Quantum alpha-determinants and q-deformations of hypergeometric polynomials (New developments in group representation theory and non-commutative harmonic analysis)

KIMOTO, Kazufumi

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessatsu (2012), B36: 97-111

URL: http://hdl.handle.net/2433/198108
Quantum α-determinants and q-deformations of hypergeometric polynomials

By

Kazufumi KIMOTO*

Abstract

The quantum α-determinant is a parametric deformation of the ordinary quantum determinant. We study the cyclic $\mathcal{U}_q(sl_2)$-submodules of the quantum matrix algebra $\mathcal{A}_q(Mat_2)$ generated by the powers of the quantum α-determinant. The irreducible decomposition of this cyclic module is explicitly described in terms of certain polynomials in the parameter α, which is a q-deformation of the Gaussian hypergeometric polynomials.

§1. Background

As a parametric interpolation of the determinant and permanent, we define the α-determinant of a matrix $X = (x_{ij})_{1 \leq i,j \leq n}$ by

$$\det^{(\alpha)}(X) := \sum_{\sigma \in \mathfrak{S}_n} \alpha^{\nu(\sigma)} x_{\sigma(1)1} x_{\sigma(2)2} \cdots x_{\sigma(n)n},$$

where α is a complex parameter and $\nu(\sigma) = n - (m_1 + m_2 + \cdots + m_n)$ if the cycle type of a permutation σ in the symmetric group \mathfrak{S}_n of degree n is $1^{m_1} 2^{m_2} \cdots n^{m_n}$ [13]. In fact, we have $\det(X) = \det^{(-1)}(X)$ and $\text{per}(X) = \det^{(1)}(X)$ by definition.

We are interested in the representation-theoretical properties of the α-determinant. Let us set the stage to formulate the problem. Denote by $\mathcal{A}(\text{Mat}_n)$ the \mathbb{C}-algebra of polynomials in the n^2 commuting variables $\{x_{ij}\}_{1 \leq i,j \leq n}$, and $\mathcal{U}(\mathfrak{g}_l)$ the universal
enveloping algebra of the general linear Lie algebra $\mathfrak{gl}_n = \mathfrak{gl}_n(\mathbb{C})$. We can introduce a $\mathcal{U}(\mathfrak{gl}_n)$-module structure on $\mathcal{A}(\text{Mat}_n)$ by

$$E_{ij} \cdot f := \sum_{r=1}^{n} x_{ir} \frac{\partial f}{\partial x_{jr}} \quad (f \in \mathcal{A}(\text{Mat}_n)),$$

where $\{E_{ij}\}_{1 \leq i,j \leq n}$ is the standard basis of \mathfrak{gl}_n. Recall that the cyclic submodules $\mathcal{U}(\mathfrak{gl}_n) \cdot \det(X)$ and $\mathcal{U}(\mathfrak{gl}_n) \cdot \text{per}(X)$ are equivalent to the skew-symmetric tensor product $\wedge^n(\mathbb{C}^n)$ and symmetric tensor product $\text{Sym}^n(\mathbb{C}^n)$ of the natural representation \mathbb{C}^n respectively, which are both irreducible. Thus the cyclic module $\mathcal{U}(\mathfrak{gl}_n) \cdot \det^{(\alpha)}(X)$ can be regarded as an ‘interpolating’ family of $\mathcal{U}(\mathfrak{gl}_n)$-submodules of the two irreducible submodules above, and it is natural and interesting to study the irreducible decomposition of $\mathcal{U}(\mathfrak{gl}_n) \cdot \det^{(\alpha)}(X)$. This is the starting point of our study.

History of the representation-theoretical studies of α-determinants

Here we briefly explain the history of the studies of α-determinants from the viewpoint of representation theory to clarify the position of the matter which we deal with in this note (see also Figure 1 for a graphical summary).
The problem to determine the irreducible decomposition of $\mathcal{U}(\mathfrak{g}l_n) \cdot \det^{(\alpha)}(X)$ was raised and settled by Matsumoto and Wakayama [5]. They described the irreducible decomposition of $\mathcal{U}(\mathfrak{g}l_n) \cdot \det^{(\alpha)}(X)$ explicitly as follows:

$$\mathcal{U}(\mathfrak{g}l_n) \cdot \det^{(\alpha)}(X) \cong \bigoplus_{\lambda \vdash n} (\mathcal{M}_n^\lambda)^{\oplus f^\lambda_{\lambda(\alpha) \neq 0}}.$$

Here we identify the dominant integral weights and partitions, and denote by \mathcal{M}_n^λ the irreducible highest weight $\mathcal{U}(\mathfrak{g}l_n)$-module with highest weight λ. We also denote by $f_{\lambda}(x)$ the (modified) content polynomial of λ

$$f_{\lambda}(x) = \prod_{i=1}^{\ell(\lambda)} \prod_{j=1}^{\lambda_i}(1+(j-i)x).$$

At this point, there are at least three direction to proceed with the studies of α-determinants.

(A) The result (1.1) (together with (1.2)) by Matsumoto and Wakayama implies that the structure of the cyclic module $\mathcal{U}(\mathfrak{g}l_n) \cdot \det^{(\alpha)}(X)$ changes drastically when $\alpha = \pm 1/k$ for $k = 1, 2, \ldots, n - 1$. Study the α-determinant for such special values.

(B) Study a q-analog of the problem above, that is, define a quantum version of the α-determinant in the quantum matrix algebra $\mathcal{A}_q(\text{Mat}_n)$ suitably, and consider the cyclic $\mathcal{U}_q(\mathfrak{g}l_n)$-module generated by it.

