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Remarks on a dynamical aspect of
shortening-straightening flow for non-closed planar
curves with fixed boundary

By

Shinya OKABE*

Abstract

In this paper, we consider a geometric evolution equation defined on non-closed planar
curves with finite length. The equation is given as a steepest descent flow for the geomet-
ric functional called the modified total squared curvature. We call the flow the shortening-
straightening flow. The purpose of this paper is to prove a certain dynamical aspect of planar
curve governed by shortening-straightening flow.

§1. Introduction

The steepest descent flow for various geometric functionals defined on curves have
been studied by many people, for example, the shortening flow ([1], [4], [5]), the straight-
ening flow for curve with fixed total length ([7], [14], [15]), and the straightening flow
for curve with fixed local length ([6], [10]). In this paper, we focus on a geometric func-
tional called “modified total squared curvature” or “modified one-dimensional Willmore
functional” (see (1.1)). To begin with, we introduce the geometric functional.

Let v be a planar curve and x be the curvature. The length functional of v is given
by

aw:Lw,

where s denotes the arc length parameter of v. The steepest descent flow for L(v)
is called curve shortening flow. For a given constant A, the modified total squared
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curvature is defined as
(1.1) E(y) = / K2 ds + N2L(y).
v

The first term of the right hand side in (1.1) is well known as the total squared curvature
or one-dimensional Willmore functional. The steepest descent flow for the total squared
curvature is called curve straightening flow.

In this paper, we call the steepest descent flow for ' “the shortening-straightening
flow”. The shortening-straightening flow is written as follows:

(1.2) Oy = (=20%k — K> 4+ N2k,

where v denotes the unit normal vector of v pointing in the direction of the curvature.

We mention the known results of shortening-straightening flow. In 1996, first it has
been proved by A. Polden ([13]) that the equation (1.2) admits smooth solutions globally
defined in time, when the initial curve is smooth, closed, and has finite length (i.e.,
compact without boundary). Furthermore, he also proved that the solution converges
to a stationary solution as time tends to infinity. In 2002, G. Dziuk, E. Kuwert, and R.
Schitzle ([3]) extended the Polden’s result of [13] to closed curves with finite length in
R™.

Regarding the flow (1.2), we are interested in the following problem:

Problem 1.1. What is a dynamics of non-closed planar curves with finite length
governed by shortening-straightening flow?

Concerning Problem 1.1, in particular we consider planar curves with fixed bound-
ary. Indeed, let To(z) : [0, L] — R? be a smooth planar curve and ko(x) denote the
curvature. Let I'g(x) satisfy the following conditions:

(©)  |D'@)| =1 To(0)=(0,0), To(L)=(R.0), ko(0)="ko(L)=0,

where L > 0 and R > 0 are given constants. For such curve I'g, let us consider the
following initial boundary value problem:

Oy = (—20%k — K2 + N2k,
(SSC) ~v(0,t) = (0,0), ~(L,t)=(R,0), &(0,t)=r(L,t)=0,
7(2,0) = To().
Concerning the problem (SSC), we have proved the following result in [11]:
Theorem 1.1.  Let T'g(x) be a smooth non-closed planar curve and satisfy the
conditions (C). Then there exists a unique classical solution v(x,t) of (SSC) for anyt >

0. Moreover there exists a sequence {t;}32, such that y(x,t;) converges to a stationary
solution of (SSC) as t; — oo.
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The stationary solution is obtained as a critical point of energy functional (1.1).
The representation formula of all of the critical points is given by A. Linnér ([8]).
However, to best of our knowledge, its stability is an outstanding question. In order to
comprehend a dynamical aspect of solution of (SSC), we have to analyze the stability
of the critical points. The purpose of this paper is to determine a certain dynamical
aspect of solution of (SSC).

Before stating the main result, we define a certain set of non-closed planar curves.
Let Sk denote a set of all non-closed smooth planar curves satisfying the following;:

(i) One end point is fixed at (0,0). And the another end point is fixed at (R, 0);
(ii) The curvature vanishes at the end points.

We state the main result of this paper in a concise form.

Theorem 1.2. Let 0 < 6 < 1/4. Let . € Sg be the line segment. Then there
exists a positive constant €, such that, for any smooth graph curve I'g € Sy satisfying

ITo — Vallnatao(jo,r)) < Ex
the solution y(x,t) of the problem
Oy = (=20%k — K2 + A2k,
7(0,1) = (0,0), (R, t) = (R,0), £(0,1) = K(R,t) =0,
Y(z,0) = To(z)
converges to v.«(x) in the C* topology as t — oo.

Here h*t49([0, R]) denotes a little Holder space.

This paper is organized as follows: Theorem 1.1 is shown in Section 2. In Section
3, we prove Theorem 1.2. Finally we shall announce a result concerning an application
to non-compact case in Section 4.

§2. Compact case with fixed boundary

In this section, we shall prove a long time existence and a convergence of solution
of (SSC). To begin with, we prove a short time existence of solution of (SSC).

