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sequence of simple transfer functions
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SUMMARY

Amplification of earthquake ground motions at actual deposit sites is an important factor to consider
when assessing the risk of an earthquake disaster. In order to identify the amplification properties, several
preprocessings such as the Fourier transform are required. I propose a series expansion of the amplification
with simple ground transfer functions as a new preprocessing. I define a sequence of transfer functions
based on a two-layered structure excluding an internal damping, and a function space spanned by the set of
the functions. I mathematically prove that the function space is equal to L2 space. This indicates that all the
functions belonging to L2 space, i.e., an arbitrary ground amplification, have a unique series expansion. This
expansion is applied to the physics-based decomposition of the amplification. Some numerical examples
indicate that the similarity between a target complex structure and a simple model is measured by the
absolute value of each coefficient in the series expansion. Copyright c⃝ 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In earthquake engineering, amplification of a seismic wave owing to ground surface layers is one
of the important factors contributing to an earthquake disaster [1]. Differences in the amplification
lead to a spatial variation in ground motions. This has sometimes caused structural damage to be
concentrated in a localized area during historical earthquakes. During the 1995 Kobe earthquake,
more than 30% of the wooden houses collapsed in a particular area in the southern part of Hyogo
prefecture. The cause was recognized as the basin-edge effect, which is the interference in the
seismic waves induced by the irregular shape of the bedrock [2]. A similar phenomenon was
observed in Adapazari during the 1999 Kocaeli, Turkey earthquake. Results of numerical simulation
indicate that the 3D basin structure beneath the town caused a large amplification of ground motions
[3]. Also, during the 2011 off the Pacific coast of Tohoku earthquake, structural damage due to
ground motion occurred locally inland of the Tohoku area [4]. In Furukawa district, the damage was
severe. A very dense seismic array is now operating in the area in order to investigate the difference
in the ground amplifications, and the reason for the localized damage within the area [5].

In order to assess the risk of an earthquake disaster prior to its occurrence, several organizations
recently have attemted to quantify the ground amplification across the earth. The objective is
to estimate the hazard risk at a particular region [6], and incorporate it into earthquake disaster
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mitigation efforts [7]. For example, rapid estimation of human and economic losses after the
occurrence of earthquakes is provided by the PAGER system [8, 9], which utilizes the effects of
amplification.

Several models of the ground amplification currently incorporated in the systems are usually
represented by a single characterized value, e.g., Vs30, the average S-wave velocity down to 30 m
depth, evaluated from the geomorphologic classification [10] and the topographic data [11, 12]. The
site-specific values are estimated from the regression formula constructed by the data set of the
measured values and classification at the same site. The approach is efficient enough to estimate the
ground amplification globally as a first-order approximation, but the spatial resolution is not as high
as the visual image of the colored maps.

More precise models of the site amplification based on the observed ground motions on horizontal
or vertical arrays have been reported in many research papers [1, 13, 14, 15, 16]. Most of the
studies identify the corresponding physical velocity structures by applying a nonlinear inversion
scheme, and they are regarded as the actual velocity structures beneath the sites. One of the
important problems is that the obtained results sometimes do not ensure a unique solution because
of the local optimals [13, 15]. This implies that estimated velocity structure may involve some
uncertainty, and therefore more reliable and specific models are required based on the observed
ground amplifications.

To deal with this problem, I propose a new series expansion of the ground amplification as the
preprocessing of its modeling. The expansion is based on a sequence of simple ground transfer
functions corresponding to a two-layered structure. This means that each term has a corresponding
two-layered structure. The objective is to extract the major components from the amplification, and
to find the contribution explicitly. The preprocessing is applicable to complex amplification shapes
such as those containing multiple peaks. The representation may help to find the most reliable
models corresponding to each peak and their contributions uniquely as the superposition.

This idea comes from decomposition techniques of the given functions in the Fourier domain.
Several techniques have been proposed in previous studies, e.g., Cepstrum [17], modal analysis
[18, 19], the discrete wave number method [20], eigenfunction expansion [21], etc. Zhao [19]
applies a response of a single degree of freedom to the modal response of a soft-soil layer that
has a straight line distribution of S-wave velocities. The model of modal response has been widely
applied in stochastic modeling of the power spectrum on the ground surface since Kanai and Tajimi
[22, 23, 24]. In other words, the proposed expansion based on the response of the two-layered
structure provides a more physically consistent alternative to the Kanai–Tajimi spectrum because
it is based on the fundamental theory of elastic wave propagation. This indicates that the series
expansion may be friendly to the stochastic modeling, and each term is naturally associated with the
physics model.

2. SEQUENCE OF NORMALIZED FUNCTIONS BASED ON GROUND TRANSFER
FUNCTION

Let us consider 2D SH wave propagation in a two-layered structure, which consists of a horizontal
surface layer with a thickness of h and a half space basement. The S-wave velocity and density
of the materials are β1 and ρ1 in the surface layer, and β0 and ρ0 in the basement. The material
properties ρ0, ρ1, β0 and β1 are positive real. When an incident plane wave propagates vertically
into the surface layer through the interface, the ratio of the free surface amplitude to the incident
amplitude is analytically derived as follows [25, 26]:

hf (ω) =
2

cos(ωh/β1) + ir1,0 sin(ωh/β1)
, (1)

where ω is the angular frequency, r1,0 is the impedance ratio defined by ρ1β1/ρ0β0, and i is the
imaginary unit. The ratio hf is usually named the ground transfer function for the two-layered
structure. The ground transfer function quantifies an amplification at the particular site, and is widely
applied to problems in earthquake engineering.
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Figure 1. Function shape |an| (n = 1, 2, 3) (left: r = 0.5, right: r = 2).

Here, I define a sequence of functions {an(r, ω)|n ∈ N} based on the ground transfer function.
Let Ω be positive real, and an(r, ω) be a function; an : (0,∞)× [0,Ω] ∋ (r, ω) → C, such that

an(r, ω) ≡
√
r

cos(2πnω/Ω) + ir sin(2πnω/Ω)
(n ∈ N). (2)

Figure 1 shows examples of the function shape |an| for n = 1, 2, and 3; the left panel corresponds to
r = 0.5, and the right panel to r = 2. The number of peaks increases as n increases, and their shape
is controlled by the argument r. Obviously, an becomes an exponential function e−2πinω/Ω when
r = 1, and its absolute value keeps 1 independent of ω.

Operator ⟨f⟩ is defined by the Lebesgue integration of f ∈ L2([0,Ω], ω/Ω), as follows:

⟨f⟩ ≡ 1

Ω

∫
[0,Ω]

fdω. (3)

The L2–norm is denoted by ∥f∥ ≡
√

⟨|f |2⟩, and the inner product of functions f, g ∈ L2 is defined
by the operator ⟨f∗g⟩, where f∗ denotes a complex conjugate of f . I introduce the norm and the
inner product between the members of {an} in order to characterize the sequences.