(C) Study the cyclic $\mathcal{U}(\mathfrak{g}l_n)$-module generated by the powers $\det^{(\alpha)}(X)^m$ of the α-determinant in general.

(A) Wreath determinant

When $\alpha = -1/k$ for $k = 1, 2, \ldots, n - 1$, the α-determinant has a ‘$-1/k$-analog’ of the alternating property. Precisely, we have

$$\sum_{\sigma \in \mathfrak{S}_n(I)} \det^{(-1/k)}(a_{\sigma(1)}, a_{\sigma(2)}, \ldots, a_{\sigma(n)}) = 0$$

for any n by n matrix (a_1, a_2, \ldots, a_n) and any subset $I \subset \{1, 2, \ldots, n\}$ such that $\#I > k$. Here we put

$$\mathfrak{S}_n(I) = \{\sigma \in \mathfrak{S}_n; \sigma(x) = x, \forall x \in \{1, 2, \ldots, n\} \setminus I\}.$$

This fact suggests that $\det^{(-1/k)}$ may have ‘determinant-like’ properties. Actually, if we define the k-wreath determinant $\text{wrdet}_k(a_1, \ldots, a_n)$ of a kn by n matrix (a_1, \ldots, a_n)
by
\[
\text{wrdet}_k(a_1, \ldots, a_n) := \det\left((-1/k)^k \langle a_1, \ldots, a_1, \ldots, a_1, a_n, \ldots, a_n \rangle \right),
\]
then it satisfies a relative GL_n-invariance
\[
\text{wrdet}_k(AP) = \text{wrdet}_k(A) \det(P)^k, \quad P \in GL_n(\mathbb{C}).
\]
We also have wreath-determinant analog for Vandermonde and Cauchy determinants. It would be interesting to seek various special wreath determinant formulas like these. See [3] for more details.

(B) Quantum α-determinant

Define the quantum α-determinant as an element in the quantum matrix algebra $\mathcal{A}_q(\text{Mat}_n)$ by
\[
\det_q^{(\alpha)} := \sum_{\sigma \in \mathfrak{S}_n} q^{\ell(\sigma)} \alpha^{
u(\sigma)} x_{\sigma(1)}x_{\sigma(2)} \cdots x_{\sigma(n)},
\]
where $\ell(\sigma)$ denotes the inversion number of a permutation σ. This is nothing but the ordinary quantum determinant \det_q when $\alpha = -1$. Since the quantum enveloping algebra $\mathcal{U}_q(\mathfrak{gl}_n)$ acts on $\mathcal{A}_q(\text{Mat}_n)$, we can consider the cyclic $\mathcal{U}_q(\mathfrak{gl}_n)$-submodule $\mathcal{U}_q(\mathfrak{gl}_n) \cdot \det_q^{(\alpha)}$. Thus the irreducible decomposition of this cyclic submodule is regarded as a q-analog of the first problem studied by Matsumoto and Wakayama. The structure of $\mathcal{U}_q(\mathfrak{gl}_n) \cdot \det_q^{(\alpha)}$ is, however, quite complicated, so that we have only several less explicit results at present. See [4] for more details.

(C) Cyclic modules generated by powers of the α-determinant

Recently, Matsumoto, Wakayama and the author investigated the generalized case $\mathcal{U}(\mathfrak{gl}_n) \cdot \det^{(\alpha)}(X)^m$ and proved that
\[
\mathcal{U}(\mathfrak{gl}_n) \cdot \det^{(\alpha)}(X)^m \cong \bigoplus_{\lambda \vdash mn, \ell(\lambda) \leq n} \mathcal{M}_n^{\lambda} \otimes \mathcal{F}_{n,m}^{\lambda}(\alpha)
\]
holds for certain square matrices $F_{n,m}^{\lambda}(\alpha)$ whose entries are polynomials in α. In this direct sum, λ runs over the partitions of mn whose length are at most n. Remark that the matrices $F_{n,m}^{\lambda}(\alpha)$ are determined up to conjugacy and non-zero scalar factor. In the particular case where $m = 1$, we explicitly have $F_{n,1}^{\lambda}(\alpha) = f_\lambda(\alpha)I$, where I is the identity matrix of size f_λ and $f_\lambda(\alpha)$ is given by (1.2). It seems quite difficult to describe $F_{n,m}^{\lambda}(\alpha)$ in an explicit manner in general. However, when $n = 2$, all the matrices $F_{2,m}^{\lambda}(\alpha)$ are one by one, and they are explicitly given by
\[
F_{2,m}^{(m+s,m-s)}(\alpha) = (1 + \alpha)^s \mathcal{F}_1 \left(\begin{array}{c} s - m, s + 1 \\ -m \end{array} ; -\alpha \right) \quad (s = 0, 1, \ldots, m),
\]
where \(2F_1(a, b; c; x)\) is the Gaussian hypergeometric function [2].

