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A free boundary problem in a singular limit of

a three‐component reaction‐diffusion system

By

Hideki Murakawa * and Hirokazu NINOMIYA**

Abstract

We consider a three‐component reaction‐diffusion system with a reaction rate parameter,
and investigate its singular limit as the reaction rate tends to infinity. The limit problem is

described by a nonlinear cross‐diffusion system. The system is regarded as a weak form of a

free boundary problem which possesses three types of free boundaries. Triple junction points

appear at the intersection of the three interfaces. Furthermore, the dynamics is governed by
a system of equations in each region separated by the free boundaries. A linear numerical

scheme for capturing the interfaces is introduced and numerical simulations are carried out to

demonstrate our theoretical results.

§1. Introduction

We are interested in asymptotic behavior of solutions of reaction‐diffusion systems.

Especially, we are studying a kind of singular limit problems, which is called fast reaction

limit. In this paper, we deal with fast reaction limit of the following three‐component
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reaction‐diffusion system:

(\mathrm{R}\mathrm{D})^{k} \left\{\begin{array}{ll}
\frac{\partial u}{\partial t}=d_{1}\triangle u+f_{1}(u, v, w)-kuvw & \mathrm{i}\mathrm{n} Q,\\
\frac{\partial v}{\partial t}=d_{2}\triangle v+f_{2}(u, v, w) -- kuvw & \mathrm{i}\mathrm{n} Q,\\
\frac{\partial w}{\partial t}=d_{3}\triangle w+f_{3}(u, v, w) -- kuvw & \mathrm{i}\mathrm{n} Q,\\
\partial u \partial v \partial w & \\
\overline{\partial v}=\overline{\partial v}=\overline{\partial v}=0 & \mathrm{o}\mathrm{n} \partial $\Omega$\times(0, T) ,\\
u0)=u_{0}^{k}, \mathrm{v}0)=v_{0}^{k}, \mathrm{w}0)=w_{0}^{k} & \mathrm{i}\mathrm{n}  $\Omega$,
\end{array}\right.
where  $\Omega$\subset \mathbb{R}^{N}(N\in \mathbb{N}) is a bounded domain with smooth boundary \partial $\Omega$, d_{1}, d_{2}, d_{3}, k

and T are positive numbers, v is the unit outward normal vector to the boundary \partial $\Omega$,

f_{i} are given functions and u_{0}^{k}, v_{0}^{k} and w_{0}^{k} are non‐negative initial functions.

We consider a fast reaction limit of (\mathrm{R}\mathrm{D})^{k} ,
that is, the behavior of solutions when

the reaction rate k tends to infinity. Before we analyze it, we examine several problems
in the literature, and then, focus on a certain kind of sets which play important roles

in presuming the limit problems. In the following section, we introduce it and give
our motivation. We obtained the following two main results theoretically. The fast

reaction limit of (\mathrm{R}\mathrm{D})^{k} is described by a system of nonlinear diffusion equations. The

system is regarded as a weak form of a free boundary problem which allows appearance

of triple junction points. These results are presented in Section 3. In Section 4, \mathrm{a}

linear numerical scheme for capturing the free boundaries is proposed and numerical

simulations are given to illustrate our results.

§2. Fast reaction limit and reaction limit set

The singular limit analysis for reaction‐diffusion systems has been developed in

the last decades, particularly, in the studies of fast reaction limit and reaction‐diffusion

system approximation. One of the aims of fast reaction limit analysis is to under‐

stand the behaviors of solutions of reaction‐diffusion systems when a reaction speed
is very fast. Meanwhile, the object of reaction‐diffusion system approximation is to

approximate nonlinear problems, especially nonlinear diffusion problems, by semilinear

reaction‐diffusion systems. Although these problems are in a different position, the way

of analysis is similar. Both of them are investigations of relationship between reaction‐

diffusion interaction and nonlinear diffusion.

A typical example of such problems is the fast reaction limit of the two‐component
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Lotka‐Volterra competition diffusion system in population ecology.

(\mathrm{L}\mathrm{V})^{k} \left\{\begin{array}{ll}
u_{t}=d_{1}\triangle u+ $\lambda$ u(1-u)-kuv & \mathrm{i}\mathrm{n} Q:= $\Omega$\times(0, T) ,\\
v_{t}=d_{2}\triangle v+ $\mu$ v(1-v)-kuv & \mathrm{i}\mathrm{n} Q\\
\frac{\partial u}{\partial v}=\frac{\partial v}{\partial v}=0 & \mathrm{o}\mathrm{n} \partial $\Omega$\times(0, T) ,\\
u 0)=u_{0}^{k}, v 0)=v_{0}^{k} & \mathrm{i}\mathrm{n}  $\Omega$,
\end{array}\right.
where  $\lambda$ and  $\mu$ are positive constants. The solution pair (u^{k}, v^{k}) represents densities

of two competing species, and the positive parameter k is an interspecific competition
rate. Dancer, Hilhorst, Mimura and Peletier [3] have considered how do the solutions

behave when the interspecific competition rates are very large. They have studied in

the case where k tends to infinity. They have shown that the limiting system can be

described by the following nonlinear diffusion equation.

(2.1) \left\{\begin{array}{ll}
\frac{\partial z}{\partial t}=\triangle $\phi$(z)+F(z) & \mathrm{i}\mathrm{n} Q,\\
\frac{\partial $\phi$(z)}{\partial v}=0 & \mathrm{o}\mathrm{n} \partial $\Omega$\times(0, T) ,\\
z 0)=z_{0} & \mathrm{i}\mathrm{n}  $\Omega$.
\end{array}\right.
Here,

 $\phi$(z)=\left\{\begin{array}{ll}
d_{2}z & \mathrm{i}\mathrm{f} z>0,\\
d_{1}z & \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e},
\end{array}\right. F(z)=\left\{\begin{array}{ll}
 $\mu$ z(1-z) & \mathrm{i}\mathrm{f} z>0,\\
 $\lambda$ z(1+z) & \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e},
\end{array}\right.
and z_{0}:=\displaystyle \lim_{k\rightarrow\infty}(v_{0}^{k}-u_{0}^{k}) . Let z be a weak solution of (2.1). Then u^{k} converges to

z^{-}:=\displaystyle \max\{-z, 0\} and v^{k} does to z^{+}:=\displaystyle \max\{z, 0\} as k tends to infinity. The equation

(2.1) is known as a weak form of the two‐phase Stefan problem without latent heat.

