i,2j} \varphi_{2i,2j},
\]

\[
(2.11) \quad v_{2h} = \sum_{i=0,j=0}^{N,N} v_{2i,2j} \varphi_{2i,2j},
\]

\[
(2.12) \quad z_h = \sum_{i=0,j=0}^{N-1,N} z_{2i+1,2j+1} \psi_{2i+1,2j+1} + \sum_{i=0,j=0}^{N,N-1} z_{2i,2j+1} \psi_{2i,2j+1}
\]
\[(2.13) \quad w_h = \sum_{i=0,j=0}^{N-1,N-1} w_{2i+1,2j+1} \psi_{2i+1,2j+1} + \sum_{i=0,j=0}^{N,N-1} w_{2i,2j+1} \psi_{2i,2j+1}
+ \sum_{i=0,j=0}^{N-1,N-1} w_{2i+1,2j+1} \psi_{2i+1,2j+1}.
\]

where the components of the principle solution part \(Y_h\) and of the correction term \(Z_h\) are the solution of the following system

\[(2.14) \quad \partial_t(u_{2h}, \varphi_O) + D_u(u_{2h} + z_h, \varphi_O)_V = (F_1(u_{2h} + z_h, v_{2h} + w_h), \varphi_O),\]
\[(2.15) \quad \partial_t(v_{2h}, \varphi_O) + D_v(v_{2h} + w_h, \varphi_O)_V = (F_2(u_{2h} + z_h, v_{2h} + w_h), \varphi_O),\]
\[(2.16) \quad D_u(u_{2h} + z_h, \psi_P)_V = (F_1(u_{2h}, v_{2h}) + \partial_u F_1(u_{2h}, v_{2h}) z_h
+ \partial_v F_1(u_{2h}, v_{2h}) w_h)_V,\]
\[(2.17) \quad D_v(v_{2h} + w_h, \psi_P)_V = (F_2(u_{2h}, v_{2h}) + \partial_u F_2(u_{2h}, v_{2h}) z_h
+ \partial_v F_2(u_{2h}, v_{2h}) w_h)_V,\]

\(\forall O \in \mathcal{E}_{2h}\) and \(\forall P \in \mathcal{E}_h\), which corresponds to (2.3) - (2.4) for \(D = \text{diag}\{D_u, D_v\}\) and \(F = (F_1, F_2)\). We denote here \((\cdot, \cdot)\) and \((\cdot, \cdot)_V\) scalar product (1.4) and bilinear form (1.5) for \(d = 1\) respectively.

Now we derive equations for the term \(z_h\) from (2.16). Equations for \(w_h\) are derived analogously. Numerical integration is applied to approximate the right-hand side of (2.16). For the particular index \(P \in \mathcal{E}_h\), such that \(x_P \cap \partial \Omega = \emptyset\), the following approximation is used

\[(2.18) \quad (F_1 + \partial_u F_1 + \partial_v F_1, \psi_P) \sim h^2 F_1|_P + h^2 \partial_u F_1|_P + h^2 \partial_v F_1|_P,
\]

which can be modified for the boundary nodes replacing \(h^2\) terms by \(\frac{1}{2}h^2\).

We consider \(\psi_P, P \in \mathcal{E}_h\) defined at nodes \(x_{2i,2j+1}, x_{2i+1,2j+1}\) and \(x_{2i+1,2j}\) separately. For \(\psi_P \equiv \psi_{2i,2j+1}, 0 \leq j < N\) in (2.16) we receive

\[(2.19) \quad (u_{2h} + z_h, \psi_{2i,2j+1})_V = (u_{2h}, \psi_{2i,2j+1})_V + (z_h, \psi_{2i,2j+1})_V
= \frac{1}{2}(u_{2i,2j} + u_{2i,2j+2} - u_{2i-2,2j+2} - u_{2i+2,2j})
- z_{2i-1,2j+1} + 4z_{2i,2j+1} + z_{2i+1,2j+1},
\]