Goal of this note

The problem we study here is a \(q\)-analog of the study of \(\mathcal{U}(\mathfrak{gl}_2)\cdot \det^{(\alpha)}(X)^m\). Namely, we investigate the cyclic \(\mathcal{U}_q(\mathfrak{sl}_2)\)-submodule (instead of \(\mathcal{U}_q(\mathfrak{gl}_2)\)-submodule just for simplicity of the description) of \(\mathcal{A}_q(\text{Mat}_2)\) defined by

\[V_q^m(\alpha) = \mathcal{U}_q(\mathfrak{sl}_2) \cdot (\det_q^{(\alpha)})^m.\]

We prove that there exists a collection of polynomials \(F_{m,j}(\alpha)\) \((j = 0, 1, \ldots, m)\) such that

\[V_q^m(\alpha) \cong \bigoplus_{0 \leq j \leq m} \mathcal{M}_q(2j + 1),\]

where \(\mathcal{M}_q(d)\) is the \(d\)-dimensional irreducible representation of \(\mathcal{U}_q(\mathfrak{sl}_2)\) given in the next section, and show that the polynomials \(F_{m,j}(\alpha)\) are written in terms of a certain \(q\)-deformation of the hypergeometric polynomials (Theorem 3.3). Taking a limit \(q \to 1\), we also obtain the formula (1.3) again (Corollary 3.6).

§ 2. Preliminaries

We first fix the convention on quantum groups (we basically follow to [7] and [11]). Assume that \(q \in \mathbb{C}^\times\) is not a root of unity. The quantum enveloping algebra \(\mathcal{U}_q(\mathfrak{sl}_2)\) is an associative algebra generated by \(k, k^{-1}, e, f\) with the fundamental relations

\[kk^{-1} = k^{-1}k = 1, \quad kek^{-1} = q^2e, \quad kfk^{-1} = q^{-2}f, \quad ef - fe = \frac{k - k^{-1}}{q - q^{-1}}.\]

\(\mathcal{U}_q(\mathfrak{sl}_2)\) has a (coassociative) coproduct

\[\Delta(k^{\pm 1}) = k^{\pm 1} \otimes k^{\pm 1},\]

\[\Delta(e) = e \otimes 1 + k \otimes e,\]

\[\Delta(f) = f \otimes k^{-1} + 1 \otimes f,\]

which enables us to define tensor products of \(\mathcal{U}_q(\mathfrak{sl}_2)\)-modules.

The quantum matrix algebra \(\mathcal{A}_q(\text{Mat}_2)\) is an associative algebra generated by \(x_{11}, x_{12}, x_{21}, x_{22}\) with the fundamental relations

\[
x_{11}x_{12} = qx_{12}x_{11}, \quad x_{21}x_{22} = qx_{22}x_{21},
\]

\[
x_{11}x_{21} = qx_{21}x_{11}, \quad x_{12}x_{22} = qx_{22}x_{12},
\]

\[
x_{12}x_{21} = x_{21}x_{12}, \quad x_{11}x_{22} - x_{22}x_{11} = (q - q^{-1})x_{12}x_{21}.
\]
For convenience, we put
\[z_1 := x_{11} x_{22}, \quad z_2 := x_{12} x_{21}. \]
Notice that they \textit{commute}:
\[z_1 z_2 = z_2 z_1. \]
The quantum α-determinant of size two is then a linear polynomial
\[\det_q^{(\alpha)} = x_{11} x_{22} + \alpha q x_{12} x_{21} = z_1 + \alpha q z_2 \]
in commuting variables z_1, z_2.

\textit{Remark.} The quantum α-determinant of size two interpolates the quantum counterparts of the determinant and permanent. In fact, we have
\[\det_q = x_{11} x_{22} - q x_{12} x_{21} = \det_q^{(-1)}, \quad \mathrm{per}_q = x_{11} x_{22} + q^{-1} x_{12} x_{21} = \det_q^{(q^{-2})}. \]
Here, in general, we define the quantum permanent of size n by
\[\mathrm{per}_q := \sum_{\sigma \in \mathfrak{S}_n} q^{-\ell(\sigma)} x_{\sigma(1)1} x_{\sigma(2)2} \cdots x_{\sigma(n)n} \in \mathcal{A}_q(\mathrm{Mat}_n), \]
which can be regarded as a q-analog of the usual permanent in the sense that the cyclic module $\mathcal{U}_q(\mathfrak{gl}_n) \cdot \mathrm{per}_q$ is equivalent to the q-analog of n-th symmetric tensor product of the natural representation \mathbb{C}^n of $\mathcal{U}_q(\mathfrak{gl}_n)$. However, the quantum α-determinant of size n does not coincide with the quantum permanent for any α if $n \geq 3$. This is because $\nu(\cdot)$ is a class function on \mathfrak{S}_n in general, whereas the inversion number $\ell(\cdot)$ is \textit{not} if $n \geq 3$.

