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Quantum oa-determinants and ¢-deformations of
hypergeometric polynomials

By

Kazufumi KimoTo*

Abstract

The quantum a-determinant is a parametric deformation of the ordinary quantum de-
terminant. We study the cyclic Uy (sl2)-submodules of the quantum matrix algebra 4,(Mats)
generated by the powers of the quantum a-determinant. The irreducible decomposition of this
cyclic module is explicitly described in terms of certain polynomials in the parameter «, which
is a g-deformation of the Gaussian hypergeometric polynomials.

This note is a summary of the author’s recent paper [Kimoto, K., “Quantum alpha-
determinants and g-deformed hypergeometric polynomials,” Int. Math. Res. Not.].

8§1. Background

As a parametric interpolation of the determinant and permanent, we define the
a-determinant of a matrix X = (x;)1<i j<n DY

det(a)(X) = Z a”(")fl?a(l)lxa(2)2"'x"(”)”’
0'6671

where « is a complex parameter and v(o) = n — (my +mg + -+ -+ my,) if the cycle type
of a permutation ¢ in the symmetric group &,, of degree n is 1"2™2...n™n» [13]. In
fact, we have det(X) = det"(X) and per(X) = det'Y)(X) by definition.

We are interested in the representation-theoretical properties of the a-determinant.
Let us set the stage to formulate the problem. Denote by A(Mat,) the C-algebra
of polynomials in the n? commuting variables {z;;}1<; j<n, and U(gl,) the universal
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wrdety (X)
(Kimoto-Wakayama, 2008)

“o = _1/k ”»
Ugl,) - det™(X) | aanalog  Uy(gl,) - detl)
(Matsumoto-Wakayama, 2006)J (Kimoto-Wakayama, 2007)
generalization |

Ugl,) - det™@(xym o Uglaly) - (det{™)m
(Kimoto-Matsumoto-Wakayama, 2009)

U(g[z) . det(a) (X)m g-analog . Z/{q(ﬁlz) . (det((za))m

(special case where n = 2) (Kimoto, 2009)

Figure 1. Representation-theoretical studies on a-determinants

enveloping algebra of the general linear Lie algebra gl, = gl,,(C). We can introduce a
U(gl,,)-module structure on A(Mat,,) by

- 0
Eij- f = lewﬁj; (f € A(Mat,,)),

where {E;;}1<i j<n is the standard basis of gl,,. Recall that the cyclic submodules
U(gl,,) - det(X) and U(gl,,) - per(X) are equivalent to the skew-symmetric tensor prod-
uct A"(C™) and symmetric tensor product Sym™(C™) of the natural representation C™
respectively, which are both irreducible. Thus the cyclic module 2(gl,,) - det(®) (X)) can
be regarded as an ‘interpolating’ family of U(gl,,)-submodules of the two irreducible sub-
modules above, and it is natural and interesting to study the irreducible decomposition
of U(gl,) - det(o‘)(X ). This is the starting point of our study.

History of the representation-theoretical studies of a-determinants

Here we briefly explain the history of the studies of a-determinants from the view-
point of representation theory to clarify the position of the matter which we deal with
in this note (see also Figure 1 for a graphical summary).
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The problem to determine the irreducible decomposition of U(gl,,) - det'®) (X)) was
raised and settled by Matsumoto and Wakayama [5]. They described the irreducible
decomposition of U(gl,,) - det(® (X) explicitly as follows:

(1.1) Ugl,) - det(x)= @ (M)
NS

Here we identify the dominant integral weights and partitions, and denote by M7 the
irreducible highest weight U(gl,,)-module with highest weight A\. We also denote by
fa(x) the (modified) content polynomial of A

As
Hl—l— Jj—i)x

At this point, there are at least three direction to proceed with the studies of

(1.2)

||":]>,

a-determinants.

(A) Theresult (1.1) (together with (1.2)) by Matsumoto and Wakayama implies that the
structure of the cyclic module (gl ) -det(*) (X) changes drastically when a = +1/k
for k=1,2,...,n — 1. Study the a-determinant for such special values.

(B) Study a g-analog of the problem above, that is, define a quantum version of the
a-determinant in the quantum matrix algebra A,(Mat,,) suitably, and consider the
cyclic Uy (gl,,)-module generated by it.