for \(0 < i < N\). For \(i = 0\) and \(i = N\) we have

\[(2.20) \quad (u_{2h} + z_h, \psi_{0,2j+1})_V = (u_{2h}, \psi_{0,2j+1})_V + (z_h, \psi_{0,2j+1})_V
\]
\[
\frac{1}{2}(u_{0,2j} - u_{2,2j}) + 2z_{0,2j+1} - z_{1,2j+1},
\]

and

\[
(u_{2h} + z_{h}, \psi_{2N,2j+1})_V = (u_{2h}, \psi_{2N,2j+1})_V + (z_{h}, \psi_{2N,2j+1})_V
= \frac{1}{2}u_{2N,2j+2} - z_{2N-1,2j+1} + 2D_u z_{2N,2j+1},
\]

respectively. Finally, for \(0 < i < N\), the equation (2.16) yields

\[
\begin{align*}
-D_u \frac{h^2}{2} z_{2i-1,2j+1} + & \left(\frac{4D_u}{h^2} - \partial_u F_1|_{2i,2j+1} \right) z_{2i,2j+1} \\
& - \frac{D_u}{h^2} z_{2i,2j+1} + \partial_v F_1|_{2i,2j+1} w_{2i,2j+1} \\
& = F_1|_{2i,2j+1} - \frac{D_u}{2h^2} (u_{2i,2j} + u_{2i,2j+2} - u_{2i-2,2j+2} - u_{2i+2,2j}).
\end{align*}
\]

For \(i = 0\) and \(i = N\) we have

\[
\begin{align*}
\left(\frac{4D_u}{h^2} - \partial_u F_1|_{0,2j+1} \right) z_{0,2j+1} - \frac{2D_u}{h^2} z_{1,2j+1} - \partial_v F_1|_{0,2j+1} w_{0,2j+1} \\
& = F_1|_{0,2j+1} - \frac{D_u}{h^2} (u_{0,2j} - u_{2,2j}),
\end{align*}
\]

and

\[
\begin{align*}
-2D_u \frac{h^2}{2} z_{2N-1,2j+1} + & \left(\frac{4D_u}{h^2} - \partial_u F_1|_{2N,2j+1} \right) z_{2N,2j+1} \\
& - \frac{D_u}{h^2} z_{2N,2j+1} - \partial_v F_1|_{2N,2j+1} w_{2N,2j+1} \\
& = F_1|_{2N,2j+1} - \frac{D_u}{h^2} (u_{2N,2j+2} - u_{2N-2,2j+2}),
\end{align*}
\]

respectively.

For \(\psi_P \equiv \psi_{2i+1,2j+1}, \ 0 \leq i < N\) and \(0 \leq j < N\) in (2.16) we get

\[
(u_{2h} + z_{h}, \psi_{2i+1,2j+1})_V = (u_{2h}, \psi_{2i+1,2j+1})_V + (z_{h}, \psi_{2i+1,2j+1})_V
= (u_{2i,2j+2} + u_{2i+2,2j} - u_{2i,2j} - u_{2i+2,2j+2}) - \frac{D_u}{h^2} (u_{2i,2j+2} + u_{2i+2,2j} - u_{2i,2j} - u_{2i+2,2j+2})
\]

and thus equation (2.16) yields

\[
\begin{align*}
-D_u \frac{h^2}{2} z_{2i+1,2j} - & \left(\frac{4D_u}{h^2} - \partial_u F_1|_{2i+1,2j+1} \right) z_{2i+1,2j+1} \\
& - \frac{D_u}{h^2} z_{2i+1,2j+1} \\
& - \partial_v F_1|_{2i+1,2j+1} w_{2i+1,2j+1} \\
& = F_1|_{2i+1,2j+1} - \frac{D_u}{h^2} (u_{2i,2j} + u_{2i+2,2j} - u_{2i,2j} - u_{2i+2,2j+2}).
\end{align*}
\]
For $\psi_P \equiv \psi_{2i+1,j}$, $0 \leq i < N$ in (2.16) we get