We briefly recall necessary basic facts on representation theory of $\mathcal{U}_q(\mathfrak{sl}_2)$. Let \{\(e_1, e_2\)\} be the standard basis of the vector space \mathbb{C}^2. By defining
\[k^{\pm 1} \cdot e_1 := q^{\pm 1} e_1, \quad e \cdot e_1 := 0, \quad f \cdot e_1 := e_2, \]
\[k^{\pm 1} \cdot e_2 := q^{\mp 1} e_2, \quad e \cdot e_2 := e_1, \quad f \cdot e_2 := 0, \]
\mathbb{C}^2 becomes a $\mathcal{U}_q(\mathfrak{sl}_2)$-module. Put
\[\mathcal{M}_q(l+1) := \mathcal{U}_q(\mathfrak{sl}_2) \cdot \mathbf{v}_0^{(l)} \subset (\mathbb{C}^2)^{\otimes l}, \quad \mathbf{v}_0^{(l)} := e_1 \otimes e_1 \otimes \cdots \otimes e_1 \]
for $l = 1, 2, \ldots$. We also put $\mathcal{M}_q(1) := \mathbb{C} \cdot \mathbf{v}_0^{(0)}$ (with $\mathbf{v}_0^{(0)} := 1 \in \mathbb{C}$) and define $e \cdot \mathbf{v}_0^{(0)} = f \cdot \mathbf{v}_0^{(0)} = 0$ and $k^{\pm 1} \cdot \mathbf{v}_0^{(0)} := \mathbf{v}_0^{(0)}$. If we set $\mathbf{v}_r^{(l)} := f^r \cdot \mathbf{v}_0^{(l)}$ ($r = 0, 1, \ldots, l$) and $\mathbf{v}_{-1}^{(l)} = \mathbf{v}_{l+1}^{(l)} = 0$, then it follows that $\mathcal{M}_q(l+1) = \bigoplus_{r=0}^{l} \mathbb{C} \cdot \mathbf{v}_r^{(l)}$ and
\[k^{\pm 1} \cdot \mathbf{v}_r^{(l)} = q^{\pm(l-2r)} \mathbf{v}_r^{(l)}, \]
\[e \cdot \mathbf{v}_r^{(l)} = [l-r+1]_q \mathbf{v}_{r-1}^{(l)}, \]
\[f \cdot \mathbf{v}_r^{(l)} = [r+1]_q \mathbf{v}_{r+1}^{(l)} \]
for $r = 0, 1, \ldots, l$. This is an irreducible $(l+1)$-dimensional $\mathcal{U}_q(\mathfrak{sl}_2)$-module.
Remark. There exists a convolution \(\theta \) of \(\mathcal{U}_q(\mathfrak{s}l_2) \) such that
\[
\theta(e) = -e, \quad \theta(f) = f, \quad \theta(k^{\pm 1}) = k^{\mp 1}.
\]
Using this, we can introduce inequivalent \(\mathcal{U}_q(\mathfrak{s}l_2) \)-module structure on the vector space \(\mathcal{M}_q(l + 1) \), say \(\mathcal{M}_q(l + 1)^{\theta} \). However, such modules do not appear in the following discussion. Note that any finite dimensional irreducible \(\mathcal{U}_q(\mathfrak{s}l_2) \)-module is isomorphic to either \(\mathcal{M}_q(l + 1) \) or \(\mathcal{M}_q(l + 1)^{\theta} \) for some \(l = 0, 1, 2, \ldots \) (see, e.g. [7, 9]).

The algebra \(\mathcal{A}_q(\text{Mat}_2) \) becomes a \(\mathcal{U}_q(\mathfrak{s}l_2) \)-module by
\[
k^{\pm 1} \cdot x_{i1} := q^{\pm 1} x_{i1}, \quad e \cdot x_{i1} := 0, \quad f \cdot x_{i1} := x_{i2},
\]
\[
k^{\pm 1} \cdot x_{i2} := q^{\mp 1} x_{i2}, \quad e \cdot x_{i2} := x_{i1}, \quad f \cdot x_{i2} := 0 \quad (i = 1, 2).
\]
These are compatible with the fundamental relations (2.1) above. Notice that \(e \cdot \det_q^{r} = f \cdot \det_q^{r} = 0 \) and \(k^{\pm 1} \cdot \det_q^{r} = \det_q^{r} \), (i.e. \(\mathcal{U}_q(\mathfrak{s}l_2) \cdot \det_q^{r} \cong \mathcal{M}_q(1) \)). It then follows that \(X \cdot (v \det_q^{r}) = (X \cdot v) \det_q^{r} \) for \(X \in \mathcal{U}_q(\mathfrak{s}l_2) \) and \(v \in \mathcal{A}_q(\text{Mat}_2) \). We have
\[
(2.2) \quad \mathcal{U}_q(\mathfrak{s}l_2) \cdot (x_{11}x_{21})^s \det_q^{m-s} \cong \mathcal{U}_q(\mathfrak{s}l_2) \cdot (x_{11}x_{21})^s \cong \mathcal{M}_q(2s + 1) \quad (s = 0, 1, 2, \ldots).
\]
Actually, the linear map defined by \(v^{(l)} \mapsto f^r \cdot (x_{11}x_{21})^s \) gives a bijective intertwiner between \(\mathcal{M}_q(2s + 1) \) and \(\mathcal{U}_q(\mathfrak{s}l_2) \cdot (x_{11}x_{21})^s \).

Define \(q \)-analogs of numbers, factorials and binomial coefficients by
\[
[n]_q := \frac{q^n - q^{-n}}{q - q^{-1}}, \quad [n]_q! := \prod_{i=1}^{n} [i]_q, \quad \left[\begin{array}{l} n \\ k \end{array} \right]_q := \frac{[n]_q!}{[k]_q! [n-k]_q!}.
\]

§ 3. Cyclic modules generated by the quantum alpha-determinant

We fix a positive integer \(m \) and discuss the irreducible decomposition of the cyclic module \(V_q^m(\alpha) := \mathcal{U}_q(\mathfrak{s}l_2) \cdot (\det_q^{(\alpha)})^m \). We refer to [1] for detailed discussion.

Put
\[
v_{m,j} := (f^j \cdot (x_{11}x_{21})^j) \det_q^{m-j} \quad (j = 0, 1, \ldots, m).
\]
It is easy to see that the cyclic module \(\mathcal{U}_q(\mathfrak{s}l_2) \cdot v_{m,j} \) is equivalent to \(\mathcal{M}_q(2j + 1) \). We show that \(v_{m,j} \) is a homogeneous polynomial in \(z_1 \) and \(z_2 \) of degree \(m \) and give an explicit expression of it. For this purpose, we need the following two lemmas.