§2.1. Short time existence

First we show a short time existence of solution to (SSC). For this purpose, let

(2.1) v(x,t) = To(x) + d(x, t)vo(z),
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where d(z,t) : [0, L] x [0,00) — R is an unknown scalar function and v((z) denotes the

unit normal vector of To(z), i.e., vo(z) = RI' (z) = (§ ' )0’ (z). The argument in

[3] implies that (2.1) is a valid formulation for (SSC). Under the formulation (2.1), the
boundary conditions «(0,t) = (0,0) and y(L,t) = (R,0) are reduced to

(2.2) d(0,t) =d(L,t) = 0.
With the aid of Frenet-Serret’s formula I'y” = kor¢ and vy’ = —koITy’, we have
8:,;7 = (1 — kod)Fo/ + 6md1/0,
%833’7 = —8xdF0/ + (1 — kod)l/o,
02y = (—ko'd — 2ko0, )T + (92d + ko — ko*d)vy,

o 037 - Moy _ Bud(ho'd + 2ko0d) + (1 — kod) (95d + ko — ko?d)
EXT {(1 — kod)? + (9,d)2}*/*

Thus the condition x(0,t) = k(L,t) = 0 is equivalent to

(2.3) 02d(0,t) = 92d(L,t) = 0.
Since
s(z,t) = /Ox 10,7(z,1)| da = /Ox {(1 = ko(z)d(z, )2 + (Opd(z, )2} da,
we have
(2.4) 25 = {1~ o), 1) + (@rel(r, 1))} = .

Then we see that

92— Qo [ Oa Dpd(Opkod + 2koyd) + (1 — kod)(02d + ko — ko>d)
° 1val \ [val val®

- W%Paiag - #ax vl Decrs + {— h}@i al + % (0, mn?} s,
where
a3 = 8,d(Opkod + 2ko8,pd) + (1 — kod)(02d + ko — ko>d).
Setting

a1 = 8xk0d + koaxd,
o = 0,d02d + ay(kod — 1),
oy = 0,d03d + (92d)? 4+ a1® + Oy (kod — 1),
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we have
Qa9 2 0522 (a7}
O vl =7,  OGlul=—-——3+—
V4l val® [l
Thus 92k is written as
1 1 18
%k 585%043 — —— (Taz0a3 + 3azay) + 9a22a3.
|Vl Vdl Ydl

Since k = a3/ |’Yd|3 and 0y = 0idvg, we have

Q304 — —¢g (6%

2 14 36 3 A2 1
Ord = { —85063 + —— 0,3 + 2 a3 a3 }

_ 2oy —
yal* val® val® yal® val®>  |yal® f 1 kod
9

:—-| ﬁ%d+¢u)
Yd

Setting A(d) = (—2/ |y4|")d%, the problem (SSC) is written in terms of d as follows:

Oyd = A(d)d + ®(d),
(2.5) d(0,t) = d(L,t) = d"(0,t) = d'(L,t) = 0,
d(z,0) = do(z) = 0.

We shall find a smooth solution of (2.5) for a short time. To do so, we need to show the

operator A(dp) is sectorial. Since A(dy) = —202, first we consider the boundary value
problem
O+ o = f,

p(0) = (L) = ¢"(0) = ¢"(L) = 0,

where 1 is a constant. The solution of (2.6) is written as

L
(27) o) = | G ae,
0
where G(x,€) is a Green function given by
(00 +6(@u@)  fr 0<<E
28)  Gwo={

(241, )3 (91(2)g92(&) + g3(w)ga(§))  for < <L
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Here the functions g1, g2, g3, g4, and constants Ky, K1, Ko, i, are given by

91(¢) = cos p«¢ sinh p, ¢ — sin p, ¢ cosh p.C,

e

(
K K
2(¢) = eH*S cos ¢ — —1 cos W sinh p, ¢ + 2 gin 1+ C cosh i,
Ko Ko
93(C) = cos w4 sinh p1, ¢ + sin p.C cosh p.C,
K K
g4(¢) = —eMCsin p ¢ + —! gin 15 C cosh ¢ + 2 cos W€ sinh p,
Ko Ko

Ko = 2cos? p, L sinh? ps L + 2sin? p, L cosh? il

2L o520, L sin 24, L 1/4
Kl: 92 a ’ KQZ_T'uv H*Z%

By virtue of (2.7) and (2.8), we see that the solution of (2.6) satisfies
(2.9) ||80||Wg(0,L) <C ||f||Lp(0,L) :

Using the a priori estimate (2.9), we show that the operator A(dy) generates an analytic
semigroup on LP(0,L). Moreover we can verify that Ag : h5 ([0, L]) — h¥ ([0, L]) is
an infinitesimal generator of an analytic semigroup on h$/([0, L]), where 0 < 6 < 1/4

(for example, see [9]). Here h%([0, L]) is a little Holder space with boundary condition:

(2.10)
{u € h*([0,L]) | w(0) =u(L) =u"(0) =u"(L) =0} if a>2,

Me (0. 1) = {uen*([0,L]) |u(0) =u(L) =0} if 0<a<2

Since the equation in (2.5) is a fourth order quasilinear parabolic equation, we shall
prove a short time existence of (2.5) as follows. Letting B(d) := A(d) — Ay, the system
(2.5) is written as

Od = Aod + B(d)d + ®(d),
(2.11) d(0,t) =d(L,t) =d"(0,t) =d"(L,t) =0,
d(z,0) = do(z) = 0.