Thus they showed that the two species are spatially segregated as k tends to infinity
and that the interface between two habitats is governed by a Stefan‐type free boundary

problem.
The fast reaction limit of the two‐component Lotka‐Volterra system is well studied

(e.g., [9] and references therein). We are interested in the fast reaction limit of three‐

component Lotka‐Volterra system.

(2.2) \left\{\begin{array}{ll}
u_{t}=d_{1}\triangle u+$\mu$_{1}u(1-u)-k(v+w)u & \mathrm{i}\mathrm{n} Q,\\
v_{t}=d_{2}\triangle v+$\mu$_{2}v(1-v)-k(w+u)v & \mathrm{i}\mathrm{n} Q,\\
w_{t}=d_{3}\triangle w+$\mu$_{3}w(1-w)-k(u+v)w & \mathrm{i}\mathrm{n} Q,
\end{array}\right.
where $\mu$_{i}\geq 0 for i=1

, 2, 3. Hilhorst, Iida, Mimura and Ninomiya [7] proved subse‐

quences of the solution of (2.2) converge to certain functions as k tends to infinity and
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Figure 1. Various reaction limit sets. The limit problems are (a)(b) the two‐phase Stefan

problem without latent heat or the one‐phase Stefan problem, (c)(d) the two‐phase
Stefan problem, (e) the porous medium equation, (f) a nonlinear diffusion equation,

(g)(h) cross‐diffusion systems, (i) open problem, (h) our problem.

showed that the species segregate in the limit. However, they did not derive any explicit
limit problem. It is still an open problem.

To understand the difficulty of the problem, we begin by examining (\mathrm{L}\mathrm{V})^{k} and its

limiting equation as k tends to infinity. Letting  k\rightarrow\infty in

\displaystyle \frac{u_{t}}{k}=\frac{d_{1}}{k}\triangle u+\frac{1}{k} $\lambda$ u(1-u)-uv,
we can expect that

0=uv

if u, u_{t} and \triangle u are bounded with respect to k . Hence, the dynamics is restricted to the

following one‐dimensional set:

\mathcal{A}_{\mathrm{L}\mathrm{V}}=\{(u, 0)|u\geq 0\}\cup\{(0, v)|v\geq 0\}.

This set \mathcal{A}_{\mathrm{L}\mathrm{V}} consists of limit points of the fast reaction system:

\left\{\begin{array}{l}
u_{t}=-kuv,\\
v_{t}=-kuv.
\end{array}\right.
We call a set of the equilibria of the fast reaction system a reaction limit set (or simply

RLS). The RLS \mathcal{A}_{\mathrm{L}\mathrm{V}} of (\mathrm{L}\mathrm{V})^{k} is shown in Figure 1 (a). The set consists of two axis.

The first component diffuses with the diffusion coefficient d_{1} on \{(u, 0)|u\geq 0\} ,
while

the second one does with the coefficient d_{2} on \{(0, v)|v\geq 0\} . This may imply the limit

is represented by a nonlinear diffusion equation. The flux is discontinuous across the
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corner in \mathcal{A}_{\mathrm{L}\mathrm{V}} . This may indicate the presence of a free boundary in the limit problem.

Indeed, it was proved as we mentioned. The limiting system as the reaction rate k tends

to infinity is represented by the one‐phase Stefan problem for the case d_{1}>0, d_{2}=0
in [5] and that the limit equation can be described by the two‐phase Stefan problem
without latent heat for the case d_{1}, d_{2}>0 in [3].

Let us see RLSs of relevant studies of fast reaction limit and reaction‐diffusion

system approximation. Bouillard et al. [2] considered the following reaction‐diffusion

system arising in reactive transport.

(2.3) \left\{\begin{array}{ll}
\frac{\partial u}{\partial t}=\triangle u-k((u-1)^{+}-\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}^{+}(v)(u-1)^{-}) & \mathrm{i}\mathrm{n} Q,\\
\frac{\partial v}{\partial t}=k((u-1)^{+}-\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}^{+}(v)(u-1)^{-}) & \mathrm{i}\mathrm{n} Q
\end{array}\right.
with non‐negative initial data. Here, \mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}^{+}(x)=1 if x>0 and \mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}^{+}(x)=0 if

x=0 . The RLS of this system is drawn in Figure 1 (b). The diffusion coefficient is 1 on

\{(u, 0)|0\leq u\leq 1\} and that is 0 on \{(1, v)|v>0\} . The flux is discontinuous across the

corner. They proved that the corresponding limit problems are given by the one‐phase
Stefan problem. Although problems (\mathrm{L}\mathrm{V})^{k} and (2.3) are different, RLSs are similar and

the limit is the same. Hilhorst, King and Röger [8] investigated the fast reaction limit

of a reaction‐diffusion system arising as a model for host tissue degradation by bacteria.

The RLS is similar to those of (\mathrm{L}\mathrm{V})^{k} and (2.3). They showed the convergences to the

one‐phase Stefan problem and to the two‐phase Stefan problem without latent heat.