\begin{equation}
(2.27) \quad (u_{2h} + z_h, \psi_{2i+1,2j})_V = (u_{2h}, \psi_{2i+1,2j})_V + (z_h, \psi_{2i+1,2j})_V
\end{equation}

\begin{align*}
&= \frac{1}{2}(-u_{2i+2,2j-2} + u_{2i+2,2j} + u_{2i,2j} - u_{2i,2j+2}) \\
&\quad -z_{2i+1,2j-1} + 4z_{2i+1,2j} - z_{2i+1,2j+1},
\end{align*}

for $0 < j < N$. For $j = 0$ and $j = N$ we have

\begin{equation}
(2.28) \quad (u_{2h} + z_h, \psi_{2i+1,0})_V = (u_{2h}, \psi_{2i+1,0})_V + (z_h, \psi_{2i+1,0})_V
\end{equation}

\begin{align*}
&= \frac{1}{2}(u_{2i,0} - u_{2i,2}) + 2z_{2i+1,0} - z_{2i+1,1},
\end{align*}

and

\begin{equation}
(2.29) \quad (u_{2h} + z_h, \psi_{2i+1,2N})_V = (u_{2h}, \psi_{2i+1,2N})_V + (z_h, \psi_{2i+1,2N})_V
\end{equation}

\begin{align*}
&= \frac{1}{2}(u_{2i+2,2N} - u_{2i+2,2N-2}) - z_{2i+1,2N-1} + 2z_{2i+1,2N}
\end{align*}

respectively. Finally, the equation (2.16) yields

\begin{equation}
(2.30) \quad \frac{-D_u}{h^2} z_{2i+1,2j-1} + \frac{4D_u}{h^2} \partial_u F_1|_{2i+1,2j} z_{2i+1,2j} - \frac{D_u}{h^2} z_{2i+1,2j+1}
\end{equation}

\begin{align*}
&\quad -\partial_v F_1|_{2i+1,2j} w_{2i+1,2j} \\
&\quad = F_1|_{2i+1,2j} - \frac{D_u}{2h^2} (-u_{2i+2,2j-2} + u_{2i+2,2j} + u_{2i,2j} - u_{2i,2j+2}),
\end{align*}

for $0 < j < N$. For $j = 0$ and $j = N$ we obtain

\begin{equation}
(2.31) \quad \left(\frac{4D_u}{h^2} - \partial_u F_1|_{2i+1,0}\right) z_{2i+1,0} + \frac{-2D_u}{h^2} z_{2i+1,1} - \partial_v F_1|_{2i+1,0} w_{2i+1,0}
\end{equation}

\begin{align*}
&\quad = F_1|_{2i+1,0} - \frac{D_u}{h^2} (u_{2i,0} - u_{2i,2}),
\end{align*}

and

\begin{equation}
(2.32) \quad \frac{-2D_u}{h^2} z_{2i+1,2N-1} + \left(\frac{4D_u}{h^2} - \partial_u F_1|_{2i+1,2N}\right) z_{2i+1,2N} - \partial_v F_1|_{2i+1,2N} w_{2i+1,2N}
\end{equation}

\begin{align*}
&\quad = F_1|_{2i+1,2N} - \frac{D_u}{h^2} (u_{2i+2,2N} - u_{2i+2,2N-2}),
\end{align*}

respectively.

We need to evaluate terms u_{2h}, v_{2h} at grid nodes x_P, $\forall P \in \mathcal{E}_h$ to compute values of $F_1|_{P}$, $\partial_u F_1|_{P}$ and $\partial_v F_1|_{P}$. This is accomplished by the linear interpolation

\begin{equation}
(2.33) \quad u_{2h}|_{2i+1,2j} = \frac{1}{2}(u_{2i,2j} + u_{2i+2,2j}),
\end{equation}
\begin{equation}
 u_{2h}|_{2i,2j+1} = \frac{1}{2}(u_{2i,2j} + u_{2i,2j+2}),
\end{equation}
\begin{equation}
 u_{2h}|_{2i+1,2j+1} = \frac{1}{2}(u_{2i,2j+2} + u_{2i+2,2j}).
\end{equation}
In the similar manner, the term v_{2h} is treated.