And then, we find a solution of (2.11) for a short time by using contraction mapping
principle. Indeed, making use of the maximal regularity property and continuous inter-
polation spaces, we see that there exists a unique classical solution of (2.11), i.e., (2.5),
in the class C([0,T]; A5 ([0, L)) N CY([0, T]; k¥ ([0, L])), where T > 0 is sufficiently
small. And then we obtain the regularity by a standard bootstrap argument (see [9]).
Then we obtain the following:

Lemma 2.1.  Let Ty be a smooth curve satisfying (C). Then there exists a con-
stant T' > 0 such that the problem (2.5) has a unique smooth solution for 0 <t < T.
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Lemma 2.1 implies the existence of unique solution of (SSC) for a short time:

Theorem 2.1.  Let T'g(z) be a smooth curve satisfying (C). Then there exist a
constant T > 0 and a smooth curve y(z,t) such that y(z,t) is a unique classical solution
of the problem (SSC) for 0 <t <T.

§2.2. Long time existence

Next we shall prove a long time existence of solution to (SSC). Let us set
(2.12) F* =20%k + k% — Ak,
Then the gradient flow (1.2) is written as
(2.13) oy = —F*v,
The fact that the arc length parameter s depends on time t yields the following:
Lemma 2.2.  Under (1.2), the following formula holds:

(2.14) 8,05 = 0,0, — KF0,.

Proof.  Since 05 = 0,/ |0xv(x,1)|, we obtain

00s =0, | —— | = O — ———————0, = 050y — (050r7y - 057) Os.
: t(m) (lam) PN = (Ouyy - 07)

From the equation (2.13), we find

Ds0yy - 0y = (—0s F v — FAO,v) - 0yy = KF.
Hence we obtain (2.14). O
Lemma 2.2 gives us the following:

Lemma 2.3.  Let v(x,t) satisfy (1.2). Then the curvature k(x,t) of y(x,t) sat-

isfies

(2.15) Ok = —0°F> — K2F*
= 20K — BR20%K + N20%K — 6K(05k)% — K° + A2KP.

Furthermore, the line element ds of v(x,t) satisfies

(2.16) Oids = kF ds = (2k0%k + Kk* — A?K?)ds.
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Proof. Since k = 82y - v, first we have
Ok = 8,58?7 v+ 857 - O,
By virtue of Lemma 2.2, the terms in the right-hand side are written as follows:
&ﬁgv = 050:0sy — /@FA8§7
= 05(050py — /@F’\ﬁsv) — K2FM
= 020,y — Ds(kFN0yy — 2r*F b,
O = R(0:0py — fiF)‘as’y).

Using Frenet-Serret’s formula 02y = kv and 9,v = —kdyy, we obtain (2.15). Moreover
the relation (2.16) is followed from the following calculation:

Ords = O |0yy| dx = |gmz| < 0,0y dx = Og7y - 050y ds = kEds.

Here we introduce the following notation:

Definition 2.1.  ([2]) We use the symbol q"(d' k) for a polynomial with constant
coefficients such that each of its monomials is of the form

N
[[oix with 0<ji<l and N>1
=1
with
N
r=> (i+1).
=1

Lemmas 2.2 and 2.3 give us a representation of 9,07 x:
Lemma 2.4. For any j € N, the following formula holds:

(217) 0,0k = =209k — 5K20I 2k + N209 2k + N2 TR0 k) + g7 O (01T k).

Proof. The case j = 0 in (2.17) has been already proved in Lemma 2.3, where
q°(9sk) = —6k(0sk)? — k° and (k) = k3. Next suppose that the formula (2.17) holds
for j — 1. Then we have

Ok = 00,081k — KF K
= 05 {201k — 52Tk + N20I T s + N2/ T2(00 7 Tk) 4+ ¢/ T (01 K) }
— k(202K + K> — A2k
= —207M K — 52Tk + N0 2K + X273 (00k) + ¢ TP (0 k).
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We complete the proof. O

From the boundary condition of (SSC), we observe a certain behavior of k at the
boundary.

Lemma 2.5.  Let x(x,t) be the curvature of y(x,t) satisfying (SSC). Then, for
any m € N, it holds that

(2.18) 02" k(0,1) = 02k (L,t) = 0.