In the appendix, theorems 1–4 and their proofs are related to properties of the sequence of the
function {an}. Theorem 1 indicates that the norm of each member of {an} is equal to 1. That means
an is normalized in L2 space. Theorem 2 indicates that the inner product of an and 1 is equal to 0
for all n ∈ N.

Let {an}, {bn} be sequences of functions an(ra, ω) and bn(rb, ω), where ra and rb are positive
real. Let {a∗n} be a sequence of complex conjugate functions of an. Theorem 3 gives a property
of the inner products of am and bn, for all m,n ∈ N, and theorem 4 gives a property of the inner
products of a∗m and bn. They indicate that a particular pair of (am, bn) or (a∗m, bn) with the relation
of k + l = odd is orthogonal in terms of the inner product. This property does not depend on the
arguments ra and rb.

I discussed a similar property of the cross terms of two different transfer functions in a previous
study [27]. The cross term was defined by the limit of the inner product; limΩ−→∞⟨h∗

fgf ⟩, which
cannot be the inner product. The analytical discussion applied only when the ratio h/β1 was a
rational number that was still specific in a variety of transfer functions although they are countably
infinite. The sequence of the function {an} is also a countably infinite set, whereas a completion of
the function space spanned by {an} is applied to construct a function space. This naturally extends
the discussion to the case that was excluded in the previous study.
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3. FUNCTION SPACE SPANNED BY {an}, {a∗n} AND {1}

Let M(p, q) be a map; M : N2 ∋ (p, q) → N, such that M(p, q) = 2p−1(2q − 1). I define a subset
ap (p ∈ N+ 0), as follows:

a0 ≡ {1}, (4)
ap ≡ {aM(p,q)| q ∈ N}+ {a∗M(p,q)| q ∈ N} (p ∈ N). (5)

Let X (ap) (p ∈ N+ 0) be a completion function space spanned by ap. An equivalence relation
between f ∈ L2 and g ∈ X (ap) is introduced such that ∥f − g∥ = 0 ⇒ f ∼ g. A function space
X(ap) is defined by X(ap) ≡ {f ∈ L2| ∃g ∈ X (ap) s.t. f ∼ g}. X(ap) is a Hilbert space.

For example, X(a1) is spanned by a1 = {a1, a∗1, a3, a∗3, a5, a∗5, · · · }, and X(a2) by a2 =
{a2, a∗2, a6, a∗6, a10, a∗10, · · · }. Each member of ap1 and ap2 for p1 ̸= p2 is not overlapped (ap1 ∩
ap2 = ϕ), and every an belongs to any one of ap, because the map M is a bijection between N2 and
N. The important property that characterizes the function space is orthogonality, which is derived
from the property of ⟨a∗mbn⟩ and ⟨ambn⟩.

Theorem 5 in the appendix indicates that each pair of the function space X(ap1) and X(ap2)
(p1 ̸= p2) is orthogonal. This means that a function space spanned by {an}+ {a∗n}+ {1} is a
direct sum of the spaces;

⊕∞
p=0 X(ap), and the space is a subset of the entire function space,

L2([0,Ω], ω/Ω).
I define a function series {en}, such that en ≡ e−2πinω/Ω, which is a special case of an, such

that all the arguments r equal to 1. A completion function space spanned by {en}+ {e∗n}+ {1} is
equal to L2 space because the Fourier series is a complete orthonormal system. Let XF

p (p ∈ N) be
a completion function space spanned by {eM(p,q)|q ∈ N}+ {e∗M(p,q)|q ∈ N}, and XF

0 by {1}. L2

is a direct sum of the spaces; L2 =
⊕∞

p=0 X
F
p ⊇

⊕∞
p=0 X(ap). X(ap1) and XF

p2
are orthogonal for

p1 ̸= p2 (theorem 5). Therefore, XF
p ⊇ X(ap) for ∀p ∈ N.

L2 =
⊕∞

p=0 X(ap) is a sufficient condition to give a series expansion with the sequences of
functions to arbitrary functions in L2 space. Theorems 6-8 in the appendix are essential in order
to prove the condition. Let rn(̸= 1) (n ∈ N) be an argument of an, and c2n−1 be a real coefficient
defined by rn, such that

c1 ≡ 1 + r1
2
√
r1

, c2n−1 ≡ −
n−1∑
m=1

⟨e∗2m−1a2n−1⟩
⟨e∗2m−1a2m−1⟩

c2m−1 (n ≥ 2). (6)

Theorem 8 indicates that e1 has a unique series of functions belonging to a1, and its coefficient is
c2n−1. Figure 2 shows an example of a series approximation of e1 up to the order of n = 4, 16, and
64. r is 0.5 for all a2n−1. Each coefficient c2n−1 is evaluated from Eq. (6). The original definition
of e1 is compared to the series approximation for both the real and imaginary parts. As guaranteed
by theorem 8, the series converges well to the original e1 in the figure.

The series expansion corresponding to e1 is generalized to the case en for n ∈ N. Theorem 9 in
the appendix indicates that all the bases en can be represented by a series of functions a(2m−1)n.
This means that en is a member of the function space spanned by a(2m−1)n. e∗n is also represented
by the complex conjugate of a(2m−1)n because c2m−1 is a real coefficient. Therefore, all of the bases
of the Fourier series can be represented by the series of {an}, {a∗n}, and {1}.

Theorem 10 in the appendix indicates that a function space spanned by {an}, {a∗n}, and {1} is
equal to L2 space. This means that {an}+ {a∗n}+ {1} is a complete set of bases for L2 space as
with the Fourier series. This is a notable property of the function sequences, and they can be referred
to bases. The Fourier series of L2 functions converge almost everywhere [28]. Therefore, the series
expansion with the bases is available for all functions in L2 space. This also indicates that X(ap) is
uniquely determined independently of the argument r. The independence allows to be denoted by
Xp without explicitly selecting ap.
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Figure 2. Comparison between e1 and summation of c2n−1a2n−1 up to n = 4, 16, 64 for r = 0.5. (top:
n = 4, middle: n = 16, bottom: n = 64; left: real part of e1, right: imaginary part of e1)

4. SERIES EXPANSION WITH TRANSFER FUNCTION BASES

4.1. Coefficient of series expansion

Let f be a complex function belonging to L2 space. The series expansion with the bases {an} exists
as proved in the previous chapter. Let bn (n ∈ N+ 0) and dm (m ∈ N) be complex coefficients of
the series expansion of f , such that

f = b0 +

∞∑
n=1

bnan +

∞∑
n=1

dna
∗
n. (7)

The objective in this chapter is to find the value of the coefficients.
Let Fn (n ∈ Z) be a Fourier coefficient of f ; f =

∑∞
n=−∞ Fnen. The basis en is represented by

the series of the bases an as proved in theorem 9. Thus, the following series expansion is available
for f .

f = F0 +

∞∑
n=1

∞∑
m=1

Fnc2m−1a(2m−1)n +

∞∑
n=1

∞∑
m=1

F−nc2m−1a
∗
(2m−1)n. (8)

For a given argument r, the expansion is unique. This is because cn is uniquely determined, and the
Fourier coefficients are unique.