We obtained the sparse linear system of $2n_{corr}$,

\[n_{corr} = (N + 1)N + N(2N + 1) = N(3N + 2), \]

equations for the values of terms z_h, w_h at grid nodes x_P, $P \in \mathcal{E}_h$. The matrix is stored in compressed sparse column (CSC) representation for use with the UMFPACK solver [29, 30, 31, 32], which we use to solve the system.

Now we derive equations for the values of the solution component u_{2h} from (2.14). Equations for v_{2h} in (2.15) are derived analogously. Numerical integration is used to approximate the right-hand side (2.14) For particular $O \in \mathcal{E}_{2h}$, such that $x_O \cap \partial \Omega = \emptyset$, the following approximation is used

\begin{equation}
 (F_1(u_{2h} + z_h, v_{2h} + w_h), \varphi_O) \sim \sum_{P \in \mathcal{E}_h} h^2 \varphi_O|_P F_1(u_{2h} + z_h, v_{2h} + w_h)|_P.
\end{equation}

The term h^2 is the area around grid nodes x_P, $P \in \mathcal{E}_h$ as it is depicted in Fig. 2. For $\varphi_O \equiv \varphi_{2i,2j}$, $0 < i < N$, $0 < j < N$ and denoting $F_1 \equiv F_1(u_{2h} + z_h, v_{2h} + w_h)$ the approximation (2.36) yields

\begin{equation}
 (F_1, \varphi_{2i,2j}) \sim \frac{1}{2} h^2 F_1|_{2i,2j-1} + \frac{1}{2} h^2 F_1|_{2i+1,2j-1} + \frac{1}{2} h^2 F_1|_{2i-1,2j} + \frac{1}{2} h^2 F_1|_{2i,2j} + \frac{1}{2} h^2 F_1|_{2i+1,2j} + \frac{1}{2} h^2 F_1|_{2i-1,2j+1} + \frac{1}{2} h^2 F_1|_{2i,2j+1},
\end{equation}

which can be modified for the boundary nodes.

We need to evaluate the terms $u_{2h} + z_h$, $v_{2h} + w_h$ at grid nodes x_P, $\forall P \in \mathcal{E}_h$ in the approximation (2.36). Linear interpolation is used to interpolate values of u_{2h}, v_{2h} on grid nodes x_P, $\forall P \in \mathcal{E}_h$

\begin{equation}
 (u_{2h} + z_h)|_{2i+1,2j} = \frac{1}{2}(u_{2i,2j} + u_{2i+2,2j}) + z_{2i+1,2j},
\end{equation}
\begin{equation}
 (u_{2h} + z_h)|_{2i,2j+1} = \frac{1}{2}(u_{2i,2j} + u_{2i,2j+2}) + z_{2i,2j+1},
\end{equation}
\begin{equation}
 (u_{2h} + z_h)|_{2i+1,2j+1} = \frac{1}{2}(u_{2i,2j+2} + u_{2i+2,2j}) + z_{2i+1,2j+1}.
\end{equation}
In the similar manner, the term $v_{2h} + w_h$ is treated.

For a particular nodal hat function $\varphi_O \equiv \varphi_{2i,2j}$, $0 < i < N$, $0 < j < N$ in Eq. (2.14) we derive

\begin{equation}
 \frac{1}{3} h^2 \ddot{u}_{2i,2j-2} + \frac{1}{3} h^2 \ddot{u}_{2i+2,2j-2} + \frac{1}{3} h^2 \ddot{u}_{2i-2,2j} + 2 h^2 \ddot{u}_{2i,2j}
\end{equation}
Nonlinear Galerkin FEM method

Figure 2. Numerical integration.