(C) Study the cyclic U(gl,,)-module generated by the powers det(®) (X)™ of the a-
determinant in general.

(A) Wreath determinant
When o = —1/k for k =1,2,...,n — 1, the a-determinant has a ‘—1/k-analog’ of
the alternating property. Precisely, we have

Z det(_l/k)(aa(l), A5(2)5 - aa(n)) =0
ceS, (1)

for any n by n matrix (ai,as,...,a,) and any subset I C {1,2,...,n} such that
#1 > k. Here we put

6,(I)={0c€6,;0(x)=2, Ve e{l,2,...,n} \ I}.

This fact suggests that det(~1/%) may have ‘determinant-like’ properties. Actually, if we
define the k-wreath determinant wrdetg(aq,...,a,) of a kn by n matrix (aq,...,ay)
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k k
wrdetg(ay,...,ay,) = det(_l/k)(al, ey Qe Qg ),

then it satisfies a relative G L,,-invariance
wrdety, (AP) = wrdety(A) det(P)*, P e GL,(C).

We also have wreath-determinant analog for Vandermonde and Cauchy determinants.
It would be interesting to seek various special wreath determinant formulas like these.
See [3] for more details.

(B) Quantum a-determinant
Define the quantum «-determinant as an element in the quantum matrix algebra

Aq,(Mat,,) by

det((]a) = Z qe(a)a”(")xa(l)laja(g)g Lo (n)n,
ceG,

where £(o) denotes the inversion number of a permutation ¢. This is nothing but
the ordinary quantum determinant det, when o = —1. Since the quantum enveloping
algebra U, (gl,,) acts on A, (Mat,,), we can consider the cyclic U, (gl,, )-submodule U, (gl,,)-
detéo‘). Thus the irreducible decomposition of this cyclic submodule is regarded as a
g-analog of the first problem studied by Matsumoto and Wakayama. The structure of
Uy (gl,) -detflo‘) is, however, quite complicated, so that we have only several less explicit
results at present. See [4] for more details.

(C) Cyclic modules generated by powers of the a-determinant
Recently, Matsumoto, Wakayama and the author investigated the generalized case

U(gl,,) - det'™ (X)™ and proved that

U(gl,) - det(X)m = € (M)

AFmn
L(N)<n

)EB rk F,i‘ym(a)

holds for certain square matrices F,i"m(a) whose entries are polynomials in «. In this
direct sum, A runs over the partitions of mn whose length are at most n. Remark
that the matrices F,i"m(a) are determined up to conjugacy and non-zero scalar factor.
In the particular case where m = 1, we explicitly have F,i‘,l(a) = fala)l, where I
is the identity matrix of size f* and fy(a) is given by (1.2). It seems quite difficult
to describe F,i"m(a) in an explicit manner in general. However, when n = 2, all the
matrices FQ’\’m(a) are one by one, and they are explicitly given by

_ — 1
(1L.3) R $><a>=<1+a>52m(3 et ;—a) (s=0,1,...,m),
’ —m
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where o F(a, b; c; x) is the Gaussian hypergeometric function [2].

Goal of this note

The problem we study here is a g-analog of the study of ¢ (gl,)-det'® (X)™. Namely,
we investigate the cyclic U, (slz)-submodule (instead of U, (gl,)-submodule just for sim-
plicity of the description) of A,(Maty) defined by

Vi (o) = Uy(sla) - (deti)™.

q
We prove that there exists a collection of polynomials Fy, j(«) (j = 0,1,...,m) such
that
Vi) = @ M2+ 1),
0<j<m
Fm,j(a);éo

where M,(d) is the d-dimensional irreducible representation of U,(slz) given in the
next section, and show that the polynomials F}, ;(«) are written in terms of a certain
g-deformation of the hypergeometric polynomials (Theorem 3.3). Taking a limit ¢ — 1,
we also obtain the formula (1.3) again (Corollary 3.6).