Let Pp (p ∈ N+ 0) be an orthogonal projection to Xp. Because L2 is a direct sum of Xp, the
orthogonal decomposition is available; f =

∑∞
p=0 Ppf . Each projection is represented by a series
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of aM(p,q) and a∗M(p,q) as follows:

Ppf =

∞∑
q=1

bM(p,q)aM(p,q) +

∞∑
q=1

dM(p,q)a
∗
M(p,q). (9)

The inner products of Ppf and aM(p,s), Ppf and a∗M(p,s) (s ∈ N) are equivalent to the inner
products with the original function f ; e.g., ⟨a∗M(p,s)Ppf⟩ = ⟨a∗M(p,s)f⟩. Then, the following system
of equations for ∀s ∈ N is available without the projection Pp:

⟨a∗M(p,s)f⟩ =
∞∑
q=1

⟨a∗M(p,s)aM(p,q)⟩ bM(p,q) +

∞∑
q=1

⟨a∗M(p,s)a
∗
M(p,q)⟩ dM(p,q). (10)

⟨aM(p,s)f⟩ =
∞∑
q=1

⟨aM(p,s)aM(p,q)⟩ bM(p,q) +

∞∑
q=1

⟨aM(p,s)a
∗
M(p,q)⟩ dM(p,q). (11)

Let fn be a partial sum of the series up to n; fn = b0 +
∑n

m=1(bmam + dma∗m). The coefficients
and the inner products satisfy the following system of equations for all p ∈ N+ 0:

fnp = Apbp, (12)

where bp and fnp are vectors consisting of the coefficients and inner product with fn, respectively.
Ap is a Gram matrix of aM(p,q). Let qn be the largest natural number satisfying M(p, qn) ≤ n. The
vectors and the matrix are defined as follows:

bp ≡ {bM(p,1), dM(p,1), · · · , bM(p,qn), dM(p,qn)}
T , (13)

fnp ≡ {⟨a∗M(p,1)fn⟩, ⟨aM(p,1)fn⟩, · · · , ⟨a∗M(p,qn)
fn⟩, ⟨aM(p,qn)fn⟩}

T , (14)

Ap ≡


⟨a∗M(p,1)aM(p,1)⟩ ⟨a∗M(p,1)a

∗
M(p,1)⟩ · · · ⟨a∗M(p,1)a

∗
M(p,qn)

⟩
⟨aM(p,1)aM(p,1)⟩ ⟨aM(p,1)a

∗
M(p,1)⟩ · · · ⟨aM(p,1)a

∗
M(p,qn)

⟩
...

...
. . .

...
⟨aM(p,qn)aM(p,1)⟩ ⟨aM(p,qn)a

∗
M(p,1)⟩ · · · ⟨aM(p,qn)a

∗
M(p,qn)

⟩

 . (15)

Because the coefficients bn and dn are unique, |Ap| must be nonzero. This means that all the bases
belonging to Xp are linear independent.

Here, I define a particular finite series f̄n up to n;

f̄n = b̄0 +

n∑
m=1

b̄mam +

n∑
m=1

d̄ma∗m, (16)

where b̄0, b̄m, and d̄m are determined by minimizing the L2-norm; ∥f − f̄n∥ → min. They satisfy
the following system of equations for all p ∈ N+ 0:

fp = Apb̄p, (17)

where b̄p and fp are vectors consisting of the coefficients and inner product with f , respectively.

b̄p ≡ {b̄M(p,1), d̄M(p,1), · · · , b̄M(p,qn), d̄M(p,qn)}
T , (18)

fp ≡ {⟨a∗M(p,1)f⟩, ⟨aM(p,1)f⟩, · · · , ⟨a∗M(p,qn)
f⟩, ⟨aM(p,qn)f⟩}

T . (19)

Because the matrix Ap in Eq. (17) is common to Eq. (12), the inverse matrix exists. Thus, the
coefficients b̄n and d̄n are evaluated from b̄p = A−1

p fp.
f̄n converges in the norm, and it differs from the partial sum fn because fn converges to f almost

everywhere from its definition. bn and dn are directly calculated from cn with Eq. (6) when the
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Figure 3. Comparison between partial sum fn and the approximation f̄n (top left: n = 4, top right: n = 16,
bottom: n = 64).

Table I. Parameter set of Model A.

density [kg/m3] S-wave velocity [m/s] thickness [m]

surface layer #1 1500 200 5.0
surface layer #2 1800 350 27.0

basement 2000 1000 –

Fourier coefficients of f are available. For the general case, f̄n is one of the candidates of the
approximated series for f . Figure 3 shows the comparison between the partial sum fn and the
approximation f̄n for e1. Three patterns of the number of summations (n = 4, 16, 64) are plotted in
each panel. The function shape converges well to Re[e1] as n increases, and the discrepancy between
fn and f̄n decreases. The rigorous proof that limn→∞ f̄n = f almost everywhere may be required
to approximate fn by f̄n, whereas I adopt the approximation to exhibit the series expansion of the
target functions based on the convergence shown in Figure 3.

4.2. Numerical experiments

I perform numerical experiments on the series expansion for ground amplifications. The
amplifications are modeled by a ground transfer function corresponding to three-layered structures,
which consist of two surface layers lying over a half space basement. I artificially create two
structure models, namely Model A and Model B. The detailed properties of each model are shown in
Tables I and II. Internal dampings are absent throughout the materials. The target transfer functions
are numerically calculated from the transfer matrix [25]. The maximum frequency, Ω/2π, is 20 Hz.

The system of equations (Eq. (17)) is numerically solved. The inner products involved in the
vector fp and the matrix Ap are calculated by numerical integration over an interval of 0.0195 Hz;
the frequency range is discretized into 1024 sections. The number of summations is n = 512, and
the argument of the basis is r = 0.5. The sum of the effective terms is also calculated. The top five
terms are selected from the absolute values of the coefficients, and they are summed up.
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8 H. GOTO

Table II. Parameter set of Model B.

density [kg/m3] S-wave velocity [m/s] thickness [m]

surface layer #1 1500 180 20.0
surface layer #2 1800 500 12.0

basement 2000 1000 –

Table III. Coefficients of the top 5 terms (r = 0.5).

Model A Model B

basis coefficient basis coefficient

#1 a2 4.2224− 0.5627i a3 2.2417 + 3.2029i
#2 a3 −1.7306 + 0.2508i a7 −2.0584 + 1.0492i
#3 a7 1.4030− 0.6319i a9 1.4234 + 0.7441i
#4 a5 −1.0732 + 0.3754i a2 −0.9818− 1.2507i
#5 a11 −0.5584 + 0.4951i a13 0.3380 + 1.0907i
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Figure 4. Comparison of absolute values among the target ground transfer function, approximated series,
and sum of the top 5 terms (r = 0.5) (left: Model A, right: Model B).