\[\frac{1}{3} h^2 \dot{u}_{2i+2,2j} + \frac{1}{6} h^2 \dot{u}_{2i-2,2j+2} + \frac{1}{3} h^2 \dot{u}_{2i,2j+2} - D_u u_{2i,2j-2} \]

\[-D_u u_{2i-2,2j} + 4D_u u_{2i,2j} - D_u u_{2i+2,2j} - D_u u_{2i+2,2j+2} - \frac{1}{2} D_u x_{2i+1,2j-2} \]

\[-D_u x_{2i-1,2j-1} + \frac{1}{2} D_u x_{2i+1,2j-1} + D_u x_{2i+1,2j-1} - \frac{1}{2} D_u x_{2i-1,2j+2} \]

\[= \frac{1}{2} h^2 F_1|_{2i,2j-1} + \frac{1}{2} h^2 F_1|_{2i+1,2j-1} + \frac{1}{2} h^2 F_1|_{2i-1,2j} + h^2 F_1|_{2i,2j} \]

For $\varphi_0 \equiv \varphi_{0,0}$ we obtain

\[(2.42) \quad \frac{1}{3} h^2 \dot{u}_{0,0} + \frac{1}{6} h^2 \dot{u}_{2,0} + \frac{1}{6} h^2 \dot{u}_{0,2} + D_u u_{0,0} - \frac{1}{2} D_u u_{2,0} \]

\[-\frac{1}{2} D_u u_{0,2} + \frac{1}{2} D_u z_{1,0} + \frac{1}{2} D_u z_{0,1} - D_u z_{1,1} \]

\[\frac{1}{4} h^2 F_1|_{0,0} + \frac{1}{4} h^2 F_1|_{1,0} + \frac{1}{4} h^2 F_1|_{0,1}. \]

For $\varphi_0 \equiv \varphi_{2i,0}, 0 < i < N$ the Eq. (2.14) gives

\[(2.43) \quad \frac{1}{6} h^2 \dot{u}_{2i-2,0} + h^2 \dot{u}_{2i,0} + \frac{1}{6} h^2 \dot{u}_{2i+2,0} + \frac{1}{3} h^2 \dot{u}_{2i-2,2} + \frac{1}{3} h^2 \dot{u}_{2i,2} \]
\[-\frac{1}{2} D_u u_{2i-2,0} + 2 D_u u_{2i,0} - \frac{1}{2} D_u u_{2i+2,0} + \frac{1}{2} D_u z_{2i+1,0} \]
\[-\frac{1}{2} D_u z_{2i-2,1} + D_u z_{2i-1,1} + \frac{1}{2} D_u z_{2i+1,1} - \frac{1}{2} D_u z_{2i+2,1} \]
\[-\frac{1}{2} D_u z_{2i-2,0} + D_u u_{2i+2,0} - \frac{1}{2} D_u z_{2i+2,0} - \frac{1}{2} D_u z_{2i+2,1} \]
\[-\frac{1}{2} D_u z_{2i-2,1} + D_u z_{2i-1,1} + \frac{1}{2} D_u z_{2i+1,1} - \frac{1}{2} D_u z_{2i+2,1} \]
\[= \frac{1}{4} h^2 F_1 |_{2i-1,0} + \frac{1}{2} h^2 F_1 |_{2i,0} + \frac{1}{4} h^2 F_1 |_{2i+1,0} + \frac{1}{2} h^2 F_1 |_{2i-1,1} + \frac{1}{4} h^2 F_1 |_{2i,1}. \]