§2. Preliminaries

We first fix the convention on quantum groups (we basically follow to [7] and [11]).
Assume that ¢ € C* is not a root of unity. The quantum enveloping algebra U, (slz) is
an associative algebra generated by k, k=, e, f with the fundamental relations

~1 —1 1 _ 2 1 _ -2 k—Fk!
kk— =k k=1, kek™ = q~e, kfk— =q “f, ef —fe=———.
qa—4q

Uy (sl2) has a (coassociative) coproduct

A(k,:l:l) — ki1®ki1,
Ale)=e®1+k®e,
Af)=fRk+1®f,

which enables us to define tensor products of U, (slz)-modules.
The quantum matrix algebra A,(Maty) is an associative algebra generated by
T11, %12, To1, Tog with the fundamental relations

T11T12 = qT12211, T21X22 = qT22T21,
(2-1) T11T21 = qT21T11, T12X22 = qT22T12,

-1
T12X21 = L2112, T11T22 — T22T11 = (q —dq )$123321-
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For convenience, we put
Z1 = T11%22, R2 1= T12d21-
Notice that they commute:
Z1R9 = Z9%1.
The quantum a-determinant of size two is then a linear polynomial
detff‘) = T11%22 + QqT12T21 = 21 + OG22

in commuting variables z, zo.

Remark.  The quantum a-determinant of size two interpolates the quantum coun-
terparts of the determinant and permanent. In fact, we have

_ _ —2
detq = 211222 — qT12%21 = deté Y, per, = 1122 + ¢ T12T21 = deté,q ).
Here, in general, we define the quantum permanent of size n by
per, = Z q_E(J)xo(l)lxo(Q)Q Lo(n)n € Aq(Matn)p
0'6611
which can be regarded as a g-analog of the usual permanent in the sense that the cyclic
module U, (gl,,) - per, is equivalent to the g-analog of n-th symmetric tensor product of
the natural representation C" of U, (gl,,). However, the quantum a-determinant of size
n does not coincide with the quantum permanent for any « if n > 3. This is because

v(+) is a class function on &,, in general, whereas the inversion number £(-) is not if
n > 3.

We briefly recall necessary basic facts on representation theory of Uy (sly). Let
{e1,e2} be the standard basis of the vector space C2. By defining
kil €1 1= qilel, e-e; =0, f-el = e,
kil €9 = q:Fleg, €-ey = e, f'62 = 0,
C? becomes a U, (slz)-module. Put
Myl +1) = Uy(shk) v € (€, of) =e10e18 - 0e
1
for I = 1,2,.... We also put My(1) := C- 'v(()o) (with 'v(()o) =1 € C) and define
e- 'véo) =f- 'v(()o) =0 and k*! ~'v(()0) = 'v(()o). If we set 'v,(nl) = fr. 'v(()l) (r=0,1,...,10)
and 'v(_l)l = '01(21 = 0, then it follows that M,({ +1) = @izo C- v and

k,:l:l . ,01(}) — q:I:(l—Qr),vg"l)’

e-v,(f) =[l-r+ 1]qv,(21,

l
foo® = +1],0Y,

for r =0,1,...,l. This is an irreducible (I 4 1)-dimensional U, (sl2)-module.
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Remark.  There exists a convolution 6 of U, (sl) such that
0e) =—e, O(f)=f O(k*)=k"

Using this, we can introduce inequivalent U, (slz)-module structure on the vector space
My (1 + 1), say M, (I +1)?. However, such modules do not appear in the following
discussion. Note that any finite dimensional irreducible U, (slz)-module is isomorphic
to either M, (I +1) or M, (I + 1)? for some [ = 0,1,2,... (see, e.g. [7, 9]).

The algebra A, (Matg) becomes a Uy (slz)-module by

+1 41 . .
k=" -2 = q i, e-xiy =0, [z =z, (i=1.2)
i= .
+1 i 1 . — ’
k= a0 = qT 240, € T i= T, fzia:=0

These are compatible with the fundamental relations (2.1) above. Notice that e -det, =
f-dety = 0 and k= - dety = dety, (i.e. Uy(slz) - det; = Mg(1)). It then follows that
X - (vdety) = (X -v)det, for X € Uy(slz) and v € Ay(Maty). We have

(2.2) Uq(ﬁ[g) . (xlll'gl)s detgl_s = qu(slz) . (33113321)5 = Mq(28 + 1) (8 = 0, 1, 2, Ce )

Actually, the linear map defined by vg) — f7 - (x112721)° gives a bijective intertwiner

between M (2s + 1) and Uy(sly) - (x11221)°.
Define g-analogs of numbers, factorials and binomial coefficients by

=g L . ny_ [n]q!