Figure 4 shows the absolute value of the target transfer functions for Model A and Model B,
respectively. They are compared to the approximated series f̄n. For both cases, the series represents
the target functions well. Note that the approximation series represents the discrepancy between the
values at 0 and 20 Hz for Model B. The figures also show the sum of the top five terms. Table III
lists the coefficients of the top five terms. The summations represent some features such as the peak
and valley frequencies. Figure 5 shows the absolute values of the coefficients in the order of n. The
effective terms are allocated around the lower order of n, and the absolute values decrease as n
increases.

The lowest peak frequencies for the target functions of Model A and B are 2.8 Hz and 2.1 Hz. On
the other hand, the most effective bases are a2 for Model A and a3 for Model B, and the lowest peak
frequencies are 2.5 Hz and 1.6 Hz, respectively. They can give the associated transfer functions
for the two-layered structure represented by Eq. (1). The parameters related to the frequency are
calculated as h/β1 = 0.1s and 0.15s, respectively. Physically, h/β1 denotes the one-way travel time
from the surface to the basement. Figure 6 shows the plots of the one-way travel time from the
free surface to the basement against the impedance ratio. The sum of the selected terms from the
series cannot generally define the associated diagram; only the single terms/bases give the associated
diagram defined by Eq. (1). Therefore, the diagrams for the target models and the most effective
bases are compared. This implies that the effective basis detects the important feature, the one-way
travel time of the three-layered models.
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Figure 5. Absolute values of coefficients b̄n and d̄n (left: Model A, right: Model B).
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Figure 6. Plots of the one-way travel time to the basement against the impedance ratio. Comparison between
target and corresponding models for the most effective basis (left: Model A, right: Model B).

5. APPLICATION: PHYSICS-BASED DECOMPOSITION WITH SIMPLE TRANSFER
FUNCTIONS

5.1. Decomposition procedure

The complete set of the bases is defined when the upper bound of the domain Ω is given. The
minimum frequency that will give the peak for the absolute value of the basis is ωn = Ω/4n for
an. The frequency physically means the lowest resonance frequencies and the fundamental shaking
mode of the two-layered structure corresponding to the basis. The maximum value of the frequencies
is ω1 = Ω/4. I assume that the target amplification, e.g., generated from the more complex structure,
contains several peaks, and the frequencies exceed Ω/4. The series expansion exists, whereas the
set of the bases cannot include the physically consistent bases corresponding to the peak frequency
exceeding Ω/4. This indicates that the upper bound Ω should be assigned so that the set of the bases
includes the physically consistent bases.

The argument r controls the sharpness around the peaks, and it physically represents the
impedance ratio between the basement and surface layers of its corresponding model. Although
the series expansion is available for arbitrary values of r, the selection of r is also essential for the
physics-based series expansion. As an example, I exhibit the plots of the one-way travel time to the
basement against the impedance ratio in Fig. 6. The model for the most effective bases enhances
the region with material contrast, whereas the magnitude of the contrast cannot be determined only
from the series expansion. Its determination requires additional criteria.

Copyright c⃝ 2014 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (2014)
Prepared using eqeauth.cls DOI: 10.1002/eqe



10 H. GOTO

Here, I propose a technique to determine the parameters Ω and r, and the series expansion based
on the parameters is named physics-based decomposition. I discuss its performance with some
numerical examples.

In the first stage, I find out physically consistent bases that should be included in the series
expansion. When there are some candidates based on prior information, e.g., when a rough velocity
structure is available, they should be adopted. In the other cases, I search them by fitting the peak
shapes and frequencies. Let Hf (ω) be a target amplification defined in the domain [0,Ω′]. I define
the candidates of the bases hm

f (r, ω), and measure the fitness Jm(r), as follows:

hm
f (r, ω) ≡

√
r

cos(2πω/mdΩ) + ir sin(2πω/mdΩ)
(m ∈ N), (20)

Jm(r) ≡
∫ Ω′

0
|Hf (ω)− hm

f (r, ω)|2dω√∫ Ω′

0
|Hf (ω)|2dω

√∫ Ω′

0
|hm

f (r, ω)|2dω
, (21)

where dΩ is positive real, and represents an interval that defines the sequence {hm
f }.

Let {(m1, r1), (m2, r2), · · · , (mK , rK)} be parameter sets that give the local minimum of Jm(r)
in (m, r) ∈ N× (0,∞). K denotes the number of sets selected from the local minimums. When
the bases are selected from prior information, without searching the local minimums of Jm(r), the
corresponding sets of (mk, rk) (k ∈ {1, · · · ,K}) and dΩ are evaluated so that the peak frequencies
and the impedance ratio are the same.

In the second stage, the upper bound of the domain Ω is determined. Let {m̄1, · · · , m̄K} be a
coprime set so that mk = pm̄k, where p is a common factor (p ∈ N). Ω and the corresponding
indexes of the bases nk are evaluated, as follows:

Ω = p

K∏
k=1

m̄kdΩ, (22)

nk =
1

m̄k

K∏
l=1

m̄l. (23)

Following the representation, the complete bases {an}+ {a∗n}+ {1} for L2([0,Ω], dω/Ω) includes
{an1 , · · · , anK

}, and they are equal to {h1
f , · · · , hK

f }, respectively. Therefore, the series expansion
with the set of bases contains the physically consistent terms.

However, in reality, the upper bound Ω′ of the amplification is usually defined by some other
limitations, e.g., the frequency property of the sensors, signal levels of high frequency, etc. When
Ω defined by Eq. (22) exceeds Ω′, the amplification in the outer domain ω ∈ (Ω′,Ω] is not available
. If some prior information and/or physics-based suggestions are available, I can apply them to
define the amplification in the domain. For general cases, a method for defining the amplification is
required.

In the third stage, a regularized decomposition of the target function is found. I propose the
following minimization problem to find the optimum set of coefficients {b0, b1, · · · , bn} and
{d1, · · · , dn};

J = J1 + εJ2 −→ min . (24)

J1 =
1

Ω′

∫ Ω′

0

|Hf (ω)− b0 −
n∑

m=1

bmam +

n∑
m=1

dma∗m|2dω, (25)

J2 = |b0|2 +
n∑

m=1

|bm|2 +
n∑

m=1

|dm|2 −
K∑

k=1

|bnk
|2. (26)

The first term J1 represents the residual between the target Hf and the series defined in the domain
[0,Ω′]. The second term J2 aims to minimize the coefficients except those of physically consistent
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Figure 7. Contour maps of Jm(r) (Eq. (21)). The horizontal axis represents the peak frequency of hmf .
The circle and square symbols denote the locations of the first and second peaks of the local minimums,

respectively (left: Model A, right: Model B).

bases, and it regularizes the ill-posedness due to the uncertainty in the outer domain. When Ω′ equals
Ω, J2 is not required, and the minimization problem is equivalent to the convergence condition in
the norm of the series expansion. ε in Eq. (24) represents the weight of the contribution from J1
and J2. Several techniques have been proposed to identify the value of ε, e.g., information criteria
[29, 30], etc. Here, I adopt the L-curve criterion [31] between J1 and J2, and determine the value of
ε.