For $\varphi_O \equiv \varphi_{2N,0}$ the Eq. (2.14) yields

\[(2.44) \quad \frac{1}{6} h^2 \dot{u}_{2N-2,0} + \frac{2}{3} h^2 \dot{u}_{2N,0} + \frac{1}{3} h^2 \dot{u}_{2N-2,2} + \frac{1}{6} h^2 \dot{u}_{2N,2} \]
\[+ \frac{1}{2} D_u u_{2N-2,0} + D_u u_{2N,0} - \frac{1}{2} D_u u_{2N,2} - \frac{1}{2} D_u z_{2N-2,1} \]
\[+ \frac{1}{2} D_u z_{2N-1,1} - \frac{1}{2} D_u z_{2N-1,2} \]
\[= \frac{1}{4} h^2 F_1 |_{2N-1,0} + \frac{1}{4} h^2 F_1 |_{2N,0} + \frac{1}{2} h^2 F_1 |_{2N-1,1} + \frac{1}{4} h^2 F_1 |_{2N,1}. \]

For $\varphi_O \equiv \varphi_{0,2j}$, $0 < j < N$ we have

\[(2.45) \quad \frac{1}{6} h^2 \dot{u}_{0,2j-2} + \frac{1}{3} h^2 \dot{u}_{2,2j-2} + h^2 \dot{u}_{0,2j} + \frac{1}{3} h^2 \dot{u}_{2,2j} \]
\[+ \frac{1}{6} h^2 \dot{u}_{0,2j+2} - \frac{1}{2} D_u u_{0,2j-2} + 2 D_u u_{2,2j} - D_u u_{2i+2,2j} \]
\[- \frac{1}{2} D_u u_{0,2j+2} - \frac{1}{2} D_u z_{1,2j-2} + D_u z_{1,2j-1} - \frac{1}{2} D_u z_{2,2j-1} \]
\[+ \frac{1}{2} D_u z_{1,2j} + \frac{1}{2} D_u z_{0,2j+1} - D_u z_{1,2j+1} \]
\[= \frac{1}{4} h^2 F_1 |_{0,2j-1} + \frac{1}{2} h^2 F_1 |_{1,2j-1} + \frac{1}{2} h^2 F_1 |_{0,2j} + \frac{1}{4} h^2 F_1 |_{0,2j+1}. \]

For $\varphi_O \equiv \varphi_{2N,2j}$, $0 < j < N$ we get

\[(2.46) \quad \frac{1}{6} h^2 \dot{u}_{2N,2j-2} + \frac{1}{3} h^2 \dot{u}_{2N-2,2j} + h^2 \dot{u}_{2N,2j} + \frac{1}{3} h^2 \dot{u}_{2N-2,2j+2} \]
\[+ \frac{1}{6} h^2 \dot{u}_{2N,2j+2} - \frac{1}{2} D_u u_{2N,2j-2} + D_u u_{2N-2,2j} + 2 D_u u_{2N,2j} \]
\[- \frac{1}{2} D_u u_{2N,2j+2} - \frac{1}{2} D_u z_{2N-1,2j-1} + \frac{1}{2} D_u z_{2N,2j-1} + \frac{1}{2} D_u z_{2N-1,2j+2} \]
\[- \frac{1}{2} D_u z_{2N-2,2j+1} + D_u z_{2N-1,2j+1} - \frac{1}{2} D_u z_{2N-1,2j+2} \]
\[= \frac{1}{4} h^2 F_1 |_{2N,2j-1} + \frac{1}{2} h^2 F_1 |_{2N-1,2j} + \frac{1}{2} h^2 F_1 |_{2N-1,2j+1} \]
\[+ \frac{1}{4} h^2 F_1 |_{2N,2j+1}. \]

For $\varphi_O \equiv \varphi_{0,2N}$, we have

\[(2.47) \quad \frac{1}{6} h^2 \dot{u}_{0,2N-2} + \frac{1}{3} h^2 \dot{u}_{2,2N-2} + \frac{2}{3} h^2 \dot{u}_{0,2N} + \frac{1}{6} h^2 \dot{u}_{2,2N} \]
\[-\frac{1}{2} D_u u_{0,2N-2} + D_u u_{0,2N} - \frac{1}{2} D_u u_{2,2N} - \frac{1}{2} D_u z_{1,2N-2}\]
\[+ D_u z_{1,2N-1} - \frac{1}{2} D_u z_{2,2N-1}\]
\[= \frac{1}{4} h^2 F_1|_{0,2N-1} + \frac{1}{2} h^2 F_1|_{1,2N-1} + \frac{1}{4} h^2 F_1|_{0,2N} + \frac{1}{4} h^2 F_1|_{1,2N}.\]