Lemma 3.1. For each positive integer \(j \), it follows that
\[
f^j \cdot (x_{11}x_{21})^j = q^{-j(j-1)/2} [j]_q! \sum_{r=0}^{j} q^{-r^2} \left[\begin{array}{l} j \\ r \end{array} \right]_q \sum_{r=0}^{j} q^{-r^2} \left[\begin{array}{l} j \\ r \end{array} \right]_q x_{11}^{j-r} x_{22}^{j-r} (x_{12}x_{21})^r.
\]
Sketch of proof. For $1 \leq i \leq 2j$, put

$$f_j(i) := \underbrace{1 \otimes \cdots \otimes 1}^{i-1} \otimes f \otimes \underbrace{k^{-1} \otimes \cdots \otimes k^{-1}}^{2j-i} \in \mathcal{U}_q(\mathfrak{sl}_2)^{\otimes 2j}.$$

Then it follows that

$$\Delta^{2j-1}(f)^j = \sum_{1 \leq n_1, \ldots, n_j \leq 2j} f_j(n_1) \cdots f_j(n_j).$$

Since $f_j(m)f_j(n) = q^{-2}f_j(n)f_j(m)$ if $m > n$ and $f^2 \cdot x_{11} = f^2 \cdot x_{21} = 0$, we have

$$\Delta^{2j-1}(f)^j = q^{-j(j-1)/2} [j]_q! \sum_{1 \leq n_1 < \cdots < n_j \leq 2j} f_j(n_1) \cdots f_j(n_j) + R,$n

where R is a certain element in $\mathcal{U}_q(\mathfrak{sl}_2)^{\otimes 2j}$ such that $R \cdot (x_{11}^j x_{21}^j) = 0$. Here we also use the well-known identity

$$\sum_{\sigma \in \mathfrak{S}_j} x^{\ell(\sigma)} = (1+x)(1+x+x^2) \cdots (1+x+\cdots+x^{j-1})$$

with $x = q^{-2}$. For given n_1, \ldots, n_j ($1 \leq n_1 < \cdots < n_j \leq 2j$), we get

$$f_j(n_1) \cdots f_j(n_j) \cdot (x_{11}^j x_{21}^j) = q^{-r^2+j(j-1)/2} [j]_q! \sum_{1 \leq n_1 < \cdots < n_j \leq 2j} f_j(n_1) \cdots f_j(n_j) \cdot (x_{11}^j x_{21}^j)$$

by a careful calculation (see [1] for detail). Using this, we have

$$f^j \cdot (x_{11}^j x_{22}^j) = q^{-j(j-1)/2} [j]_q! \sum_{1 \leq n_1 < \cdots < n_j \leq 2j} f_j(n_1) \cdots f_j(n_j) \cdot (x_{11}^j x_{21}^j)$$

$$= [j]_q! \sum_{r=0}^{j} q^{-r^2} \sum_{1 \leq n_1 < \cdots < n_r \leq j} \sum_{1 \leq m_1 < \cdots < m_r \leq j} q^{-2(n_1 + \cdots + n_r)} q^{-2(m_1 + \cdots + m_r)} x_{11}^{j-r} x_{22}^{j-r} (x_{12} x_{21})^r$$

$$= [j]_q! \sum_{r=0}^{j} q^{-r^2} e_r(1, q^2, \ldots, q^{2j-2}) e_r(1, q^{-2}, \ldots, q^{-2j+2}) x_{11}^{j-r} x_{22}^{j-r} (x_{12} x_{21})^r,$n

where $e_r(x_1, x_2, \ldots, x_j)$ is the rth elementary symmetric polynomial in x_1, x_2, \ldots, x_j. By the identity (see, e.g. [10])

$$e_r(1, q^2, \ldots, q^{2j-2}) = q^{r(j-1)/2} [j]_q$$

together with the symmetry $[j]_q = [j]_q^{-1}$, we obtain

$$f^j \cdot (x_{11}^j x_{21}^j) = [j]_q! \sum_{r=0}^{j} q^{-r^2} [j]_q^2 \sum_{r=0}^{j} q^{j-r} x_{11}^{j-r} x_{22}^{j-r} (x_{12} x_{21})^r.$$

Since $(x_{11} x_{21})^j = q^{-j(j-1)/2} x_{11}^j x_{21}^j$, we have the desired conclusion.
Lemma 3.2. For each positive integer \(l \), it follows that
\[
x_{11}^l x_{22}^l = \prod_{s=1}^{l} (z_1 + (q^{2s-1} - q)z_2) = \sum_{j=0}^{l} q^{l(l-j)} \left[\begin{array}{c} l \\ j \end{array} \right]_q (z_1 - qz_2)^j z_2^{l-j}.
\]

Proof. The first equality is proved by induction on \(l \) by using the relation
\[
(z_1 + (q^{2r-1} - q)z_2)x_{22} = x_{22}(z_1 + (q^{2r+1} - q)z_2).
\]
The second equality is a specialization of the \(q \)-binomial theorem
\[
\prod_{i=1}^{n} (x + q^{2i-n-1}y) = \sum_{r=0}^{n} \left[\begin{array}{c} n \\ r \end{array} \right]_q x^r y^{n-r},
\]
which is indeed applicable since \(z_1 \) and \(z_2 \) commute.
\[\square\]

As a result, we get the explicit expression
\[
(3.1) \quad v_{m,j} = \left\{ q^{-j(j-1)/2} [j]_q! \sum_{r=0}^{j} q^{-r^2} \left[\begin{array}{c} j \\ r \end{array} \right]_q z_2^r \prod_{s=1}^{j-r} (z_1 + (q^{2s-1} - q)z_2) \right\} (z_1 - qz_2)^{m-j},
\]
which is indeed a homogeneous polynomial in \(z_1 \) and \(z_2 \) of degree \(m \).