Proof. First we show the case where m = 1, 2. Differentiating the boundary
condition v(0,t) = (0,0) and y(L,t) = (R,0) with respect to ¢, we have 0;7(0,t) =
Oyy(L,t) = 0. From x(0,t) = k(L,t) = 0 and the equation (1.2), we see that 02k(0,t) =
02k(L,t) = 0. Since 9;x(0,t) = dyk(L,t) = 0, the equation (2.15) yields 92x(0,t) =
Otk(L,t) = 0.

Next, suppose that 92"k(0,t) = 0*"k(L,t) = 0 holds for any natural number
n < m. Lemma 2.4 gives us

002" 2k = =202 2 — BR2OZ ™K + A202 Mk + A2g? (02 2R) + P TR (92 k).

Since any monomials of ¢*" (92" 2k) and ¢>™"3(92™ k) contain at least one of the
terms 92k (I1=0,1,2, ---, m — 1), we obtain 92" +2x(0,t) = 92"+ 2k(L,t) = 0. O

Let us define LP norm with respect to the arc length parameter of v. For a function

£z = { [ sy

1flpe = sup  |£(s)],

s€[0,L£(7)]

f(s) defined on ~y, we write

[

Similarly we define

where L£(7) denotes the length of «v. Here we show the following interpolation inequali-
ties:

Lemma 2.6.  Let y(z,t) be a solution of (SSC). Let u(z,t) be a function defined
on v and satisfy

02 (0,t) = 0*™u(L,t) = 0

for any m € N. Then, for integers 0 < p < q < r, it holds that

r—

q9—p
(2.19) [0%ull 2 < 197ul73” 105ull}s -
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Moreover, for integers 0 < p < q < r, it holds that

2(r—q)—1 2(a—p)+1

(2.20) J0%ul e < V2Ol 2T 7 O7ul 2 "
Proof. By the boundary condition of u, for any positive integer n, we have
fozull; = [ (@ wids =~ [ ortu-ortiuds < jor ], or ],
¥ ¥

This implies that log||0ful|| ;- is convex with respect to n > 0. Thus we obtain the
inequality (2.19). )

Next we turn to (2.20). Since it holds that 2™u(0) = §?™u(L) = 0 for any m € N,
the intermediate theorem implies that there exists at least one point 0 < £ < L such
that 92mtly = 0 at o = £&. Hence, for each non-negative integer n, there exists a point
0 <& < L such that 07u =0 at = &,.. Then we deduce that

1 1
(2.21) 107 ull oo < V20532 (|07 u]| 7 -
Combining (2.19) with (2.21), we obtain (2.20). O

By virtue of Lemma 2.5, we are able to apply Lemma 2.6 to 0'x for any non-
negative integer n. Making use of boundedness of energy functional at v = T'g, we
derive an estimate for ||x|| 2.

Lemma 2.7.  Let v be a solution of (SSC). Then the curvature k satisfies

(2.22) K]z < Ikoll72(0,1) + A (£(To) = R).

Proof.  Since the equation in (SSC) is the steepest descent flow for E(y) = ||/~e||%2 +
A2L(v), we have

6172 + A2L(3) < [lKoll20 1) + A2L(T0)-
Since it is clear that £(y) > R, we obtain (2.22). O

We shall prove a long time existence of solution to (SSC) by using the energy
method. To do so, we start with the following lemma:

Lemma 2.8.  For any non-negative integer j, it holds that
d |\ i , .
(2.23) o 10215, = =200+ s[, — 237 (|2 s,

+ 22 / q2j+4(8§/£) ds + / q2j+6(8§+1/£) ds.
v ¥



SHORTENING-STRAIGHTENING FLOW FOR NON-CLOSED PLANAR CURVES WITH FIXED BOUNDARY 51
Proof. By virtue of Lemma 2.4, we have
% ||8gl€||i§ = [yQ@gﬁat&Z/@ds + L(ag’@%ﬂ ds
- / 200k { =207k — 52012k + X202k + N2 T2 (01K) + ' P01 k) } ds
v
+ / kI K(20%K + K> — AK?) ds.
gl
By integrating by parts, we get
/m28§ﬁ8§+2ﬁ ds = —/ {2k0,k07 k0T K + K2 (07 K)?} ds.
v v
Consequently we obtain (2.23). O

Using Lemmas 2.7 and 2.8, we derive the estimate for the derivative of ||87x|%,
with respect to t.

Lemma 2.9.  For any non-negative integer j, it holds that
SR < ORI + Il 57
2 10sk] 2 < Okl 2 Rl

Proof. We shall prove this lemma by estimating the right hand side of (2.23).
In the process, Lemma 2.6 plays an important role. For the precise calculations, see
[11]. O

Since the arc length parameter s depends on t, we need to estimate the local length
of y(z,1).

Lemma 2.10.  Let y(z,t) be a solution of (SSC) for 0 < t < T. Then there
exist positive constants C1 and Cy such that the inequalities

1
2.24 <9z D) < Cy (T, T).
(2.24) CrTo.T) = |0x7y(, 1) < C1(To, T)
(2.25) |03 |0x7(2, 1)[| < C2(To, T)

hold for any (x,t) € [0, L] x [0,T] and integer m > 1.