Hilhorst, Iida, Mimura and Ninomiya [6] proposed the following three‐component
reaction‐diffusion system:

(2.4) \left\{\begin{array}{ll}
\frac{\partial u}{\partial t}=d_{1}\triangle u+f_{1}(u)-ku(1-w) & \mathrm{i}\mathrm{n} Q,\\
\frac{\partial v}{\partial t}=d_{2}\triangle v+f_{2}(v)-kvw & \mathrm{i}\mathrm{n} Q,\\
\frac{\partial w}{\partial t}=ku(1-w)-kvw & \mathrm{i}\mathrm{n} Q
\end{array}\right.
with initial data satisfying 0\leq u_{0}, v_{0}, w_{0}\leq 1 . The RLS of (2.4) is shown in Figure 1

(c). The diffusion coefficients are d_{1} on \{(u, 0,1)|u>0\}, 0 on \{(0,0, w)|0\leq w\leq 1\}
and d_{2} on \{(0, v, 0)|v>0\} . This suggests us that the limit equation is described by
the two‐phase Stefan problem with a positive latent heat. In fact, it was proved in [6]
that u^{k}-v^{k}+w^{k} converges to the weak solution z of (2.1) with

(2.5)  $\phi$(x)=d_{1}(x-1)^{+}-d_{2}x^{-} x\in \mathbb{R}

which is a weak form of the two‐phase Stefan problem. Murakawa [12] also proved that
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the solution of the system

(2.6) \left\{\begin{array}{ll}
\frac{\partial u}{\partial t}=d\triangle u+f(u)-k(u- $\phi$(u+v)) & \mathrm{i}\mathrm{n} Q,\\
\frac{\partial v}{\partial t}=k(u- $\phi$(u+v)) & \mathrm{i}\mathrm{n} Q
\end{array}\right.
converges to that of the two‐phase Stefan problem. Here,  $\phi$ is defined as in (2.5). The

corresponding RLS of (2.6) is illustrated in Figure 1 (d). The shapes of the RLSs of (c)
and (d) are based on combinations of three lines. Although the number of components

of the original system (2.4) is different from that of (2.6), the limits are represented

by the same problem. Thus, the RLSs must play an important role in singular limit

analysis. It is shown in [12] that the porous medium equation is also approximated by

(2.6) when  $\phi$(x)=|x|^{m-1}x(x\in \mathbb{R}) for some m>1 . The RLS is shown in Figure 1 (e).
Bothe and Hilhorst [1] considered a reversible chemical reaction between two mobile

species, and studied the limit to an instantaneous reaction:

(2.7) \left\{\begin{array}{ll}
\frac{\partial u}{\partial t}=d_{1}\triangle u-k(r_{A}(u)-r(v)) & \mathrm{i}\mathrm{n} Q,\\
\frac{\partial v}{\partial t}=d_{2}\triangle v-k(r_{B}(u)-r(v)) & \mathrm{i}\mathrm{n} Q
\end{array}\right.
(see [1, 4] for the detailed assumptions of r_{A} and r_{B} ). The RLS of (2.7) is given in

Figure 1 (e) for a usual choice of r_{A} and r_{B} . They proved that the limit problem becomes

a nonlinear diffusion equation (2.1) with  $\phi$=(d_{1}\mathrm{i}\mathrm{d}+d_{2}r_{B}^{-1}\mathrm{o}r_{A})\mathrm{o}(\mathrm{i}\mathrm{d}+r_{B}^{-1}\mathrm{o}r_{A})^{-1}
The nonlinear diffusivities in the limit problems are determined by the RLSs. We note

that the RLSs in both cases (e) and (f) are smooth curves contrary to (a)(d), so the

diffusivities are given by smooth functions.

There are few results dealing with reaction‐diffusion systems which possess two‐ or

multi‐dimensional RLSs. Iida, Mimura and Ninomiya [10] studied Shigesada‐Kawasaki‐
Teramoto cross‐diffusion system [16]:

(2.8) \left\{\begin{array}{l}
\frac{\partial z_{1}}{\partial t}=\triangle[(d_{1}+d_{2}z_{2})z_{1}]+F_{1}(z_{1}, z_{2}) ,\\
\frac{\partial z_{2}}{\partial t}=d_{3}\triangle z_{2}+F_{2}(z_{1}, z_{2}) .
\end{array}\right.
We note that the diffusion of z_{1} depends not only on z_{1} but also on z_{2} . This mixture

of diffusion terms is called cross‐diffusion, and such systems are called cross‐diffusion

systems. For a deeper understanding of the cross‐diffusion mechanism, they replaced
cross‐diffusion by a different way of avoiding the congestion of the other species. Then,
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they proposed the following three‐component reaction‐diffusion system.

\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=d_{1}\triangle u+f_{1}(u, v, w)-k((1-w)v-wu) ,\\
\frac{\partial v}{\partial t}=(d_{1}+d_{2})\triangle v+f_{2}(u, v, w)+k((1-w)v-wu) ,\\
\frac{\partial w}{\partial t}=d_{3}\triangle w+f_{3}(u, v, w) .
\end{array}\right.
They showed that (u^{k}+v^{k}, w^{k}) approximates the solution (z_{1}, z_{2}) of the cross‐diffusion

system (2.8). For more general cases, see [11, 13, 14]. The RLS is \{(u, v, w) (1-
w)v=uw\} ,

that is a two‐dimensional smooth set as in Figure 1 (g). Another example
of reaction‐diffusion system approximation that possesses a two‐dimensional RLS is

reported in [14]. The RLS of the example is shown in Figure 1 (h). In this case, the

limit is described by a nonlinear cross‐diffusion system that diffusivity is a fractional

type.
All of the above examples illustrate the importance of the shapes of RLSs in pre‐

suming the limit problems. Since RLSs in Figure 1 (a)(f) are one‐dimensional lines,
the limit problems in all these examples are represented by single nonlinear diffusion

equations. The sets in Figure 1 (g), (h) are two‐dimensional surfaces. So, the limit is

represented by a system of two nonlinear diffusion equations. The existence of corners

or points where the diffusion coefficient becomes zero in the RLS indicates the appear‐

ance of free boundaries because they create the discontinuity of the flux, which exhibits

the interfaces.

Let us look at the RLS of the three‐component Lotka‐Volterra system (2.2). Fig‐
ure 1 (i) shows the RLS which consists of three lines. This set is neither associated

with a one‐dimensional curve nor with a two‐dimensional surface by continuous map.

This prevents us from deriving the explicit expression of the limit problem. What if

we consider a RLS which includes the set (i). For example, the set in Figure 1 (j).
A dynamics on the plane, e.g., \{w=0\} ,

seems to be the same as that of (\mathrm{L}\mathrm{V})^{k} . So,

first, we restrict the dynamics to the set (j). Then we might be able to consider the

fast reaction limit on these surfaces. We consider a system which possesses the set (j)
as the RLS. A simple example of such systems is (\mathrm{R}\mathrm{D})^{k} in Section 1. The problem

(\mathrm{R}\mathrm{D})^{k} is an artificial problem. But this might be a hint on presuming the limit of the

three‐component Lotka‐Volterra system. Moreover, our results are important from a

mathematical point of view.