The vectors \(\{v_{m,j}\}_{j=0}^{m} \) are linearly independent since they belong to inequivalent representations, and hence form a basis of the space consisting of homogeneous polynomials in \(z_1 \) and \(z_2 \) of degree \(m \), whose dimension is \(m + 1 \). Thus we conclude that
\[
(\det_q^{(\alpha)})^m (\in \mathcal{A}_q(\text{Mat}_2) \otimes_{\mathbb{C}} \mathbb{C}[\alpha])) \text{ can be expressed as a linear combination}
\]
\[
(3.2) \quad (\det_q^{(\alpha)})^m = \sum_{j=0}^{m} F_{m,j}(\alpha) v_{m,j}
\]
of the vectors \(v_{m,j} \), where \(F_{m,j}(\alpha) \) are certain polynomial functions in \(\alpha \). This implies that the cyclic module \(V_q^m(\alpha) \) contains an irreducible submodule equivalent to \(\mathcal{M}_q(2j+1) \) (with multiplicity one) if \(F_{m,j}(\alpha) \neq 0 \). Consequently, it follows that
\[
V_q^m(\alpha) \cong \bigoplus_{0 \leq j \leq m} \mathcal{M}_q(2j+1).
\]

Let us determine the functions \(F_{m,j}(\alpha) \) explicitly. The conditions (3.2) for the functions \(F_{m,j}(\alpha) \) are given in terms of polynomials in commuting variables \(z_1, z_2 \), so that it is meaningful to consider the specialization \(z_1 = z, z_2 = 1 \) in (3.2), where \(z \) is a
new variable. Put

$$g_j(z) := \prod_{i=1}^{j} (z + q^{2i-1} - q) = \sum_{i=0}^{j} q^{i(j-i)} \left[\begin{array}{c} j \\ i \end{array} \right]_q (z - q)^i,$$

$$v_j(z) := q^{-\frac{j(j-1)}{2}} [j]_q! \sum_{r=0}^{j} q^{-r^2} \left[\begin{array}{c} j \\ r \end{array} \right]_q^2 g_{j-r}(z).$$

Then (3.2) together with Lemmas 3.1 and 3.2 yields

$$(z + qa)^m = \sum_{j=0}^{m} F_{m,j}(\alpha) v_j(z) (z - q)^{m-j}. $$

If we take the lth derivative of this formula with respect to z ($l = 0, 1, \ldots, m$) and substitute $z = q$, then we get the relation

$$(3.4) \quad \binom{m}{l} q^{m-l}(1 + \alpha)^{m-l} = \sum_{j=m-l}^{m} F_{m,j}(\alpha) \frac{v_j^{(l-m+j)}(q)}{(l-m+j)!} = \sum_{s=0}^{l} F_{m,m-s}(\alpha) \frac{v_{m-s}^{(l-s)}(q)}{(l-s)!}. $$

Since

$$v_j(z) = q^{i(j+1)/2} [j]_q! \sum_{i=0}^{j} q^{-i} \left[\begin{array}{c} j \\ i \end{array} \right]_q \sum_{r=0}^{j} q^{r(i-2j)} \left[\begin{array}{c} j \\ r \end{array} \right]_q \left[\begin{array}{c} j - i \\ r \end{array} \right]_q (z - q)^i,$$

we have

$$v_j(z) = q^{-\frac{j(j-1)}{2}} [j]_q! \sum_{i=0}^{j} \frac{[2j-i]_q!}{[j-i]_q!^{2}} (z - q)^i,$$

or

$$\frac{v_j^{(i)}(q)}{i!} = q^{-\frac{i(i+1)}{2}} \frac{[2j-i]_q!}{[j-i]_q!^{2}}.$$

Here we use the q-Chu-Vandermonde formula

$$\sum_{r=0}^{j-i} q^{r(i-2j)} \left[\begin{array}{c} j \\ j - r \end{array} \right]_q \left[\begin{array}{c} j - i \\ r \end{array} \right]_q = q^{j(i-j)} \left[\begin{array}{c} 2j - i \\ j \end{array} \right]_q.$$

Thus the formula (3.4) is rewritten more explicitly as

$$(3.5) \quad [m-l]_q!^2 \binom{m}{l} q^{m-l}(1 + \alpha)^{m-l} = \sum_{s=0}^{l} q^{-\frac{m-s}{2}} \frac{[m-s]_q!}{[l-s]_q!} [2m-l-s]_q! F_{m,m-s}(\alpha).$$
This also implies that the polynomial $F_{m,j}(\alpha)$ is divisible by $(1+\alpha)^j$, that is

\begin{equation}
F_{m,j}(\alpha) = (1+\alpha)^j Q_{m,j}(\alpha) \tag{3.6}
\end{equation}

for some $Q_{m,j}(\alpha) \in \mathbb{C}[\alpha]$. By (3.6) and (3.5), we have

\begin{equation}
\begin{align*}
\binom{2m-2i}{m-i}^{-1} q^{m-i} & \\
\sum_{j=0}^{i} & \left[\begin{array}{ll}
2i-2m-1 \\
\quad i-j
\end{array}\right]_{q} (-1)^{i-j} (1+\alpha)^{i-j} \cdot q^{-\left[\begin{array}{l}
\quad m-j
\end{array}\right]_q} [m-j]_q! Q_{m,m-j}(\alpha).
\end{align*}
\tag{3.7}
\end{equation}

Now we define the mixed hypergeometric series by

\begin{equation}
\Phi\left(^{a_1, \ldots, a_k}_{b_1, \ldots, b_l}^{c_1, \ldots, c_m} ; d_1, \ldots, d_m ; q ; x\right) = \sum_{i=0}^{\infty} \frac{(a_1; i) \cdots (a_k; i) (c_1; i) \cdots (c_m; i) x^i}{(b_1; i) \cdots (b_l; i) (d_1; i) \cdots (d_m; i) [i]_q!},
\end{equation}

where $(a; i) = a(a+1) \cdots (a+i-1)$ and $(a; i)_q = [a]_q [a+1]_q \cdots [a+i-1]_q$ (cf. [8]).