For \(\varphi_0 \equiv \varphi_{2i,2N}, \ 0 < i < N\) we have

\[
(2.48) \quad \frac{1}{3} h^2 \ddot{u}_{2i,2N-2} + \frac{1}{3} h^2 \ddot{u}_{2i+2,2N-2} + \frac{1}{6} h^2 \ddot{u}_{2i-2,2N} + h^2 \ddot{u}_{2i,2N}\]
\[+ \frac{1}{6} h^2 \ddot{u}_{2i+2,2N} - D_u u_{2i,2N-2} - 0.5 D_u u_{2i-2,2N} + 2D_u u_{2i,2j}\]
\[- \frac{1}{2} D_u u_{2i+2,2N-2} - \frac{1}{2} D_u z_{2i-1,2N-1} + \frac{1}{2} D_u z_{2i+1,2N-1}\]
\[+ D_u z_{2i,2N-1} - \frac{1}{2} D_u z_{2i+2,2N-1} + \frac{1}{2} D_u z_{2i-1,2N}\]
\[= \frac{1}{2} h^2 F_1|_{2i,2N-1} + \frac{1}{2} h^2 F_1|_{2i+1,2N-1} + \frac{1}{4} h^2 F_1|_{2i-1,2N} + \frac{1}{2} h^2 F_1|_{2i,2N}\]
\[+ \frac{1}{4} h^2 F_1|_{2i+1,2N}.\]

For \(\varphi \equiv \varphi_{2N,2N}\), we have

\[
(2.49) \quad \frac{1}{6} h^2 \ddot{u}_{2N,2N-2} + \frac{1}{6} h^2 \ddot{u}_{2N-2,2N} + \frac{1}{3} h^2 \ddot{u}_{2N,2N} - \frac{1}{2} D_u u_{2N,2N-2}\]
\[- \frac{1}{2} D_u u_{2N-2,2N} + D_u u_{2N,2N} - D_u z_{2N-1,2N-1} + \frac{1}{2} D_u z_{2N,2N-1}\]
\[+ \frac{1}{2} D_u z_{2N-1,2N}\]
\[= \frac{1}{4} h^2 F_1|_{2N,2N-1} + \frac{1}{4} h^2 F_1|_{2N-1,2N} + \frac{1}{4} h^2 F_1|_{2N,2N}.\]

Eq. (2.41) - Eq. (2.49) form a sparse linear system \(A\dot{u}_{2h} = b_u\) of \(n_{\text{evol}} = (N + 1)^2\) equations for the derivatives of the solution component \(u_{2h}\) at grid nodes \(x_O, \ O \in \mathcal{E}_{2h}\). The matrix is stored in compressed sparse column (CSC) representation for the use with the UMFFPACK solver, which we use to solve the system. The system of equations \(A\dot{v}_{2h} = b_v\) for the derivatives of the second solution component \(v_{2h}\) is derived analogously.

\[\S 2.2. \ Integration \ in \ time\]

By the spatial discretization of (2.14) and (2.15), two linear systems were derived for the derivatives of the solution components \(u_{2h}, \ v_{2h}\)

\[
(2.50) \quad A\dot{u}_{2h} = b_u, \]
\[
(2.51) \quad A\dot{v}_{2h} = b_v.\]

Being aware of other results [16, 17, 20], where the authors emphasize the necessity of using the efficient time-integration methods to allow a reliable comparison to standard
methods, we selected the modified Runge-Kutta 4th order method with the adaptive time step selection for the integration of (2.50) and (2.51) in time.