The RLS of (\mathrm{R}\mathrm{D})^{k} is

\mathcal{A}_{\mathrm{R}\mathrm{D}}=\{(0, v, w)|v\geq 0, w\geq 0\}\cup\{(u, 0, w)|u\geq 0w\geq 0\}\cup\{(u, v, 0)|u\geq 0, v\geq 0\},

that is the set in Figure 1 (j). From the above observations, we can imagine the limit

problem of the system (\mathrm{R}\mathrm{D})^{k} as k tends to infinity. Since the RLS \mathcal{A}_{\mathrm{R}\mathrm{D}} is a two‐
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dimensional surface, the limit problem would be described by a system consists of two

nonlinear diffusion equations. Moreover, \mathcal{A}_{\mathrm{R}\mathrm{D}} has corners which implies the appearance

of free boundaries. Because this has three types of corners, we expect that three types
of free boundaries appear and the intersection of those free boundaries. Actually, we

obtained such results. We state our results on the fast reaction limit of (\mathrm{R}\mathrm{D})^{k} in the

following section.

§3. Mathematical results

§3.1. Convergence to a nonlinear cross‐diffusion system

The following assumptions are imposed on the initial data and on the given func‐

tions f_{i} :

(H1) The initial data u_{0}^{k}, v_{0}^{k}, w_{0}^{k}\in C(\overline{ $\Omega$}) satisfy

0\leq u_{0}^{k}, v_{0}^{k}, w_{0}^{k}\leq M,
u_{0}^{k}\rightarrow u_{0}, v_{0}^{k}\rightarrow v_{0}, w_{0}^{k}\rightarrow w_{0} weakly in L^{2}() as  k\rightarrow\infty

for some positive constant  M and for some functions u_{0}, v_{0}, w_{0}\in L^{\infty}( $\Omega$) .

(H2) There exist C^{1} ‐functions \tilde{f}_{i}(i=1,2,3) such that for all s=(s_{1}, s_{2}, s_{3})\in \mathbb{R}_{+}^{3},

f_{i}(s)=\tilde{f}_{i}(s)s_{i},
\tilde{f}_{i}(s)\leq 0 if s_{i}\geq M.

Under these assumptions, there exists a unique solution of (\mathrm{R}\mathrm{D})^{k}.
We introduce several auxiliary functions to state the limiting equation. For z=

(z_{1}, z_{2})\in \mathbb{R}^{2} ,
we define

 $\varphi$(z):=\left\{\begin{array}{ll}
0 & \mathrm{i}\mathrm{f} z_{1}>0, z_{2}\geq 0,\\
z_{1} & \mathrm{i}\mathrm{f} z_{1}\leq 0, z_{1}<z_{2},\\
z_{2} & \mathrm{i}\mathrm{f} z_{2}<0, z_{1}\geq z_{2},
\end{array}\right.
$\gamma$_{1}(z):=- $\varphi$(z) , $\gamma$_{2}(z):=z_{1}- $\varphi$(z) , $\gamma$_{3}(z):=z_{2}- $\varphi$(z) ,

$\phi$_{1}(z):=d_{2}$\gamma$_{2}(z)-d_{1}$\gamma$_{1}(z)=d_{2}z_{1}+(d_{1}-d_{2}) $\varphi$(z) ,

$\phi$_{2}(z):=d_{3}$\gamma$_{3}(z)-d_{1}$\gamma$_{1}(z)=d_{3}z_{2}+(d_{1}-d_{3}) $\varphi$(z) ,

F_{1}(z):=f_{2}($\gamma$_{1}(z), $\gamma$_{2}(z), $\gamma$_{3}(z))-f_{1}($\gamma$_{1}(z), $\gamma$_{2}(z), $\gamma$_{3}(z)) ,

F_{2}(z):=f_{3}($\gamma$_{1}(z), $\gamma$_{2}(z), $\gamma$_{3}(z))-f_{1}($\gamma$_{1}(z), $\gamma$_{2}(z), $\gamma$_{3}(z)) .



A Singular limit OF a THREE‐COMPONENT REACTION‐diffUSiOn system 85

The limit functions z=(z_{1}, z_{2}) of (v^{k}-u^{k}, w^{k}-u^{k}) satisfy the following cross‐

diffusion system:

(CD) \left\{\begin{array}{ll}
\frac{\partial z}{\partial t}=\triangle $\phi$(z)+F(z) & \mathrm{i}\mathrm{n} Q,\\
\frac{\partial $\phi$(z)}{\partial v}=0 & \mathrm{o}\mathrm{n} \partial $\Omega$\times(0, T) ,\\
z 0)=z_{0} & \mathrm{i}\mathrm{n}  $\Omega$,
\end{array}\right.
where  $\phi$(z)=($\phi$_{1}(z), $\phi$_{2}(z)) , F(z)=(F_{1}(z), F(z)) and z_{0}:=(v_{0}-u_{0}, w_{0}-u_{0}) . This

problem is dealt with in a weak sense.

Definition 3.1. A function z\in L^{\infty}(Q)^{2} is a weak solution of (CD) with an

initial datum z_{0}\in L^{\infty}( $\Omega$)^{2} if it satisfies $\phi$_{i}(z)\in L^{2}(0, T;H^{1} ()) 2 and

(3.1) \displaystyle \int_{0}^{T}\langle z_{i}, \frac{\partial$\zeta$_{i}}{\partial t}\rangle dt+\langle z_{0i}, $\zeta$_{i}(, 0)\rangle=\int_{0}^{T}\langle\nabla$\phi$_{i}(z) , \nabla$\zeta$_{i}\rangle dt-\int_{0}^{T}\langle F_{i}(z) , $\zeta$_{i}\rangle dt.
for all functions  $\zeta$=($\zeta$_{1}, $\zeta$_{2})\in H^{1}(Q)^{2} with $\zeta$_{i} T ) =0 and for i=1

,
2. Here and

hereafter, \rangle denotes both the inner product in  L^{2}() and the duality pairing between

H^{1}( $\Omega$)^{*} and H^{1}

We present our result on the convergence.