§3. Cyclic modules generated by the quantum alpha-determinant

We fix a positive integer m and discuss the irreducible decomposition of the cyclic
module V" («) := Uy(slz) - (det((]a))m. We refer to [1] for detailed discussion.
Put

Um,j = (fj : (afllxgl)j) det;n_j (] = 0,1,...,777,).

It is easy to see that the cyclic module U, (sl) - vy, ; is equivalent to M4(25 +1). We
show that v, ; is a homogeneous polynomial in z; and 22 of degree m and give an
explicit expression of it. For this purpose, we need the following two lemmas.

Lemma 3.1.  For each positive integer j, it follows that
2

J
. . L . 2 P i
F - (pnws)! = ¢ 9070/2 71, E qa’ {i] x1) Wy (T19%21)"
r=0 q
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Sketch of proof. For 1 <i < 2j, put

i—1 2j—1
.

~

,—/\q 7 .
[i() =10 @10fRk ' ® - @k™' €U(sh)®.
Then it follows that
AP = Y () fi(ng).

13”1,...,n]’§2j
Since fj(m)fj(n) =q 2f;(n)f;(m)if m >n and f?-z11 = f%- 22, =0, we have

AL f)i = g=IG-1/2 5], Z fi(ni) - fi(n;) + R,
1<ny <---<n,; <2j

where R is a certain element in U, (sl)®?7 such that R - (a:{lx% ) = 0. Here we also use

the well-known identity
Z =142 14+z+2?) . Q+z+--+a7Y)
ceG;
with x = ¢~2. For given nq,...,n; (1 <nj <--- <n; <2j), we get
- - T n e n ) —2(m ek j—r j—r r
Filma) - fi(ng) - (ayyy) = g7 HUT DRI ) 2 e ) (1991 )
by a careful calculation (see [1] for detail). Using this, we have
- (lelxéz)
=g UVREL Y fim) e () - (hady)

1§n1<-~~<nj <2j

. —_ 2 e —_ e ) — ) —
= [J]qlzq " Z gt Rt ) g e T (w10 )

r=0 1<ny < <np <y
1<my <---<m,<j

. 2 y_ _ _ s y_ ;.
= [ e e P e (1,7 g )2l Tl T (awan )
r=0

where e,(21,%2,...,2;) is the rth elementary symmetric polynomial in 1,2, ..., ;.
By the identity (see, e.g. [10])

er(L, % ..., g7 7Y =g U H
r q

together with the symmetry [i]q = [ﬂq_l, we obtain

J 12
. . . . _2 0] . .
o (@qy23,) = [J]qlzq " L,] T11 T (T12221)"
r=0 q

Since (x11791)7 = q_j(j_l)/ijllxél, we have the desired conclusion. O
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Lemma 3.2.  For each positive integer l, it follows that

l l
_ ol o
sty = [T (a4 @ = 002) = a1 (a1 = guai 4.
§=0 q

s=1

Proof. 'The first equality is proved by induction on [ by using the relation

2r+1

(z1+ (@1 — @)22) 722 = w22(21 + (¢ q)%2)-

The second equality is a specialization of the g-binomial theorem

‘ i —n— & n r, n—r
[[+e 1y)=2lrlq:vy :

=1 r=0

which is indeed applicable since z; and zo commute. O

As a result, we get the explicit expression

(3.1)
5 i i y
Umg =4 ¢ UL Z_:Oq_” Hq% 1:[1 (21 + (@ —q)z) ¢ (21— qz2)" 7,

which is indeed a homogeneous polynomial in z; and z5 of degree m.

The vectors {vp, ; };-n:O are linearly independent since they belong to inequivalent
representations, and hence form a basis of the space consisting of homogeneous poly-
nomials in z; and 29 of degree m, whose dimension is m + 1. Thus we conclude that
(detéo‘))m(e Aqy(Mats) ®c Cla])) can be expressed as a linear combination

(3.2) (detg“))m = i Finj(@)vm,;

Jj=0

of the vectors vy, ;, where F, ;(«) are certain polynomial functions in «. This implies
that the cyclic module V" («) contains an irreducible submodule equivalent to M (2j+
1) (with multiplicity one) if F,,, j(a) # 0. Consequently, it follows that