Theorem 3.3. For $s = 0, 1, \ldots, m$,

\begin{equation}
F_{m,s}(\alpha) = q^{\left(\begin{array}{l}
s+1 \\
\quad 2
\end{array}\right)} m! [2m-2i+1]_q
\end{equation}

holds.

Sketch of proof. We can prove the identity

\begin{equation}
\begin{align*}
\left(\begin{array}{l}
2i-2m-1 \\
\quad i-j
\end{array}\right)_{q}^{-1} & \\
\sum_{j=0}^{i} & \left(\begin{array}{l}
2m-2i+1 \\
\quad 2m-2j+1
\end{array}\right)_{q}^{-1} \left(\begin{array}{l}
m-j \\
\quad i-j
\end{array}\right)_{q}^{-1} (1+\alpha)^{i-j}.
\end{align*}
\end{equation}

Using this, we solve (3.7) and find that

\begin{equation}
Q_{m,m-i}(\alpha) = \frac{q\left[\begin{array}{l}
m-i \\
\quad m-i
\end{array}\right]_q
\end{equation}

\begin{equation}
\times \sum_{j=0}^{i} \left(\begin{array}{l}
2m-2i+1 \\
\quad m-j
\end{array}\right)_{q}^{-1} \left(\begin{array}{l}
m \\
\quad j
\end{array}\right) (1+\alpha)^{i-j}
\end{equation}

\begin{equation}
= q^{\left(\begin{array}{l}
m-i+1 \\
\quad m-i
\end{array}\right)} m! [2m-2i+1]_q
\end{equation}

\begin{equation}
\times \sum_{r=0}^{i} \frac{(-q)^r [m-i+r]_q!^2}{(m-i+r)! (i-r)! [2m-2i+r+1]_q! [r]_q!} (1+\alpha)^r.
\end{equation}
where we set $r = i - j$. Since

$$(i - r)! = (-1)^r \frac{i!}{(-i; r)}, \quad (n + r)! = n! (n + 1; r), \quad [n + r]_q! = [n]_q! (n + 1; r)_q,$$

we have

$$Q_{m,m-i}(\alpha) = \frac{q \binom{n-i+1}{2} m! [m-i]_q!}{i! (m-i)! [2m-2i]_q!} \sum_{r=0}^{i} \frac{(-i;r)(m-i+1;r)_q^2}{(m-i+1;r)(2m-2i+2;r)_q} \frac{(q(1+\alpha))^r}{[r]_q!} \Phi(i;m-i+1,m-i+1;2m-2i+2;q;q(1+\alpha)).$$

If we substitute this into (3.6) and replace $m - i$ by s, then we have the conclusion. \(\square\)

Example 3.4 \((m = 1)\). We have

$$F_{1,0}(\alpha) = \Phi\left(\begin{array}{l}
-1 \\
1 \\
2
\end{array} ; q; q(1+\alpha)\right) = \frac{1 - \alpha q^2}{1 + q^2},$$

$$F_{1,1}(\alpha) = q \Phi\left(\begin{array}{l}
1 \\
2
\end{array} ; q; q(1+\alpha)\right) = \frac{q}{[2]_q} (1 + \alpha).$$

Thus it follows that

$$\mathcal{U}_q(\mathfrak{sl}_2) \cdot \det_q(\alpha) \cong \begin{cases}
\mathcal{M}_q(3) & \alpha = q^{-2}, \\
\mathcal{M}_q(1) & \alpha = -1, \\
\mathcal{M}_q(1) \oplus \mathcal{M}_q(3) & \text{otherwise.}
\end{cases}$$

Notice that $q^{-2} \neq -1$ since we assume that q is not a root of unity.

Example 3.5 \((m = 2)\). We have

$$F_{2,0}(\alpha) = \Phi\left(\begin{array}{l}
-2 \\
1 \\
2
\end{array} ; q; q(1+\alpha)\right) = C_0(q) \left((q^6 + q^4)\alpha^2 - 2q^2\alpha + q^4 + 1\right),$$

$$F_{2,1}(\alpha) = 2q^2 \frac{[1]_q!}{[2]_q!} (1 + \alpha) \Phi\left(\begin{array}{l}
-1 \\
2 \\
4
\end{array} ; q; q(1+\alpha)\right) = C_1(q)(1 + \alpha) \left((q^4 + q^2)\alpha - q^4 + q^2 - 2\right),$$

$$F_{2,2}(\alpha) = q^3 \frac{[2]_q!}{[4]_q!} (1 + \alpha)^2 \Phi\left(\begin{array}{l}
0 \\
3 \\
6
\end{array} ; q; q(1+\alpha)\right) = C_2(q)(1 + \alpha)^2,$$
where $C_0(q), C_1(q), C_2(q)$ are certain rational functions in q. Hence, if we assume that q is transcendental (we have only to assume that $(q^4 - q^2 + 1)^2 + q^2(q^4 + q^2 + 1) \neq 0$ practically), then we see that