5.2. Example 1: Application to Model A and Model B

In order to clarify the performance of the proposed decomposition, I also apply it to Model A and
Model B, which are the same models adopted in the previous section.

In the first stage, physically consistent bases are selected based on the measure Jm(r). Ω′/2π
is set to 20 Hz, the same value used in the previous examples. Figure 7 shows the contour maps
of Jm(r) with respect to the peak frequency and r of hm

f . A light color means smaller values of
Jm(r). Because the peak frequency fpeak is evaluated from the index m: fpeak = mdΩ/8π, the maps
indicate the local minimums of Jm(r) in the (m, r) domain. The circle and square symbols on
the map denote the location of the smallest and the next smallest peaks of the local minimums,
respectively. I select the bases corresponding to the two smallest peaks for the physically consistent
bases. For Model A, the peaks are estimated at (fpeak, r) = (2.5 Hz, 0.28) and (11.875 Hz, 0.12),
and the corresponding m values are m1 = 64 and m2 = 304. For Model B, the peaks are (fpeak, r) =
(1.875 Hz, 0.3) and (9.6875 Hz, 0.12), and the corresponding m values are m1 = 48 and m2 = 248.
dΩ = Ω′/128 Hz is adopted in both cases. In the second-stage procedure, the upper bound of the
domain Ω and the indexes of bases n are estimated as Ω/2π =190 Hz, n1 = 19, and n2 = 4 for
Model A, and Ω/2π =232.5 Hz, n1 = 31, and n2 = 6 for Model B.

Based on the selected bases and the parameters, the physics-based decomposition is obtained by
solving the optimization problem Eq. (24). In this decomposition, I adopt the same r value for the
bases belonging to the same function space Xp, and r = 1.0 for the other bases in order to enhance
the contribution from the selected bases. Figure 8 shows the L-curves that represent the trade offs
between the norm J1 and J2 evaluated from the given values of ε. Based on the L-curve criterion,
a suitable value of ε appears at the corner of the curve. In this example, I select ε = 0.005 for both
Model A and Model B, which are located on the corner of the L-curves.

Table IV lists the coefficients for the physically consistent bases, and Fig. 9 shows the comparison
between the target ground transfer functions and the function reconstructed from the sum of the
two physically consistent bases. For Model A, the contribution from the first basis is about 3.4
times larger than that from the second basis in terms of the absolute value of the coefficients; for
Model B, the contribution is about 4.7 times larger. If the ratio reflects the contribution of the
derived two-layered model corresponding to each basis, the second basis is less effective as the
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Table IV. Coefficients of physically consistent bases.

Model A Model B

basis r coefficient basis r coefficient

#1 a19 0.28 3.8046− 0.4611i a31 0.30 4.0568− 0.2337i
#2 a4 0.12 1.0836 + 0.3683i a6 0.12 0.8214− 0.2764i
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Figure 9. Comparison of absolute values between the target ground transfer function and the sum of
physically consistent bases (left: Model A, right: Model B).
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Table V. Parameter set of randomly generated models.

density [kg/m3] S-wave velocity [m/s] damping coefficient thickness [m]

surface layer #1 1500 200 0.02 10.0
surface layer #2–#6 1500–2000 200–1000 0.02 variable†

basement 2000 1000 0 –
† Thickness is determined so that the one-way travel time from the basement to the top remains 0.5 s.
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Figure 11. Target ground transfer functions (left) and plots of the one-way travel time against the impedance
ratio (right) for randomly generated 100 models. Solid and dotted lines labeled rave = 0.15 and 1.00 are for

the extreme cases.

target transfer function for Model B. Although representations of the target transfer functions are
not precise, it is noteworthy that they are constructed from the summation of only two simple transfer
functions. The lowest peak frequencies, which are features that characterize the amplification, are
well approximated in both cases.

Figure 10 shows the plots of the one-way travel time to the basement against the impedance ratio,
and they are compared to the two-layered models corresponding to the selected bases. For Model A,
the first basis represents the material boundary on the basement well, and the second basis also
represents it well between the first and second layers. The estimated impedance ratio is correlated
well with the target impedance ratio in the surface layers. For Model B, the first basis represents the
material boundary on the basement well. On the other hand, the second basis is not directly related
to the material boundary. As described above, the contribution from the second basis is less than in
the case of Model A in terms of the coefficients, which may explain the results.

In Figure 7, the contour map for Model B indicates another candidate for the second smallest
peaks at fpeak = 16.25 Hz, instead of fpeak = 9.6875 Hz, as the selected bases. I identified the
coefficients of the bases with the same procedure, and compared the transfer functions and the plots
of the one-way travel times in Figs. 9–10. The results are almost the same as for the original selected
bases. This implies that the selections of the local minimums from the contour maps may not be
essential if the peak values are similar, though verifying this requires a more precise investigation.

5.3. Example 2: Application to quantification of model similarity

I assume two-layered models, M1 and M2, with the same density and S-wave velocities for both
the surface layer and the basement, but with different layer thicknesses of the layer, h1 and h2

(h1 > h2). I also assume another multi-layer model, M, with the same physical constants above h2

and below h1 with M1 and M2, and with arbitrary values within the depth from h2 to h1. M1 and
M2 belong to the set of M, whereas the ground transfer functions corresponding to M1, M2, and
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Figure 12. Absolute value of coefficients for the selected bases plotted against the impedance ratio of their
average within the intermediate surface layers.

M do not generally coincide. Here, I want to quantify the similarity of M to M1 and M2. In the
previous example, the coefficient of the bases for the series expansion was related to its contribution
to the amplification. Therefore, quantification of the similarity from their ground transfer functions
by using the series expansion may be possible. In this example, I checked the availability of the
series expansion via randomly generated multi-layered models.

The model consists of six surface layers lying over a half space basement. The detailed properties
are shown in Table V. The density and S-wave velocity of the intermediate surface layers #2–#6 are
randomly generated through a uniform distribution in the range 1500–2000 kg/m3 for the density
and 200–1000 m/s for the S-wave velocity. The density and velocity are sorted in ascending order
from the top. The thickness of each layer is determined so that the one-way travel time from the
basement to the top remains 0.125 s. In this example, internal damping is considered in the surface
layers.

The models are characterised by a single index rave defined by the weighted average of the
impedance ratio over the intermediate layers #2–#6, whose weight corresponds to the thickness
of each layer. The lower extreme case that takes the lowest values is referred to as rave = 0.15,
and the higher case is referred to as rave = 1.00. Both these extreme cases correspond to a two-
layered model with different depths to the basement, 25m for rave = 0.15 and 10m for rave = 1.00.
Therefore, I adopt the two transfer functions excluding the internal damping for the physically
consistent bases an1 and an2 , and calculate their contributions for the randomly generated models.

I generate 100 random models, and calculate the amplification based on the models. Figure 11
shows the amplifications and models represented by the plot between the one-way travel time to the
basement and the impedance ratio. The amplifications and models for the extreme cases rave = 0.15
and 1.00 are also plotted. The randomly generated models have a variety of impedance ratios in
the range 0.05–0.125 s for the one-way travel time, while the extreme cases give their upper and
lower bounds. The amplifications calculated from the models vary greatly in amplitude and peak
frequency.