We omit the proof. For the proof of Lemma 2.10, see [11]. By virtue of Lemma
2.10, we prove that the system (SSC) has a unique global solution in time.

Theorem 2.2.  Let Ty be a smooth planar curve satisfying the conditions (C).
Then there exists a unique classical solution of (SSC) for any time t > 0.
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Proof. Suppose not, then there exists a positive constant T such that v(zx,t) does
not extend smoothly beyond T'. It follows from Lemmas 2.7 and 2.9 that

2 2 T
105" 61122 < 103 kollL2(0,0) + CT

holds for any 0 < t < T and non-negative integer m. This yields that there exists a
constant C such that

(2.26) 105"z < C
for t € [0, T]. Here we have
(227) Oy = 109" Oy = P(10u] - 08T O],y 08T y),

where P is a certain polynomial. By virtue of (2.26), (2.27), and Lemma 2.10, we see
that there exists a constant C' such that

||a;;n’7||L2(0,L) <C
for any t € [0,7] and m € N. Then ~(z,t) extends smoothly beyond 7' by Theorem 2.1.

This is a contradiction. We complete the proof. O

§2.3. Convergence

We prove that the solution y(z,t) of (SSC) converges to a stationary solution along
a sequence of time in the C'"*° topology.
To begin with, we rewrite the equation (1.2) in terms of v as follows:

(2.28) Oy = —20%y + (2 = 3[024]") 92y — 30, ([02]") 027,
By an argument similar to that in Lemma 2.3, we observe that the following rules hold:

(2.29) 0105 = 0,0; — G0,
(2.30) Ords = GMds,

where G* = 0,0, - 05y. We start with the following lemma:

Lemma 2.11.  Let y(x,t) be the solution of (SSC). Then, for any positive in-
teger m, it holds that

(2.31) 97" y(0,8) = 92"y (L,t) = 0.
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Proof. First we prove that the relation
(2.32) 9y =" Oy P Rv 4+ 4" () T R)Dsy

holds for any integers n > 2. Since 82y = kv, we see that (2.32) holds for n = 2.
Suppose that (2.32) holds for any integers 2 < n < k, where k > 2 is some integer.

Then we have

Oy = (a2 + b OF o + 9 a O )0y + ak(0h K)oy
= {0°{a" (0L ?k)} + kAl (OFPR) b + {0°{a" (85 PR) Y — Kl TN (O PR) } Oy
= qk(ag_lﬁ)v + qk(ag_lﬁ)asv.

This implies (2.32). Then, along the same line as in the proof of Lemma 2.5, we obtain

the conclusion. O

By virtue of Lemma 2.11, we can apply Lemma 2.6, i.e., interpolation inequalities,
to 02v. Using the interpolation inequalities, we first prove the following estimate:

Lemma 2.12.  There exist positive constants Cy and Cy depending only on A
such that

18241 < 19322 + Co (192917 + C2 0231 -

In order to derive the estimate of ||07| ;. for n > 5, we are going to show the

following:

Lemma 2.13.  For any n € N, it holds that
n—1
OOy = 0Oy — Y 01(GrO ).
§=0
Making use of Lemma 2.13, we prove the estimate of ||8§+4'y|| o for any n € N:
Lemma 2.14.  For any n € N, the following estimate holds:
n n 2n+5
(2.33) 1057|2020 2 + C (|03 + C |03 2
From Lemma 2.13, we observe a certain behavior of 0;y at the boundary.
Lemma 2.15.  Let y(x,t) be a solution of (SSC). Then it holds that
(2.34) 02 0yy(0,t) = 0*™0yy(L,t) = 0

for any non-negative integer m.
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Proof. 1t is followed from Lemma 2.13 that

n—1
(2.35) 0105y = 0L Oy — Y 01(Grar ),
7=0
where
(2.36) G =02 ([o29]7) = 2031 + (3102917 - A2) |02

2 2
= 9%y 0ty + (3[02]° = 22) [0
Moreover Lemma 2.5 gives us
(2.37) 900%™ 4(0,t) = 9,0*"~y(L,t) = 0.

Since

J
G O y) = chkakaaﬁm"“%

k=0

Lemma 2.13 and (2.36) yield that
(2.38) (G Iy) =0

at x = 0, L for any ¢ > 0 and non-negative integer j < n. By (2.35), (2.37), and (2.38),
we complete the proof. O

By virtue of Lemma 2.15, we are able to apply Lemma 2.6 to 0;y. By way of
Lemma 2.15, we obtain the following;:

Lemma 2.16.  For any n € N, it holds that

(2.39) 1050y]l ;2 =0 as t— oo.