$$
\mathcal{U}_q(\mathfrak{sl}_2) \cdot \left(\det_{q}^{(\alpha)} \right)^2 \cong \begin{cases}
\mathcal{M}_q(1) & \alpha = -1, \\
\mathcal{M}_q(1) \oplus \mathcal{M}_q(5) & \alpha = \frac{q^4 - q^2 + 2}{q^4 + q^2}, \\
\mathcal{M}_q(3) \oplus \mathcal{M}_q(5) & \alpha = \frac{1 \pm \sqrt{-1}}{q^4 + q^2}, \\
\mathcal{M}_q(1) \oplus \mathcal{M}_q(3) \oplus \mathcal{M}_q(5) & \text{otherwise}.
\end{cases}
$$

When $(q^4 - q^2 + 1)^2 + q^2(q^4 + q^2 + 1) = 0$ (this does not imply that q is a root of unity), $\frac{q^4 - q^2 + 2}{q^4 + q^2}$ becomes a common root of $F_{2,0}(\alpha)$ and $F_{2,1}(\alpha)$, so that we have

$$
\mathcal{U}_q(\mathfrak{sl}_2) \cdot \left(\det_{q}^{(\alpha)} \right)^2 \cong \mathcal{M}_q(5), \quad \alpha = \frac{q^4 - q^2 + 2}{q^4 + q^2}.
$$

Remark. The mixed hypergeometric series (3.8) can be regarded as a common generalization of the generalized hypergeometric series and basic hypergeometric series as we see below:

$$_k\Phi_1 \left(\begin{array}{c}
a_1, \ldots, a_k \\
b_1, \ldots, b_l, 1
\end{array} ; q, x \right) = {}_kF_1 \left(\begin{array}{c}
a_1, \ldots, a_k \\
b_1, \ldots, b_l
\end{array} ; q, x \right),
$$

$$_m\phi_n \left(\begin{array}{c}
c_1, \ldots, c_m \\
d_1, \ldots, d_n
\end{array} ; q, x \right) = {}_m\phi_n \left(\begin{array}{c}
c_1, \ldots, c_m \\
d_1, \ldots, d_n
\end{array} ; q^2, (-1)^{1+n-m}q^{1+d-c}x \right),
$$

where $c = c_1 + \ldots + c_m$ and $d = d_1 + \ldots + d_n$.

Remark. The function Φ given by (3.8) satisfies the difference-differential equation

$$
\left\{ -(E + a_1) \cdots (E + a_k) [E + c_1]_q \cdots [E + c_m]_q \\
+ \partial_q(E + b_1 - 1) \cdots (E + b_l - 1) [E + d_1 - 1]_q \cdots [E + d_n - 1]_q \right\} \Phi = 0,
$$

where we put

$$
E = x \frac{d}{dx}, \quad [E + a]_q = \frac{q^{E+a} - q^{-E-a}}{q - q^{-1}}, \quad \partial_q f(x) = \frac{f(qx) - f(q^{-1}x)}{qx - q^{-1}x}.
$$

If we take a limit $q \to 1$, then the equation above becomes a hypergeometric differential equation for $F_{l+n}(a_1, \ldots, a_k, c_1, \ldots, c_m; b_1, \ldots, b_l, d_1, \ldots, d_n; x)$.

All the discussion above also work in the classical case (i.e. the case where $q = 1$), thus, by taking a limit $q \to 1$ in Theorem 3.3, we will obtain Theorem 4.1 in [2] (or
(1.3) up to constant) again. We abuse the same notations used in the discussion of quantum case above to indicate the classical counterparts. From (3.9), we have

\[Q_{m,s}(\alpha) = \frac{m!}{(m-s)!(2s)!} {}_{3}F_{2}\left(\begin{array}{c}s-m, s+1, s+1 \\ s+1, 2s+2\end{array}; 1+\alpha\right) \]
\[= \frac{m!}{(m-s)!(2s)!} {}_{2}F_{1}\left(\begin{array}{c}s-m, s+1 \\ 2s+2\end{array}; 1+\alpha\right). \]

Notice that

\[{}_{2}F_{1}\left(\begin{array}{c}s-m, s+1 \\ 2s+2\end{array}; 1-x\right) = \frac{m!(2s+1)!}{s!(m+s+1)!} {}_{2}F_{1}\left(\begin{array}{c}s-m, s+1 \\ -m\end{array}; x\right). \]

Thus we also get

\[Q_{m,s}(\alpha) = \frac{m!^{2}(2s+1)}{(m-s)!s!(m+s+1)!} {}_{2}F_{1}\left(\begin{array}{c}s-m, s+1 \\ -m\end{array}; -\alpha\right) \quad (s=0,1,\ldots,m). \]

Summarizing these, we have the

Corollary 3.6 (Classical case). It follows that

\[F_{m,s}(\alpha) = \frac{m!}{(m-s)!(2s)!} (1+\alpha)^{s} {}_{2}F_{1}\left(\begin{array}{c}s-m, s+1 \\ 2s+2\end{array}; 1+\alpha\right) \]
\[= \frac{(2m)!}{m!} \frac{2^{m}}{s!} (1+\alpha)^{s} {}_{2}F_{1}\left(\begin{array}{c}s-m, s+1 \\ -m\end{array}; -\alpha\right) \]

for \(s = 0, 1, \ldots, m \).

References