(3.3) Vi) P M2 +1).
0<j<m
Frn ()70
Let us determine the functions F, ;(«) explicitly. The conditions (3.2) for the
functions F, j(«) are given in terms of polynomials in commuting variables 21, z2, so
that it is meaningful to consider the specialization z; = z, zo = 1 in (3.2), where z is a
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new variable. Put

J

g9i(z) =]+ —q) = Zj: ¢ m (z—q),

i=1
vi(2) == q IV qu H qgg r(2).
Then (3.2) together with Lemmas 3.1 and 3.2 yields

m
(z 4+ qa)™ ZF 2)(z—q)"™"
7=0

If we take the [th derivative of this formula with respect to z (I = 0,1,...,m) and
substitute z = ¢, then we get the relation

m l m (l m+J)( v(l 8)(q)
A4 m=hl F., mes a2
(3 ) (l>q ( +05 J:Zm:l m—l—] SZ% m,m— s l—S)'
Since
" Lo S ey d [ -
1y(2) = PO mq!Zq‘”H'] Yo P }(Z‘W
i=0 L L T R
. T3 [25 - :
:q—J(J—l)/2 [j]q!2|:-:| [ ‘ } (z — q),
i—o gl T 1y
we have
_ !
_j(j 1)/2 []] [2] Z] . i
- —q),
() Z ORI A
or

o) oy [l 24— 1
i [i] 7 =],

Here we use the ¢-Chu-Vandermonde formula

J—1 . . . 9 .
Y g2 { J } {9 - Z} _ qj(i—j){ J = Z} '
r=0 A J g

Thus the formula (3.4) is rewritten more explicitly as

m l mosy m—s| '2m —1—s]!
(3.5) [m—l]q!2<l)qm_l(1+a)m_l :Zq_( 2 )[ lg! 2 ' ly Frm—s(a).

—~ [l — s]q.
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This also implies that the polynomial F,, ;(«) is divisible by (1 + «)7, that is

(3.6) Fj(a) =1+ a)Qm,j(a)

for some @, j(a) € Cla]. By (3.6) and (3.5), we have

()

3.7
(3.7) : [2@—2777,—1
0

S g O )

j:

Now we define the mized hypergeometric series by

(3.8) (ID(al,...,ak, Clp...,Cm-q-x> :i(al;i)-n(ak;i) (Cl;i)q”'(cm;i)q i
. b]_7~.~7bl ’ d]_7~.~7dn’ Y ’L:O (bl;z)'..(bl;z) (dl;l)q--.(dm;z)q I:Z]q!,

where (a;i) = a(a+1)---(a+i—1) and (a;i), = [a], [a + 1], -+ [a+i— 1], (cf. [8]).

Theorem 3.3. Fors=20,1,...,m,

Pt = o) () vy a (T e )

holds.

Sketch of proof. We can prove the identity

—1 .
({2i—2m—1}> _([2m—22+1]q{2m—2j+1}>
T ) o<ijem =2+, L =0 L) e

Using this, we solve (3.7) and find that

¢"2) [2m — 20+ 1],

[m—i]q!

Z yimdgm—i [2m—2j—|—1] [2m—2j}4<m)(1+ i
. . . . «

[2m 27+, L i—-j J,Lm—3l, \J

m—i+1

q( 2" )ml [2m — 2i + 1],

Qm,m—i(a) =

[m — ]!

RN (=9)" [m —i+ 7], (1+a)
Z(m—i—l—r)(z—r) M2m—2i+r+1] 0 [0 7
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where we set r = ¢ — j. Since

() =nl(n+ L), o]t =l (n+ L),

(—isr)’
we have
Qm,m z(a)
_%m”%mm—z 23 (m—i+Lir),  (g(1+a)
(3.9  il(m—i)![2m — 2i], ! —z—l—l r) (2m—2i+27r),  [r]!

:q(m‘z”l)(?)[[;z]?’!¢< - m_i+1’m_i+1;q;q(1+a)>-

2m—2i 0 \m—i+1 2m — 21+ 2
If we substitute this into (3.6) and replace m — i by s, then we have the conclusion. O

Example 3.4 (m=1). We have

1 1,1 1 —ag?
F = : g gl =
1’0(05) ( 1 ) 9 ;45 Q( +Oé)) 1 + q2 5
Fi1(a) q—[l]q! (14 a)@(o 2,2 q; q(1+ oz)) ' (1+ )
1,1 = ; ;45 = ).
[Q]q! 27 4 [2]q
Thus it follows that
MQ('?)) o = q_27
Uy(sl2) - detd™ = & M, (1) a=—1,

My(1) @ My(3) otherwise.
Notice that ¢g=2 # —1 since we assume that ¢ is not a root of unity.