Proof. Here we show an outline of proof. For a detail of the proof, see [12]. First

we have
(2.40)
[e’e] [e’e] t=0
/ 103> dt = —/ Oy (/ K% ds + /\QE(’y)> dt = {/ K% ds + /\QE(’y)] < oo.
0 s 0 ¥ Y t=00

Next we show

2
(2.41) Oy ||8t7||2Lg < - ||3523ﬂ||L§ +C ||8t7||2L§ (1+ ||8t7||2Lg)
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This implies that ||0yy||;. — 0 as ¢ — 4o00. In particular, ||0¢v| > is bonded for any
t > 0. Then (2.41) is reduced to

2
(2.42) 010172 < — 185032 + € 10172 -

Integrating (2.42) on [0,00), we obtain

o0

(2.43) / [0200|%, dt < —/ &, [0y dt+C’/ 10112, dt < o.
0 s 0 s 0 s

Along the same line, we obtain the conclusion inductively. O
Making use of Lemmas 2.12, 2.14, and 2.16, we prove the following:

Theorem 2.3. Let v be a solution of (SSC). Then there exist a sequence
{ti}2y with t; — oo and a planar curve 4 such that v(-,t;) converges to 4(-) up to a
reparametrization in the C* topology as t; — oo . Moreover 4 is a stationary solution

of (SSC).

Proof. Since it holds that

R < L(v(,1)) < % {/OLkgdx—ands} + L(v) < C,

we reparameterize 7y by its arc length, i.e., v = y(s,t). By virtue of Lemmas 2.12, 2.14,
and 2.16, we see that

(2.44) 1027 (-, 8) ] 2 < o0
for any integers n > 2. From Lemma 2.6, the inequality (2.44) yields
1077, 8) e < 0.

Thus 07k is uniformly bounded with respect to ¢ for any non-negative integers n. Fur-
thermore it follows from (2.44) that

|02 Kk(s1,t) — 0% K(s2,t)| < < Cs1 — 82,

S1
/ O™k (s,t) ds
S2

for each n € N, where the constant C' is independent of ¢. Thus 9’k is equi-continuous
with respect to ¢. Thus, there exist a sequence {t1;}32, and &(z) such that x(-,t1,5)
uniformly converges to #(-) as t;; — oo. Similarly, for each n € N, there exists a
subsequence {t, ;}32; C {tn—1,;}32; such that 07x(-,t) uniformly converges to 9""&(-)
as tp; — 00. By virtue of the diagonal method, we see that there exist a sequence
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{t:}2, and a function &(-) such that x(-,t;) converges to #(-) in the C'° topology.
Since 7(+,t) is fixed at the boundary, a curve 4 with curvature & is uniquely determined.
Moreover, by Lemma 2.16, 9;7y(+,t) uniformly converges to 0 as ¢ — oco. Therefore the
curve ¥ is a stationary solution of (SSC). |

§3. A dynamical aspect of shortening-straightening flow

In the previous section, we see that there exists a unique smooth solution of (SSC)
for any ¢t > 0 and the solution converges to a stationary solution along a sequence
of time. In this section, we shall determine a certain dynamical aspect of shortening-
straightening flow. For the purpose, we start with a linearized stability of a stationary
solution of (SSC). The stationary solution of (SSC) is obtained as a critical point of
the following variational problem:

Problem 3.1. Let R > 0. Minimize the modified total squared curvature
E(v) = / k2 ds + N2 L(7)
2l

over the set Sg.

The purpose of this section is to determine a dynamical aspect of shortening-
straightening flow in a neighborhood of trivial critical point of Problem 3.1.

In particular, we focus on the case where non-closed planar curve v is written as
the graph of function. Namely, let define v(z) : [0, R] — R? as

(3.1) v(x) = (2, u(x)),
where u(x) : [0, R] — R. Let us set

Sra :={v € Sr |v(z) = (z,u(x)), wu:[0,R] - R}.
We restrict Problem 3.1 as follows:

Problem 3.2.  Minimize the modified total squared curvature
E(v) = / k2 ds + N L(7)
¥

over the set Sgg.

In this section, we use “’” instead of d/dx for short. Under the formulation (3.1),
the total squared curvature is expressed as

R
(3.2) E(v) = /0 {k(2)* + A*} /1 +u/(z)? d,
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where the curvature k(z) of 7 is written as follows:

d u'(x) u’ ()
(3-3) k() = I (Zl—i-—u’(a?)2> - (1+u'(2)2)3/2°

By the representation (3.3), we see that Navier boundary condition

(3.4) u(0) = u(R) =" (0) =u"(R) =0

is equivalent to y(z) = (z,u(x)) € Sre. Thus Problem 3.2 is formulated as follows:
Problem 3.3.  Minimize the functional (3.2) under the condition (3.4).

In order to find a critical point of Problem 3.3, we consider a variation of ~ as
follows:

(3.5) [(z,e) = (z,u(z) + p(z,¢)),
where ¢ € C%°((—¢0,20); C?(0, R)). Then it is clear that the the following holds:

Lemma 3.1.  Letv(x) € Sgg. The variationT'(x,e) = (z,u(z)+e(x,€)) belongs
to the set Sga if and only if

(3.6) 0(0,e) = p(R,e) = ¢"(0,¢) = ¢"(R,e) = 0,
for any € € R.