Theorem 3.2 ([15]). Assume that (H1) and (H2) hold. Let (u^{k}, v^{k}, w^{k}) be the

solution of (\mathrm{R}\mathrm{D})^{k} . Then, there exist a weak solution  z=(z_{1}, z_{2})\in(L^{\infty}(Q)\cap L^{2}(0, T;H^{1}( $\Omega$))\cap
 H^{1}(0, T;H^{1}( $\Omega$)^{*}))^{2} of (CD) and subsequences \{u^{k_{n}}\}, \{v^{k_{n}}\} and \{w^{k_{n}}\} of {uk}, \{v^{k}\}
and {wk}, respectively, such that

u^{k_{n}}\rightarrow$\gamma$_{1}(z) , v^{k_{n}}\rightarrow$\gamma$_{2}(z) , w^{k_{n}}\rightarrow$\gamma$_{3}(z)

strongly in L^{2}(Q) ,
a.e. in Q ,

and weakly in L^{2}(0, T;H^{1}

z_{1}^{k_{n}}:=v^{k_{n}}-u^{k_{n}}\rightarrow z_{1}, z_{2}^{k_{n}}:=w^{k_{n}}-u^{k_{n}}\rightarrow z_{2}

strongly in L^{2}(Q) ,
a.e. in Q ,

and weakly in L^{2}(0, T;H^{1} and H^{1}(0, T;H^{1}( $\Omega$)^{*}) as

k_{n} tends to innity.

Remark. If the diffusion coefficients satisfy additional conditions (see [15] for

more details), we can show the uniqueness of the weak solution of the limit problem

(CD). In this case, the convergence in Theorem 3.2 holds for the full sequence (u^{k}, v^{k}, w^{k})
without taking subsequences. Furthermore, we also analyze the rate of the convergence

in [15].
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Remark. Assume that f_{3}(u, v, 1)=0 and that w_{0}(x)=1 for  x\in $\Omega$ . Then

 w(x, t)=1 for t\geq 0,  x\in $\Omega$ . In this case, the problem (\mathrm{R}\mathrm{D})^{k} coincides with (\mathrm{L}\mathrm{V})^{k}
and (CD) corresponds to (2.1). Therefore, Theorem 3.2 is an extension of the result by
Dancer et al. [3].

By the conventional argument, we obtain the following a priori estimates:

Lemma 3.3. Let (u^{k}, v^{k}, w^{k}) be a solution of (\mathrm{R}\mathrm{D})^{k} . Set z^{k}=(z_{1}^{k}, z_{2}^{k})=(v^{k}-
u^{k}, w^{k} —uk ) . Assume that (H1) and (H2) are satised. Then, there exists a positive
constant C independent of k such that

(3.2) 0\leq u^{k}, v^{k}, w^{k}\leq M in Q,

(3.3) \displaystyle \iint_{Q}u^{k}v^{k}w^{k}dxdt\leq\frac{C}{k},
(3.4) \Vert u^{k}\Vert_{L^{2}(0,T;H^{1}( $\Omega$))}+\Vert v^{k}\Vert_{L^{2}(0,T;H^{1}( $\Omega$))}+\Vert w^{k}\Vert_{L^{2}(0,T;H^{1}( $\Omega$))}\leq C,
(3.5) \Vert z^{k}\Vert_{(L^{2}(0,T;H^{1}( $\Omega$))\cap H^{1}(0,T;H^{1}( $\Omega$)^{*}))^{2}}\leq C
(3.6) \Vert u^{k}-$\gamma$_{1}(z^{k})\Vert_{L^{3}(Q)}+\Vert v^{k}-$\gamma$_{2}(z^{k})\Vert_{L^{3}(Q)}+\Vert w^{k}-$\gamma$_{3}(z^{k})\Vert_{L^{3}(Q)}

+\Vert(d_{2}v^{k}-d_{1}u^{k})-$\phi$_{1}(z^{k})\Vert_{L^{3}(Q)}+\Vert(d_{3}w^{k}-d_{1}u^{k})-$\phi$_{2}(z^{k})\Vert_{L^{3}(Q)}\leq Ck^{-1/3}.

Sketch of proof. The bounds (3.2) is follows from the maximum principle. In‐

tegration of the equation for u^{k} in Q and (3.2) yield the relation (3.3). Multiply the

equation for u^{k} (resp. v^{k}, w^{k} ) by u^{k} (resp. v^{k}, w^{k} ) and integrate by parts to obtain

(3.4). We deduce from (\mathrm{R}\mathrm{D})^{k} that

(3.7) \displaystyle \int_{0}^{T}\langle\frac{\partial z_{1}^{k}}{\partial t}, $\zeta$_{1}\rangle dt=\int_{0}^{T}\langle\nabla(d_{1}u^{k}-d_{2}v^{k}) , \nabla$\zeta$_{1}\rangle dt
+\displaystyle \int_{0}^{T}\langle f_{2}(u^{k}, v^{k}, w^{k})-f_{1}(u^{k}, v^{k}, w^{k}) , $\zeta$_{1}\rangle dt.

(3.8) \displaystyle \int_{0}^{T}\langle\frac{\partial z_{2}^{k}}{\partial t}, $\zeta$_{2}\rangle dt=\int_{0}^{T}\langle\nabla(d_{1}u^{k}-d_{3}w^{k}) , \nabla$\zeta$_{2}\rangle dt
+\displaystyle \int_{0}^{T}\langle f_{3}(u^{k}, v^{k}, w^{k})-f_{1}(u^{k}, v^{k}, w^{k}) , $\zeta$_{2}\rangle dt

for all  $\zeta$\in L^{2}(0, T;H^{1} . Applying the Cauchy‐Schwarz inequality to (3.7), (3.8) and

using (3.4), we obtain the estimate (3.5).
An elementary calculation gives the following property for all non‐negative real

numbers u, v and w :

|u-$\gamma$_{1}(v-u, w-u)|^{3}+|v-$\gamma$_{2}(v-u, w-u)|^{3}+|w-$\gamma$_{3}(v-u, w-u)|^{3}\leq 3uvw.