Example 3.5 (m =2). We have

Fyo(a) = <I>(_12 ; 1’21 ;s q(l —|—a)>
= Co(q) ((¢° + a*)a® = 2¢°a+¢* +1),
&A)—ﬂf%§ (5 e a)
(q)(1+a)((q +q)a—q¢* +q° -2),
F2,2(a):q3 (2,33,(1 q1+a)>

= CQ(Q)(l + Oé) )
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where Cy(q),C1(q), C2(q) are certain rational functions in ¢q. Hence, if we assume that
q is transcendental (we have only to assume that (¢* — ¢ +1)2 + ¢*(¢* + > +1) # 0
practically), then we see that

MQ(l) o= _17

Mqy(1) ® My(5) o= L 02

2 4+ 2
Uy(sty) - (det())” = e

M(3) & M, (5) o= N O]

q4+q2 ’

(Mq(1) ® Mg(3) © Mg(5) otherwise.

When (¢* — ¢? + 1)? + ¢%(¢* + ¢*> + 1) = 0 (this does not implies that ¢ is a root of

unity), qL;quiQ becomes a common root of Fy o(a) and Fy (), so that we have
2 4 2 2
(@) o _ L —at
Z/{q(ﬁ[g) . (detqo‘ ) = Mq(5), o = W

Remark.  The mixed hypergeometric series (3.8) can be regarded as a common
generalization of the generalized hypergeometric series and basic hypergeometric series

ai,...,ap 1 ai,...,0k
) . — . F .
(bl,...,bl,l’ ’q’x) P l(bl,...,bl x)

261 2cm

Cly---,Cm q yeesq 2 14+n—m 1+d—c

o ; 1giT | = 1q”, (-1 x|,
( d17 AR ,dn q ) m¢n (qul’ AR 7q2dn q ( ) q )

as we see below:

wherec=c1+ - -+c¢cpandd=d; + -+ d,.

Remark.  The function ® given by (3.8) satisfies the difference-differential equa-
tion

{—(E+a1)-~~(E+ak)[E+cl]q~~~[E+cm]q
+ OB +b = 1) (B+b = 1) [E+di— 1], [E+d, — 1], }® =0,

where we put

gbte — g Ee ~ flgx) = flg ')
g—qt Oaf (%) = gr —q 'z

d
sz%, [E—i—a]q:

If we take a limit ¢ — 1, then the equation above becomes a hypergeometric differential
equation for gy Fiin(a,...,ak,c1,. . Cmib1, ..., b, dy, ... dy; ).

All the discussion above also work in the classical case (i.e. the case where ¢ = 1).
Thus, by taking a limit ¢ — 1 in Theorem 3.3, we will obtain Theorem 4.1 in [2] (or
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(1.3) up to constant) again. We abuse the same notations used in the discussion of
quantum case above to indicate the classical counterparts. From (3.9), we have

m! s—m,s+1,s+1
m,s - ———— 3 ,1
R Al e TORTE 2( s+1,25+2 +O‘)
m! s—m,s+1
=——HF ’ 1 .
(m — s)I(2s)! 1( 2s+2 —|—a>

Notice that

s—m,s+1 m!(2s 4+ 1)! s—m,s+1
F S F Lz ).
2 1( 2s+2 a:) slm+s+ 1)1 e

Thus we also get

m!?(2s +1) s—m,s+1
m.s = F ; — =0,1,...,m).
@m.s(@) (m —s)lsl(m + s+ 1)! 2 —m “ (s m)

Summarizing these, we have the

Corollary 3.6 (Classical case). It follows that

m! s—m,s+1
F, =—(1 SHF ’ i1
m.s (@) (m—s)!(28)!( ) 1( 2s+2 —|—a)
2m ) . ( 2m ) .
_ (m—s m—s—1 s §—m,s+ 1 S
—Ee (")

fors=0,1,...,m.
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