At each step of the Runge-Kutta method we first interpolate the solution u_{2h}, v_{2h} on $x_P, P \in \mathcal{E}_h$ using (2.33) - (2.35). Then we assembly and solve the linear system for the terms z_h, w_h. We continue with computation of (2.38) - (2.40) which is needed for the evaluation of terms $F_1(u_{2h} + z_h, v_{2h} + w_h)|_P$ and $F_2(u_{2h} + z_h, v_{2h} + w_h)|_P$ at nodes $x_P, P \in \mathcal{E}_h$ during the numerical integration of right-hand sides in (2.14), (2.15). Then we update the vectors b_u and b_v in (2.50) and (2.51) respectively prior to solving these systems.

![Figure 3](image_url)

(a) (b) (c)

Figure 3. Example of the initial conditions for the component u and v of the Gray-Scott model are depicted in (a) and (b) respectively. Color scale used in the following figures is depicted in (c).

§ 3. Numerical results

In this section we present an example of numerical results. We applied the finite element nonlinear Galerkin scheme to the numerical solution of the initial-boundary value problem for the Gray-Scott model (1.9)-(1.10) introduced in Section 1.

For the quantitative comparison we used the common finite difference scheme with the discretization the Laplace operator given by the classical five-point stencil and model parameter values $D_u = 1 \cdot 10^{-5}$, $D_v = 1 \cdot 10^{-6}$, $F = 0.025$, $k = 0.05$, $L = 0.5$ leading to nontrivial dynamics. Numerical simulations were performed on meshes with 401×401 and 801×801 grid nodes. Initial condition v_0 for the component v was a spot-like function in the upper left corner of the domain Ω defined by the exponential function

$$
\exp(-1/(1 - ((x-x_0)(x-x_0) + (y-y_0)(y-y_0))/\varepsilon)
$$

for $x_0 = y_0 = L/4$ and $\varepsilon = 0.00625$. The initial condition for the component u was computed as $u_0 = 1.0 - v_0$, see Fig. 3. The range of integration in time was $0 \leq t \leq 800$. Numerical results at times $t = 500$ and $t = 800$ are depicted in Fig. 4, Fig. 6 for the finite
Figure 4. Numerical simulation of the Gray-Scott model by the finite difference method (401 × 401 grid nodes). Both solution components u (left), v (right) are given.

Figure 5. Numerical simulation of the Gray-Scott model by the finite element nonlinear Galerkin method (401 × 401 grid nodes). Both solution components u (left), v (right) are given.
Figure 6. Numerical simulation of the Gray-Scott model by the finite difference method (801 × 801 grid nodes). Both solution components u (left), v (right) are given.

Figure 7. Numerical simulation of the Gray-Scott model by the finite element nonlinear Galerkin method (801 × 801 grid nodes). Both solution components u (left), v (right) are given.
difference scheme and in Fig. 5, Fig. 7 for the finite element nonlinear Galerkin method respectively. Both numerical approaches provide quantitatively the same results for the finer mesh. When using the coarser mesh, the difference in the numerical solutions is larger. Other examples of patterns where agreement of numerical results by both methods was obtained are given in Fig. 8 and Fig. 9. Model parameters $D_u = 2 \cdot 10^{-5}$, $D_v = 1 \cdot 10^{-5}$, $F = 0.02$, $k = 0.05$, $L = 0.5$ and $D_u = 2 \cdot 10^{-5}$, $D_v = 1 \cdot 10^{-5}$, $F = 0.022$, $k = 0.059$, $L = 0.5$ respectively were used.

§ 4. Conclusion

In this paper we applied a particular finite element nonlinear Galerkin method to the numerical solution of the Gray-Scott reaction-diffusion model in two spatial dimen-
sions on a regular square numerical grid and described details of how the the numerical scheme is derived. The modified Runge-Kutta method with adaptive time step selection was used for integration in time. We provide example numerical results, which demonstrate that the nonlinear Galerkin finite element scheme (2.3)-(2.5) produce quantitatively the same results as the standard finite difference scheme. Comparison with a standard scheme was used to verify the numerical results.

References