This inequality and (3.3) yield (3.6).
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Sketch of proof of Theorem 3.2. By virtue of (3.2)(3.5) and the compactness

of the embedding L^{2}(0, T;H^{1}( $\Omega$))\cap H^{1}(0, T;H^{1}( $\Omega$)^{*})\subset L^{2}(Q) [ 17 ,
Theorem 2.1], there

exist subsequences \{u^{k_{n}}\}, \{v^{k_{n}}\}, \{w^{k_{n}}\} and \{z^{k_{n}}\} and functions u^{*}, v^{*},  w^{*}\in L^{\infty}(Q)\cap
 L^{2}(0, T;H^{1} and z^{*}\in(L^{\infty}(Q)\cap H^{1}(0, T;H^{1}( $\Omega$)^{*})\cap L^{2}(0, T;H^{1}())) 2 such that

u^{k_{n}}\rightarrow u^{*}, v^{k_{n}}\rightarrow v^{*}, w^{k_{n}}\rightarrow w^{*} weakly in L^{2}(0, T;H^{1} ,

z^{k_{n}}\rightarrow z^{*} strongly in L^{2}(Q)^{2} ,
a.e. in Q ,

and weakly in L^{2}(0, T;H^{1}()) 2

as k_{n} tends to infinity. It follows from the Lipschitz continuities of $\gamma$_{i}(i=1,2,3) and

$\phi$_{i}(i=1,2) that $\gamma$_{i}(z^{k_{n}}) and $\phi$_{i}(z^{k_{n}}) also converge to $\gamma$_{i}(z^{*}) and $\phi$_{i}(z^{*}) strongly in

L^{2}(Q) and a.e. in Q , respectively. The estimate (3.6) implies that u^{k_{n}}, v^{k_{n}} and w^{k_{n}}

converge to $\gamma$_{1}(z^{*}) , $\gamma$_{2}(z^{*}) and $\gamma$_{3}(z^{*}) strongly in L^{2}(Q) and a.e. in Q , respectively, also

u^{*}=$\gamma$_{1}(z^{*}) , v^{*}=$\gamma$_{2}(z^{*}) , w^{*}=$\gamma$_{3}(z^{*}) , d_{2}v^{*}-d_{1}u^{*}=$\phi$_{1}(z^{*}) and d_{3}w^{*}-d_{1}u^{*}=$\phi$_{2}(z^{*})
a.e. Since f_{i}(i=1,2,3) are Lipschitz continuous, we see that f_{i}(u^{k_{n}}, v^{k_{n}}, w^{k_{n}}) converge

to f_{i}($\gamma$_{1}(z^{*}), $\gamma$_{2}(z^{*}), $\gamma$_{3}(z^{*})) strongly in L^{2}(Q) and a.e. in Q as k_{n} tends to infinity. Take

$\zeta$_{i}\in H^{1}(Q) with $\zeta$_{i} T ) =0 in (3.7) and (3.8), integrate by parts, and pass to the limit

along the subsequences to obtain (3.1) in which z is replaced with z^{*} . Thus, we observe

that z^{*} is a weak solution of (CD). \square 

§3.2. Free boundaries

In the previous subsection, we have studied the convergence of the solutions of

(\mathrm{R}\mathrm{D})^{k} to the weak solution of (CD). The limit problem (CD) can be regarded as a weak

form of a free boundary problem. In this subsection, we derive explicit conditions on

the free boundaries. Let z be a weak solution of (CD) and put u=$\gamma$_{1}(z) , v=$\gamma$_{2}(z)
and w=$\gamma$_{3}(z) . Set

$\Omega$_{1}(t) :=\{x\in $\Omega$|v(x, t)>0, w(x, t)>0\},

$\Omega$_{2}(t) :=\{x\in $\Omega$|w(x, t)>0, u(x, t)>0\},

$\Omega$_{3}(t) :=\{x\in $\Omega$|u(x, t)>0, v(x, t)>0\},

Q_{i}:=\displaystyle \bigcup_{t\in(0,T)}$\Omega$_{i}(t) (i=1,2,3) .

Then it follows from the definition of $\gamma$_{i} that

$\Omega$_{i}(t)\cap$\Omega$_{j}(t)=\emptyset (i\neq j) .

We also denote the interfaces by

$\Gamma$_{1}(t):=\partial$\Omega$_{2}(t)\cap\partial$\Omega$_{3}(t)\cap $\Omega$,

$\Gamma$_{2}(t):=\partial$\Omega$_{3}(t)\cap\partial$\Omega$_{1}(t)\cap $\Omega$,

$\Gamma$_{3}(t):=\partial$\Omega$_{1}(t)\cap\partial$\Omega$_{2}(t)\cap $\Omega$,

$\Gamma$_{i}:=\displaystyle \bigcup_{t\in(0,T)}$\Gamma$_{i}(t) (i=1,2,3) .
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To avoid some difficulties such as the appearance of multiple junctions among $\Gamma$_{i},
we introduce \overline{ $\Gamma$}_{i} and S as follows:

\overline{ $\Gamma$}_{1}:=\{(x, t)\in$\Gamma$_{1}|D=(Q_{2}\cup Q_{3}\cup$\Gamma$_{1})\cap D
of (x, t) such that

\}.and $\Gamma$_{1} is an N-1 dimensional smooth hypersurface in D

The interfaces \overline{ $\Gamma$}_{2} and \overline{ $\Gamma$}_{3} are similarly defined. Thus, \overline{ $\Gamma$}_{i} do not include multiplejunction

points. We denote by n_{i} the unit normal vector on $\Gamma$_{i}(t) oriented from $\Omega$_{j}(t) to $\Omega$_{k}(t) for

(i, j, k)\in\{(1,2,3) , (2, 3, 1), (3, 1, 2 Let S be a set of all points (x, t)\in\partial $\Omega$\times(0, T) so

that there exists a normal segment at (x, t) which is located in \overline{$\Omega$_{i}(t)} for some i\in\{1 , 2, 3 \}.
Now, we are ready to state our result.