Figure 12 shows the absolute values of the coefficients for the selected bases an1 and an2 , which
correspond to the lowest (rave = 0.15) and highest (rave = 1.00) extreme cases. Each result plots
the coefficients against the impedance ratio rave. The results show a good correlation between
the impedance ratio and the coefficients. As the impedance ratio increases, the absolute values of
the coefficients for an1 decrease, and those for an2 increase. This indicates that the contribution
represented by the coefficients of the series expansion related to the similarity of the model in terms
of the impedance ratio. It enhances the physical meanings of the series expansion based on the
physically consistent bases.
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6. CONCLUSION

A sequence of functions {an} is defined based on a simple ground transfer function of a two-layered
structure. A completion function space spanned by {an}, {a∗n}, and {1} (∀n ∈ N) is mathematically
proved to be equal to L2 space. This means that the functions are the normal bases in L2 space, and
that 　 all functions belonging to L2 space have a unique series expansion. This ensures that the
expansion can be used to preprocess an arbitrary ground amplification. The basis has an argument r.
For r = 1, they are equal to the bases of the Fourier series. This indicates that the basis is a natural
extension of the Fourier bases, although its orthogonality only exists between the bases of Xp1 and
Xp2 . Numerical experiments show that the series expansion extracts the important features of the
target amplification.

In practice, the expansion requires the observed ground amplification. It is directly observable
from the spectral ratio of the Fourier spectra at the target site to that at a reference rock site [13].
When the observations are available, the expansion is applicable even for the site response including
a 3D basin effect as the preprocessing, whereas it requires a more precise investigation of what the
extracted components physically means for the general cases.

I apply the series expansion to the physics-based decomposition of the amplification. The results
indicate that the contribution from the given bases can be represented by the absolute value of their
coefficients. The contribution may enable direct quantification of the similarity of models. This
property potentially has wide applications, e.g., spatial interpolation of the amplifications from the
sites where they are reliably determined, stochastic modeling of the amplification as a mixed state
of the fundamental simple states, etc. The detailed application is currently under way.
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APPENDIX A. THEOREMS AND PROOFS

Theorem 1
∀n ∈ N; ∥an∥ = 1.

Proof
∀n ∈ N;

⟨|an|2⟩ =
1

Ω

∫ Ω

0

r

cos2(2πnω/Ω) + r2 sin2(2πnω/Ω)
dω =

1

2π

∫ 2π

0

r

cos2 ω̃ + r2 sin2 ω̃
dω̃ = 1, (27)

where ω̃ = 2πnω/Ω. Thus, ∥an∥ =
√

⟨|an|2⟩ = 1.

Theorem 2
∀n ∈ N; ⟨an⟩ = 0.

Proof
∀n ∈ N;

⟨an⟩ =
1

Ω

∫ Ω

0

√
r

cos(2πnω/Ω) + ir sin(2πnω/Ω)
dω =

1

2π

∫ 2π

0

√
r

cos ω̃ + ir sin ω̃
dω̃. (28)

For r = 1, ⟨an⟩ = 0. For r ̸= 1, let z be a complex eiω̃ located on a unit circle C on the complex plane. The
above integral is allowed to be a contour integral along C.

⟨an⟩ =
1

2πi

∮
C

2
√
r

1+r

z2 + 1−r
1+r

dz. (29)

Copyright c⃝ 2014 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (2014)
Prepared using eqeauth.cls DOI: 10.1002/eqe



SERIES EXPANSION WITH SIMPLE GROUND TRANSFER FUNCTIONS 17

The poles of the integrand are located at ±i
√

1− r/1 + r (r < 1), or ±
√

r − 1/1 + r (r > 1). The residues
corresponding to the poles have the same absolute value and opposite signs, so the integration vanishes.
Then, ⟨an⟩ = 0.

Theorem 3
∀m,n ∈ N; ⟨a∗mbn⟩ = 0 for k + l = odd, s.t. (k, l) are a coprime set of (m,n).

Proof
∃p ∈ N, s.t. m = pk and n = pl. Let zp be a complex e2πipω/Ω. ⟨a∗mbn⟩ is represented by a contour integral
along the unit circle C, as follows:

⟨a∗mbn⟩ =
1

2πi

∮
C

2
√
ra

(1− ra)zkp + (1 + ra)z
−k
p

2
√
rb

(1 + rb)z
l
p + (1− rb)z

−l
p

z−1
p dzp. (30)

Let S(zp) be an integrand of Eq. (30).

1. ra = rb = 1.
S(zp) = zk−l−1

p . (31)

The contour integral, Eq. (30), gives 1 only for the case k = l, and 0 for the other cases. k and l
should be 1 for k = l because they are a coprime set. Thus, ⟨a∗mbn⟩ = 0 for k ̸= l, and ⟨a∗mbn⟩ = 1
for k = l = 1.

2. ra = 1, rb ̸= 1.

S(zp) =

2
√
rb

1+rb

z2lp + 1−rb
1+rb

zk+l−1
p (32)

Poles are located at zp = w+
q or w−

q , such that

w+
q =

(
rb − 1

1 + rb

)1/2l

eπiq/l for rb > 1, (33)

w−
q =

(
1− rb
1 + rb

)1/2l

eπi(2q−1)/2l for rb < 1 (34)

where q ∈ {1, · · · , 2l}. ∀q ∈ {1, · · · , l}; w±
q+l = −w±

q . The residues corresponding to w+
q and w−

q

are represented as follows,

Reszp=w±
q
[S(zp)] = −

√
rb

l(1− rb)
w±
q
k+l

. (35)

For k + l = odd, the sum of the residues corresponding to w±
q and w±

q+l vanishes. Thus, ⟨a∗mbn⟩ = 0

for k + l = odd, and ⟨a∗mbn⟩ = −2
√
rb/l(1− rb)

∑l
q=1 w

±
q
k+l for k + l = even. The sum is non-

zero only for the case (k, l) = (2s− 1, 1) for all s ∈ N, and then

⟨a∗mbn⟩ = −
2
√
rb

1− rb

(
rb − 1

1 + rb

)s

. (36)

3. ra ̸= 1, rb = 1.

S(zp) =

2
√
ra

1−ra

z2kp + 1+ra
1−ra

zk−l−1
p . (37)

The poles inside the unit circle C are located at zp = 0 for k ≤ l. The following power series converges
because of |1− ra/1 + ra| < 1.

z−k+l+1
p S(zp) =

2
√
ra

1 + ra

∞∑
q=0

(
ra − 1

1 + ra

)q

z2kqp . (38)

The (l − k)th order differential of z−k+l+1
p S(zp) is derived, as follows:

dl−k

dzl−k
p

[z−k+l+1
p S(zp)] =

2
√
ra

1 + ra

∑
q>[(l−k)/2k]

(2kq)!

(2kq + k − l)!