In the following, let p(x,g) € C*((—ep,0); H*(0, R)) satisfy (3.6), where g9 > 0
is sufficiently small. Next we prove that a existence and stability of trivial critical point
of Problem 3.3:

Lemma 3.2.  Problem 3.3 has a trivial critical point uw = 0. Moreover, the trivial
critical point is linearized stable.

Proof. To begin with, we derive a first variational formula of E. Let k(x, ) denote
the curvature of I'(x, €). In order to obtain the formula, we calculate the following:

d :/OR{Qk(azs k(z,e)v/1+ (W () + ¢ (,¢€))?

+ (k(z,e +/\2) \/l—l— T) + ¢ (7,¢))? }da:

e=0
In the following, we write ¢.(z) instead of (d/de)p(x,¢€)|.=0, for short. Since
u' (x
) ,) =L (x),
e=0 I+u (CC)

e (x)
£=0 (1 + u/( )2)3/2 — 3k(x)

(3.7) —\/1 + ( )+ ¢ (x,€))?

u' ()

(3.8) Lk(a,e) T+ u(2)?

de

oL (),
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we obtain
d /" eL (%) u'(z) '
£E(I‘(-,s)) 5:0_ /0 { 2’i(x)1+u—/(a:)2 + (=5k(z)* + /\Q)H—uwgos(x) } dx.

Integrating by parts, we have

R "y R " ' (x
/ 2;@(:1:)L))2 dr = / {—2/@'(33)908—() + 4/1(3:)2#@'5(:6)} dx
0 0

14+ (x 1+ u/(x)? 1+ u/(x)?
2 R\
_A {¢r+wwv<v@+wuv> o)
k(z)k (x)u/(x)
) } pe(z) dx

and

u'(z)
\/H—uw%(x) dx

_ (" 32 k(@)r (2)u' (z)
= /0 {5n(az) N k() + 10 e } e () da.

R
/ (—=5r(z)? + \?)
0

Thus we obtain the first variational formula:

(3.9)

—E(,9)

= /R 2 K (@) | + k(x)? — Nk(2) ¢ pe(x) da.
—0 Jo V1t+u/(z)2 \ 1+ u(z)? )

In the following, let y(x) = (z,u(x)) be a critical point of F and x(x) denote the
curvature, i.e., u(z) be a solution of the following problem:

2 K (z) / 3 \2(a) — .
(3.10) \/1+u’(aj)2 (\/1+u’(a:)2> + k() Ak(x) =0 [0, R]

u(0) = u(R) =u"(0) =u"(R) =0.

For a critical point 7, we derive a second variational formula of E. Since u(x) is a
solution of (3.10), it is sufficient to calculate the following:

d2
de?

ET(e))

:/5i{ 2 ( K (w,e) )
o Jo T W@ + 9@ \ V1t W@ + 7@ e)?

+ k(z,€)® — N2k(, ) } e () dx.

e=0




SHORTENING-STRAIGHTENING FLOW FOR NON-CLOSED PLANAR CURVES WITH FIXED BOUNDARY 59

First we have

R d R
/ 7 {k(z,e)® — Nk(z,e)} ¢c(2) do = / (3r(z)* — \?) p k(x,e€) e () dx
o a& e=0 JO e=0
By the same calculations as above, we obtain
R ’ !
d 2 K (x,¢€) }
- c(x)dx
/0 da{\/1+(U’(fv) (\/1+ )+ ¢'(z, 8))2> 7o) e=0

_ f _ 2 u'(x) K (x) / '
_/0 { L+ (2)% /1 + u/(2)2 ( 1—|—u’(a;)2> ¢ ()

2 1 d ., k(o) (x) !
I A C) s o ,
_/0 {1+u/( 7 (n(2)” = A%k(@) ) gele)

2 1 d
1+u’(az)2{ g™ )

=0 N (1 i‘(z/)(labj')(;j))?’/Q 80/8(.73) } ] Pe (x) dz.

e=

Integrating by parts, we reduce the second term on the right hand side to

e=0 (1 + u/(x)z

/R 2 { 1 dk(x 0
0o V1+u(z) VIt u(z)2de
R

1 d,
:/0 _\/1—|-u/ {\/1—l—u’ ngk(:c,s) )?
R , 1 i /.717 - Cl'})
A e Al i e

Here we focus on a trivial critical point. Clearly, Problem (3.10) has the trivial solution

=0 (1lj—u/(1;; (33))3/2 () } oo () dx
(

7oulo) | o) do

u = 0. For the trivial critical point, we have

d
o | =l
Hence the second variational formula for the trivial critical point u = 0 is written as
follows:
d2 r " 2
(3.11) 2 PTGe)| = ; {20 (x)pe(z) = M@l (2)pe(2) } da
e=0

d2
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for any non-trivial variation. Therefore we complete the proof. O

By virtue of Lemma 3.2, we can determine a dynamical aspect of shortening-
straightening flow starting from a “neighborhood” of a line segment.