Theorem 3.4 ([15]). Assume that (H2) holds. Let z be a weak solution of (CD)
with an initial datum z_{0}\in L^{\infty}( $\Omega$)^{2} . Suppose that the functions u=$\gamma$_{1}(z) , v=$\gamma$_{2}(z)
and w=$\gamma$_{3}(z) are smooth on \overline{Q_{1}}, \overline{Q_{2}} and \overline{Q_{3}} . Also assume that Q_{i} are (piecewise)
smooth. Then, u, v and w satisfy

\left\{\begin{array}{l}
\frac{\partial v}{\partial t}=d_{2}\triangle v+f_{2}(0, v, w) ,\\
\frac{\partial w}{\partial t}=d_{3}\triangle w+f_{3}(0, v, w)
\end{array}\right. in Q_{1},

(3.9) \left\{\begin{array}{l}
\frac{\partial w}{\partial t}=d_{3}\triangle w+f_{3}(u, 0, w) ,\\
\frac{\partial u}{\partial t}=d_{1}\triangle u+f_{1}(u, 0, w)
\end{array}\right. in Q_{2},

(3.10) \left\{\begin{array}{l}
\frac{\partial u}{\partial t}=d_{1}\triangle u+f_{1}(u, v, 0) ,\\
\frac{\partial v}{\partial t}=d_{2}\triangle v+f_{2}(u, v, 0)
\end{array}\right. in Q_{3},

\left\{\begin{array}{ll}
v=w=0 & on $\Gamma$_{1},\\
w=u=0 & on $\Gamma$_{2},\\
u=v=0 & on $\Gamma$_{3},
\end{array}\right.
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(3.11) d_{2}\displaystyle \frac{\partial v|_{Q_{3}}}{\partial n_{1}}+d_{3}\frac{\partial w|_{Q_{2}}}{\partial n_{1}}=0, d_{1}(\displaystyle \frac{\partial u|_{Q_{3}}}{\partial n_{1}}-\frac{\partial u|_{Q_{2}}}{\partial n_{1}})=d_{2}\frac{\partial v|_{Q_{3}}}{\partial n_{1}} on \overline{ $\Gamma$}_{1},

d_{3}\displaystyle \frac{\partial w|_{Q_{1}}}{\partial n_{2}}+d_{1}\frac{\partial u|_{Q_{3}}}{\partial n_{2}}=0, d_{2}(\displaystyle \frac{\partial v|_{Q_{1}}}{\partial n_{2}}-\frac{\partial v|_{Q_{3}}}{\partial n_{2}})=d_{3}\frac{\partial w|_{Q_{1}}}{\partial n_{2}} on \overline{ $\Gamma$}_{2},

d_{1}\displaystyle \frac{\partial u|_{Q_{2}}}{\partial n_{3}}+d_{2}\frac{\partial v|_{Q_{1}}}{\partial n_{3}}=0, d_{3}(\displaystyle \frac{\partial w|_{Q_{2}}}{\partial n_{3}}-\frac{\partial w|_{Q_{1}}}{\partial n_{3}})=d_{1}\frac{\partial u|_{Q_{2}}}{\partial n_{3}} on \overline{ $\Gamma$}_{3},

\partial u \partial v \partial w

\overline{\partial v}=\overline{\partial v}=\overline{\partial v}=0 on S,

u 0)=$\gamma$_{1}(z_{0}) ,
v 0)=$\gamma$_{2}(z_{0}) ,

w 0)=$\gamma$_{3}(Z) in  $\Omega$.

Three types of free boundaries appear in the limit problem. Furthermore, the

dynamics is governed by a system of equations in each region separated by the free

boundaries. On the interface $\Gamma$_{1}, v and w are zero and the fluxes for v and w are

balanced as in the left relation in (3.11). There is another condition on the interface. u

is usually positive around the interface and it is continuous. But u is not smooth. The

right relation in (3.11) implies the flux is discontinuous across the free boundary. The

intersection of the three axes \{(0,0, w)|w\geq 0\}, \{(u, 0,0)|u\geq 0\} and \{(0, v, 0)|v\geq 0\}
on \mathcal{A}_{\mathrm{R}\mathrm{D}} indicates the existence of triple (or multiple) junctions. This theorem excludes

the multiple junction points by assumption, but these points are included in the limit

problem in a weak sense.

Sketch of proof. We check only the free boundary conditions (3.11) because the

other properties are obtained straightforwardly or similarly. For (x_{1}, t_{1})\in\overline{ $\Gamma$}_{1} ,
there is a

cylinder D=B(x_{1}, r)\times(t_{1}-r, t_{1}+r)\subset Q such that D=(Q_{2}\cup Q_{3}\cup$\Gamma$_{1})\cap D and $\Gamma$_{1} is

a smooth hypersurface in D . Noting that z_{1}=-u, $\phi$_{1}(z)=-d_{1}u in Q_{2} and z_{1}=v-u,

$\phi$_{1}(z)=d_{2}v-d_{1}u in Q_{3} ,
we deduce from Definition 3.1 for i=1 that

\displaystyle \iint_{D\cap Q_{2}}(\frac{\partial u}{\partial t}-d_{1}\triangle u-f_{1}(u, 0, w)) $\zeta$ dxdt-\iint_{D\cap Q_{3}}(\frac{\partial v}{\partial t}-d_{2}\triangle v-f_{2}(u, v, 0)) $\zeta$ dxdt
+\displaystyle \iint_{D\cap Q_{3}}(\frac{\partial u}{\partial t}-d_{1}\triangle u-f_{1}(u, v, 0)) $\zeta$ dxdt