(
ra − 1

1 + ra

)q

z2kq+k−l
p . (39)
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Then, residue of S(zp) is nonzero only for the case (l − k)/2k ∈ N+ 0. That is l = (2s− 1)k for all
s ∈ N. Thus, ⟨a∗mbn⟩ = 2(l − 1)!

√
ra/(1 + ra)(ra − 1/1 + ra)

(l−1)/2 only for (k, l) = (1, 2s− 1)
(s ∈ N), and ⟨a∗mbn⟩ = 0 for the other cases.

4. ra ̸= 1, rb ̸= 1.

S(zp) =

4
√
rarb

(1−ra)(1+rb)(
z2kp + 1+ra

1−ra

) (
z2lp + 1−rb

1+rb

) zk+l−1
p . (40)

The poles inside the unit circle C are located at zp = w+
q or w−

q defined by Eqs. (33)–(34). The
residue corresponding to w±

q is

Reszp=w±
q
[S(zp)] = −

2
√
rarb

l(1− ra)(1− rb)

w±
q
k+l

w±
q
2k

+ 1+ra
1−ra

. (41)

∀q ∈ {1, · · · , l}; w±
q+l

2k
= w±

q
2k. For k + l = odd, the sum of the residues corresponding to w±

q and
w±
q+l vanishes. Thus, ⟨a∗mbn⟩ = 0 for k + l = odd, and

⟨a∗mbn⟩ = −
4
√
rarb

l(1− rb)

l∑
q=1

w±
q
k+l

(1− ra)w
±
q
2k

+ 1 + ra
(42)

for k + l = even.

From the results in all the cases 1–4, ⟨a∗mbn⟩ = 0 for k + l = odd.

Theorem 4
∀m,n ∈ N; ⟨ambn⟩ = 0 for k + l = odd, s.t. (k, l) are a coprime set of (m,n).

Proof
∃p ∈ N, s.t. m = pk and n = pl. Let zp be a complex e2πipω/Ω. ⟨ambn⟩ is represented by a contour integral
along the unit circle C, as follows:

⟨ambn⟩ =
1

2πi

∮
C

2
√
ra

(1 + ra)zkp + (1− ra)z
−k
p

2
√
rb

(1 + rb)z
l
p + (1− rb)z

−l
p

z−1
p dzp. (43)

Let S(zp) be an integrand of Eq. (43).

1. ra = rb = 1.
S(zp) = z−k−l−1

p . (44)

The order of the pole is larger than 1. Thus, ⟨ambn⟩ = 0 for all k, l.
2. ra = 1, rb ̸= 1.

S(zp) =

2
√
rb

1+rb

z2lp + 1−rb
1+rb

z−k+l−1
p . (45)

The following power series converges because of |1− rb/1 + rb| < 1.

S(zp) =
2
√
rb

1 + rb

∞∑
q=0

(
rb − 1

1 + rb

)q

z
−k−(2q+1)l−1
p . (46)

For all k, l, the residue is 0. Thus, ⟨ambn⟩ = 0 for all k, l.
3. ra ̸= 1, rb = 1.

S(zp) =

2
√
ra

1+ra

z2kp + 1−ra
1+ra

zk−l−1
p . (47)

The above representation is identical to Eq. (45). Thus, ⟨ambn⟩ = 0 for all k, l.
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4. ra ̸= 1, rb ̸= 1.

S(zp) =

4
√
rarb

(1+ra)(1+rb)(
z2kp + 1−ra

1+ra

) (
z2lp + 1−rb

1+rb

) zk+l−1
p . (48)

Poles are located at zp = w+
qa or w−

qa , and zp = w+
qb or w−

qb , such that

w+
qa =

(
ra − 1

1 + ra

)1/2k

eπiqa/k for ra > 1, (49)

w−
qa =

(
1− ra
1 + ra

)1/2k

eπi(2qa−1)/2k for ra < 1 (50)

w+
qb =

(
rb − 1

1 + rb

)1/2l

eπiqb/l for rb > 1, (51)

w−
qb =

(
1− rb
1 + rb

)1/2l

eπi(2qb−1)/2l for rb < 1 (52)

where qa ∈ {1, · · · , 2k}, qb ∈ {1, · · · , 2l}. ∀qa ∈ {1, · · · , k}; w±
qa+k = −w±

qa . ∀qb ∈ {1, · · · , l};
w±
qb+l = −w±

qb .

(a) All poles are of order 1.
The residues corresponding to w±

qa and w±
qb are

Reszp=w±
qa
[S(zp)] = −

2
√
rarb

k(1− ra)(1 + rb)

w±
qa

k+l

w±
qa

2l
+ 1−rb

1+rb

(53)

Reszp=w±
qb

[S(zp)] = −
2
√
rarb

l(1 + ra)(1− rb)

w±
qb

k+l

w±
qb

2k
+ 1−ra

1+ra

. (54)

For k + l = odd, the sum of the residues corresponding to w±
qa and w±

qa+k vanishes, and the sum
of the residues corresponding to w±

qb and w±
qb+l also vanishes. Thus, ⟨ambn⟩ = 0 for k + l =

odd, and

⟨ambn⟩ = −
4
√
rarb

k(1− ra)

k∑
qa=1

w±
qa

k+l

(1 + rb)w
±
qa

2l
+ 1− rb

−
4
√
rarb

l(1− rb)

l∑
qb=1

w±
qb

k+l

(1 + ra)w
±
qb

2k
+ 1− ra

(55)

for k + l = even.
(b) Poles of order 2 exist.

Poles of order 2 exist in case (1− ra/1 + ra)
1/2k = (1− rb/1 + rb)

1/2l for ra, rb < 1, or in
case (ra − 1/1 + ra)

1/2k = (rb − 1/1 + rb)
1/2l for ra, rb > 1.

i. ra, rb < 1
Poles of order 2 exist only for k + l = odd, and are located at zp = ±w−, such that

w− = i
(
1− ra
1 + ra

)1/2k

= i

(
1− rb
1 + rb

)1/2l

. (56)

Let Q−(z) be a polynomial function defined by

Q−(z) =

k∏
qa=1,qa ̸=(k+1)/2

(z2 − w−
qa

2
)

l∏
qb=1,qb ̸=(l+1)/2

(z2 − w−
qb

2
),

(57)
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and the residues are represented, as follows:

Reszp=w− [S(zp)] =
4
√
rarbw

−k+l−2

(1 + ra)(1 + rb)

(k + l − 1)Q−(w−)− w−Q′
−(w−)

Q2
−(w−)

(58)

Reszp=−w− [S(zp)] =
4
√
rarb(−w−)

k+l−2

(1 + ra)(1 + rb)

(k + l − 1)Q−(w−)− w−Q′
−(w−)

Q2
−(w−)

.