Theorem 3.1. Let 0 < 6 < 1/4. Let . € Sg be the line segment. Then there
exists a positive constant €, such that, for any smooth curve 'y € Sgrg with

[To — Yl patae(jo,r)) < €x,
the solution v(x,t) of the initial boundary value problem
Oy = (—20%k — K> + A2k,
7(0,t) = (0,0), v(R,t) = (R,0), x(0,t) = k(R,t) =0,
’7('7;70) = 1—‘0(3})

converges to v.(x) in the C* topology as t — .

Proof. The line segment v, (z) € Sg is expressed as
Ye(z) = (2,0), (0<z<R).
Let O. be a neighborhood of v, as follows:

(3.12) O, = {’7 € Sgr | ||’7 - ’7*||h4+49([0,R]) < 6}.

Let 0 < g7 < 1 fix arbitrarily. It is easy to check that O., C Sgrg holds. Set

A= {90 € K40, R)) | [l pllna+a0 0,71 = 1, (0) = (R) = ¢"(0) = " (R) = 0} :
Since O, C Sgra, we see that any I'g € O, is expressed as follows:

Lo(x;e) = 7(x) +£(0, (),

where ¢ € A and ¢ € (—e1,e1). On the other hand, by virtue of Lemma 3.2, there
exists a positive constant €5 such that
d2

(3.13) 5 E(To() > 0

holds for any € € (—e2,e2) and ¢ € A. Set €, := min{e;,e2}. Then the fact (3.13)
implies that any I'g € O, satisfies

(3.14) LB(Ty(59) #0
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and
(3.15) Eo(€)) > E(v:)

for any € € (—e4,e,) \ {0} and p € A. Let € € (—e4,e,) \ {0} and ¢ € A fix arbitrarily.
Then, for I'(z,e) = v.(x) 4+ €(0, ¢(x)), combining (3.14)-(3.15) with Theorems 2.2 and
2.3, we see that there exists a unique classical solution ~y(z,t) of

Oy = (—20%k — K2 + N2k,
(3.16) 7(0,t) = (0,0), v(R,t) = (R,0), x(0,t) = k(R,t) =0,
v(x,0) = To(z;€)

for any finite time, and the solution ~y(x,t) converges to the line segment -, in the C'*°
topology along a sequence of time. In the following we shall prove that the solution
~v(x,t) of (3.16) converges to 7. in the C* topology as t — co. Suppose that there
exists a sequence {t;}°, such that vy(x,t;) does not converge to v, as t; — co. Then
there exists p > 0, for any NV € N, there exists 7 > N such that

(3.17) 17C585) = YOl oo 0,y > -

However, by virtue of (3.15) and Theorem 2.3, we observe that there exists a sub-
sequence {t;, } C {t;}52, such that y(z,t;,) converges to 7. in the C° topology as
tj, — 0o. This contradicts (3.17). Therefore we obtain the conclusion. O

§4. Application to non-compact case

We close this paper with an announcement of result concerning an application to
non-compact case. We are also interested in the following problem:

Problem 4.1. What is a dynamics of non-closed planar curves with infinite
length governed by shortening-straightening flow?

Concerning Problem 4.1, first we consider an initial value problem for the flow (1.2)
in [12]. To begin with, we shall state the initial condition. Let vyo(x) = (¢o(z), ¢o(x)) :
R — R? be a smooth non-closed curve and satisfy the following conditions:

(A1) 10270 ()] = 1,
(A2) Ko, 0T ko € L*(R) for all m € N,
xT— 00 r— —00 I:U|—>oo

(A4) Po(x) = O(Jz| ™) for some a > % as |z| — oo, bf € L*(R),
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where ko denotes the curvature. The definition of 7y and the assumption (A1) imply
that vo(«) has infinite length. The assumptions (A3) and (A4) means that the initial
curve vo(x) is close to an axis in C! sense as |z| — oco.

For g satisfying (A1)—(A4), we consider the following initial value problem:

Oy = (—20%k — K3 + N2k,

SS
59 v(z,0) = 0().

The main result of [12] is stated as follows:

Theorem 4.1.  Let vyy(x) be a smooth planar curve satisfying (Al)—(A4). Then
there exists a smooth curve y(z,t) : R x [0,00) — R? satisfying (SS).

Generally, in order to prove that an initial value problem for a steepest descent
flow of a geometric functional has a long time solution, the fact that the functional at
initial state is bounded plays an important role. However, in our case, the functional
at initial state E(7p) is not finite. For, the initial curve vy has infinite length. This is a
difficulty of our problem (SS).

In order to overcome the difficulty, we construct an “approximate solution” of (SS)
by using a solution of (1.2) for compact case with fixed boundary. For this purpose, we
make use of Theorem 1.1. For the sequence defined by approximate solutions, we apply
Arzela-Ascoli’s theorem and construct a solution of (SS). The point is to prove that
the approximate solutions are uniformly bounded.
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