=-d_{1}\displaystyle \iint_{D\cap$\Gamma$_{1}}\frac{\partial u|_{Q_{2}}}{\partial n_{1}} $\zeta$ dxdt-\iint_{D\cap$\Gamma$_{1}}(d_{2}\frac{\partial v|_{Q_{3}}}{\partial n_{1}}-d_{1}\frac{\partial u|_{Q_{3}}}{\partial n_{1}}) $\zeta$ dxdt
for all  $\zeta$\in C_{0}^{\infty}(D) . It follows from (3.9) and (3.10) that

d_{1}(\displaystyle \frac{\partial u|_{Q_{3}}}{\partial n_{1}}-\frac{\partial u|_{Q_{2}}}{\partial n_{1}})=d_{2}\frac{\partial v|_{Q_{3}}}{\partial n_{1}}
on D\cap$\Gamma$_{1} . Analogously, we deduce from Definition 3.1 for i=2 that

d_{1}(\displaystyle \frac{\partial u|_{Q_{2}}}{\partial n_{1}}-\frac{\partial u|_{Q_{3}}}{\partial n_{1}})=d_{3}\frac{\partial w|_{Q_{2}}}{\partial n_{1}}
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on D\cap$\Gamma$_{1} . Hence, we get (3.11). \square 

§4. Numerical experiments

In this section, numerical experiments are carried out to understand the fast reac‐

tion limit of (\mathrm{R}\mathrm{D})^{k} and to capture the free boundaries in the limit. We have already
obtained a weak form (CD) of the limit free boundary problem. Therefore, if we have

a numerical solution of (CD), the interface is captured immediately from the numerical

solution. Thus, all we have to do is to consider numerical scheme for (CD) when we

want to capture the interfaces numerically. Murakawa [14] proposed a linear discrete‐

time scheme to approximate general nonlinear cross‐diffusion systems of the type of

(CD). The scheme is as follows: We denote by  $\tau$=T/N_{T}(N_{T}\in \mathbb{N}) the time step size.

Put

Z^{0}=z_{0}^{ $\tau$}.

Here, z_{0}^{ $\tau$}\in H^{1}( $\Omega$)^{2} is an approximation to z_{0}\in L^{2}( $\Omega$)^{2} . For n=1
, 2, . . .

, N_{T} ,
find Z^{n}

and $\Theta$^{n} such that

(4.1) \left\{\begin{array}{ll}
$\Theta$^{n}-\frac{ $\tau$}{ $\mu$}\triangle$\Theta$^{n}= $\phi$(Z^{n-1})+\frac{ $\tau$}{ $\mu$}F(Z^{n-1}) & \mathrm{i}\mathrm{n}  $\Omega$,\\
\frac{\partial$\Theta$^{n}}{\partial v}=0 & \mathrm{o}\mathrm{n} \partial $\Omega$,\\
Z^{n}=Z^{n-1}+ $\mu$($\Theta$^{n}- $\phi$(Z^{n-1})) & \mathrm{i}\mathrm{n}  $\Omega$,
\end{array}\right.
where  $\mu$ is a fixed positive constant (in the simulation, we chose  $\mu$=10^{4} ). Murakawa [14]
showed that Z^{n} and $\Theta$^{n} approximate z  $\tau$ n ) and  $\phi$(z(\cdot,  $\tau$ n)) , respectively. This scheme

is quite simple. The scheme amounts to solving two linear elliptic equations, followed by

explicit algebraic corrections at each time step. After discretizing the scheme in space,

we obtain an easy to implement and stable numerical scheme for (CD). We employ
the scheme (4.1) to obtain numerical solutions of (CD) and use a semi‐implicit time

discretization scheme to get numerical solutions of (\mathrm{R}\mathrm{D})^{k} . The finite difference method

is adopted to discretize the schemes in space.

We carried out numerical simulations for (CD) and (\mathrm{R}\mathrm{D})^{k} with  $\Omega$=(0,1)^{2}, d_{1}=

4\times 10^{-5}, d_{2}=2\times 10^{-5} and d_{3}=10^{-5} . The functions f_{i} are given by the competition

system of Lotka‐Volterra type:

\left\{\begin{array}{l}
f_{1}(u, v, w)=u(1-u-0.2v-0.6w) ,\\
f_{2}(u, v, w)=v(1-0.6u-v-0.2w) ,\\
f_{3}(u, v, w)=3w(1-0.2u-0.6v-w) .
\end{array}\right.
Figure 2 shows initial data and numerical solutions for (CD) at time t=100 , 200,

300, 400. The figures in the first, second and third rows denote the profiles of u=$\gamma$_{1}(z) ,
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\mathrm{C} \urcorner
 t=0. t=100. t=200. t=300. t=400.

Figure 2. Numerical solutions of (CD).

v=$\gamma$_{2}(z) and w=$\gamma$_{3}(z) , respectively. Here, z is a numerical solution of (CD). In order

to make sure of our theoretical results, we painted the regions with different colors

(Figure 3 (\mathrm{a}) ) in the last row in Figure 2. The domain  $\Omega$ is completely divided into

three regions by the free boundaries, that is, one of the components is zero and others

are positive at each point. This fact is reasonable because of the definition of  $\gamma$_{i} . We

can observe clustering spirals. Looking at the numerical solutions, in particular, v
,

we

can see the discontinuities of the flux across the free boundaries.

Since the numerical solutions for u^{k}, v^{k}, w^{k} are positive almost everywhere, we

regard the region \{x\in Q|u^{k}(x, t)<1/k\} as an approximation of $\Omega$_{1}(t) (see Figure 3

(b) ) . Figure 4 illustrates numerically approximated regions of (CD) and (\mathrm{R}\mathrm{D})^{k} with

k=10^{5}, 10^{4}, 10^{3} . We can say similar thing about the numerical solutions of (\mathrm{R}\mathrm{D})^{k} to

that of (CD). The domain  $\Omega$ is divided into three regions, that is, one of the components

is close to zero and others are not close to zero at each point except for points near the
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(a) for (CD) (b) for (\mathrm{R}\mathrm{D})^{k}

Figure 3. Colors for approximated regions which correspond to $\Omega$_{1}(t) (salmon), $\Omega$_{2}(t)
(yellow green) and $\Omega$_{3}(t) (royal blue) respectively. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)

interfaces. We observe that the numerical solutions of (\mathrm{R}\mathrm{D})^{k} converge to that of (CD)
as k becomes large, and the limit free boundaries are captured.
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