(59)

The sum of the two residues vanishes because k + l is odd.
ii. ra, rb > 1

Poles of order 2 are located at zp = ±w+, such that

w+ =
(
ra − 1

1 + ra

)1/2k

=

(
rb − 1

1 + rb

)1/2l

. (60)

Let Q+(z) be a polynomial function defined by

Q+(z) =

k−1∏
qa=1

(z2 − w+
qa

2
)

l−1∏
qb=1

(z2 − w+
qb

2
), (61)

and the residues are represented, as follows:

Reszp=w+ [S(zp)] =
4
√
rarbw

+k+l−2

(1 + ra)(1 + rb)

(k + l − 1)Q+(w+)− w+Q′
+(w+)

Q2
+(w+)

(62)

Reszp=−w+ [S(zp)] =
4
√
rarb(−w+)

k+l−2

(1 + ra)(1 + rb)

(k + l − 1)Q+(w+)− w+Q′
+(w+)

Q2
+(w+)

.

(63)

For k + l = odd, the sum of the two residues vanishes.
The other poles give the residues represented by Eqs. (53)–(54). Thus, ⟨ambn⟩ = 0 for k + l =
odd.

From the results in all the cases 1–4, ⟨ambn⟩ = 0 for k + l = odd.

Theorem 5
p1 ̸= p2, ∀p1, p2 ∈ N+ 0; X(ap1) ⊥ X(ap2).

Proof
Assume p1 > p2 without loss of generality. For p2 = 0, ∀n ∈ N; ⟨an⟩ = 0 (theorem 2). Thus,
X(ap1) ⊥ X(a0). For p2 > 0, X(ap1) is spanned by {aM(p1,q1), a

∗
M(p1,q1)

| q1 ∈ N}, and X(ap2) by
{aM(p2,q2), a

∗
M(p2,q2)

| q2 ∈ N}. A coprime set of M(p1, q1) and M(p2, q2) is 2p1−p2(2q̃1 − 1) and 2q̃2 − 1,
where 2q̃1 − 1 and 2q̃2 − 1 are a coprime set of 2q1 − 1 and 2q2 − 1. The sum is odd for any pairs of p1, p2,
q1, and q2, because 2p1−p2 is always even. Then, every inner product between the members in ap1 and ap2

is orthogonal (theorems 3 and 4). Thus, X(ap1) ⊥ X(ap2).

Theorem 6
r2n−1 = r (∀n ∈ N). Then, the following series converges absolutely.

∞∑
n=1

|c2n−1|. (64)

Proof
Let {q1, . . . , qN} be prime factors of 2n− 1, such that 2n− 1 =

∏N
l=1 ql, and q1 ≤ q2 ≤ · · · ≤ qN . Let

S2n−1 be the set of all combinations of the product of any selection from {q1, . . . , qN}. Duplication of
members in S2n−1 is not allowed. ⟨e∗2m−1a2n−1⟩ is nonzero for ∃s ∈ N, such that (2s− 1)(2m− 1) =
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2n− 1 (2. in proof of theorem 3). Thus, ∀n ≥ 2;

c2n−1 = −1 + r

2
√
r

(
r − 1

1 + r

)n−1

−
∑

q∈S2n−1\{2n−1}

cq

(
r − 1

1 + r

) 1
2

(
2n−1

q −1
)
. (65)

If 2n− 1 is a prime number, S2n−1 = {2n− 1}. Then, c2n−1 = − 1+r
2
√
r

(
r−1
1+r

)n−1
. For the other cases,

∃C2n−1 ∈ (0,∞), such that

|c2n−1| < C2n−1|c2n−1/q1 |
∣∣∣r − 1

1 + r

∣∣∣ 1
2 (q1−1)

. (66)

The relation is recursively applied to |c2n−1/q1 |, |c2n−1/q1q2 |, etc. Thus, |c2n−1| satisfies the following
condition, ∃C ∈ (0,∞), such that

|c2n−1| < C
∣∣∣r − 1

1 + r

∣∣∣ 1
2 (

∑N
l=1 ql−N)

. (67)

From the theorem of prime factorization, the upper limit of N is log(2n− 1)/ log 3, and the lower limit
of

∑
ql is 3 log(2n− 1)/ log 3. Therefore, ∀n ∈ N; ∃C ∈ (0,∞), such that

|c2n−1| < C
∣∣∣r − 1

1 + r

∣∣∣log(2n−1)/ log 3

. (68)

Thus, d’Alembert’s ratio test (|c2n+1/c2n−1| < 1) indicates that
∑∞

n=1 |c2n−1| converges absolutely.

Theorem 7
r2n−1 = r (∀n ∈ N). Then, the following series uniformly converges

∞∑
n=1

c2n−1a2n−1. (69)

Proof
∀n ∈ N; |a2n−1| ≤ max(

√
r, 1/

√
r) < ∞. Then, ∃A ∈ (0,∞), such that

∞∑
n=1

|c2n−1a2n−1| ≤ A

∞∑
n=1

|c2n−1|. (70)

From theorem 6,
∑∞

n=1 |c2n−1| converges absolutely. Thus, the series (69) uniformly converges.

Theorem 8
r2n−1 = r (∀n ∈ N) ⇒

e1 =

∞∑
n=1

c2n−1a2n−1. (71)

Proof
Let d2n−1 be a complex coefficient. Assume e1 =

∑∞
n=1 d2n−1a2n−1, and also assume its uniform

convergence. ⟨e1e∗1⟩ = d1⟨a1e∗1⟩ = 1, and

⟨e1e∗2n−1⟩ =
n∑

m=1

d2m−1⟨a2m−1e
∗
2n−1⟩ = 0 (72)

for n ≥ 2. Then, dn = cn (n ∈ N). The series uniformly converges as proved in theorem 7.

Theorem 9
rn = r (∀n ∈ N) ⇒

en =

∞∑
m=1

c2m−1a(2m−1)n (∀n ∈ N). (73)
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Proof
Let e1(ω) and a2m−1(ω) be defined in ω ∈ [0, nΩ] (n ∈ N), and ωn = ω/n. From the definition, e1(ω) for
ω ∈ [0,Ω] is equal to e1(nΩ+ ω) (n ∈ N), and a2m−1(ω) = a2m−1(nΩ+ ω). This indicates that the series
expansion of e1 (theorem 8) can be defined in ω ∈ [0, nΩ]. e1(nωn) and a2m−1(nωn) are equal to en(ωn)
and a(2m−1)n(ωn), respectively. Thus, the series expansion by Eq. (73) is available for ω ∈ [0,Ω].

Theorem 10
rn = r (∀n ∈ N) ⇒

⊕∞
p=0 X(ap) = L2.

Proof
∀p, q ∈ N; eM(p,q) =

∑∞
m=1 c2m−1a(2m−1)M(p,q) (theorem 9). ∀m, q ∈ N; ∃qm ∈ N, such that 2qm −

1 = (2q − 1)(2m− 1). Then, a(2m−1)M(p,q) is a basis belonging to X(ap) because of M(p, qm) = (2m−
1)M(p, q). Thus, all the bases eM(p,q) in XF

p can be represented by a series of the bases in X(ap). This
indicates X(ap) ⊇ XF

p . Therefore, X(ap) = XF
p for all p ∈ N. Thus,

⊕∞
p=0 X(ap) = L2.
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