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Abstract For the minimum cost flow problem, Hassin (1983) proposed a dual algorithm, which iteratively
updates dual variables in a steepest ascent manner. This algorithm is generalized to the minimum cost
submodular flow problem by Chung and Tcha (1991). In discrete convex analysis, the dual of the minimum
cost flow problem is known to be formulated as maximization of a polyhedral L-concave function. It
is recently pointed out by Murota and Shioura (2014) that Hassin’s algorithm can be recognized as a
steepest ascent algorithm for polyhedral L-concave functions. The objective of this paper is to show some
monotonicity properties of the steepest ascent algorithm for polyhedral L-concave functions. We show that
the algorithm shares a monotonicity property of Hassin’s algorithm. Moreover, the algorithm finds the
“nearest” optimal solution to a given initial solution, and the trajectory of the solutions generated by the
algorithm is a “shortest” path from the initial solution to the “nearest” optimal solution. The algorithm
and its properties can be extended for polyhedral L♮-concave functions.

Keywords: Combinatorial optimization, discrete concave function, steepest ascent al-
gorithm, minimum cost flow, discrete optimization

1. Introduction

Among many algorithms for the minimum cost flow problem (see, e.g., [1, 17]), Hassin’s
dual algorithm [6] is unique in that it maintains only dual variables, while most of the
other algorithms use primal (i.e., flow) variables. Hassin’s algorithm iteratively chooses a
subset of dual variables that corresponds to a graph cut and increments them so that the
dual objective function increases strictly. It is shown in [6] that the sequence of solutions
generated by the algorithm has a certain monotonicity property, from which the finite
termination of the algorithm follows. Hassin’s algorithm is later generalized to the minimum
cost submodular flow problem by Chung and Tcha [2].

In discrete convex analysis [9, 10], the dual of the minimum cost (submodular) flow
problem is known to be formulated as the maximization of a polyhedral L-concave function.
The concept of polyhedral L-concave functions in real variables was introduced by Murota
and Shioura [12] as a variant of L-concave functions originally defined for functions on
integer lattice points. It is pointed out in [13] that Hassin’s algorithm as well as Chung and
Tcha’s algorithm can be recognized as a steepest ascent algorithm for polyhedral L-concave
functions, where the steepest ascent direction is chosen from a finite set of 0-1 vectors. This
observation indicates that the steepest ascent algorithm for polyhedral L-concave functions
is fundamental in combinatorial optimization.

In this paper, we investigate the behavior of the steepest ascent algorithm for polyhedral
L-concave function maximization and show its monotonicity properties. First, it is endowed
with the same monotonicity property as that of Hassin’s algorithm, which guarantees its
finite termination. Second, for any initial solution, the algorithm finds the smallest optimal
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solution that is not smaller than the initial solution. Third, the trajectory of the solutions
generated by the algorithm is a “shortest” path from the initial solution to the smallest
optimal solution in the sense that the total sum of the step lengths is equal to the ℓ∞-distance
from the initial solution to the smallest optimal solution. Fourth, the function g restricted on
the trajectory of the solutions generated by the algorithm is a concave function. Our second
and third results imply, in particular, that Hassin’s and Chung and Tcha’s algorithms are
efficient in terms of the number of iterations. The steepest ascent algorithm for polyhedral
L-concave functions can naturally be adapted to polyhedral L♮-concave functions. The
algorithm outputs the optimal solution that is “nearest” with respect to a variant of the
ℓ∞-distance.

In each iteration of the steepest ascent algorithm discussed in this paper, there may
be several choices of steepest ascent directions, and from among them, a steepest ascent
direction satisfying a certain “minimality” condition is chosen. We consider a variant of
the steepest ascent algorithm which chooses an arbitrary steepest ascent direction in each
iteration, and show that the modified algorithm still satisfies some of the monotonicity
properties. We also prove that the modified algorithm terminates if the input function
satisfies a certain “rationality” condition. On the other hand, we show by giving a bad
instance for the modified algorithm that the “minimality” condition of a steepest ascent
direction is essential for the finite termination of the algorithm if a polyhedral L-concave
function is not “rational.”

The organization of this paper is as follows. We review the concept of polyhedral L-
concave function in Section 2, and Hassin’s and Chung and Tcha’s algorithms for the dual
of the minimum cost (submodular) flow problems in Section 3. Monotonicity properties of
the steepest ascent algorithm for polyhedral L-concave functions are shown in Section 4.
The algorithm and its properties can be extended for polyhedral L♮-concave functions in
Section 5. Finally, a variant of the steepest ascent algorithm is discussed in Section 6.

2. Preliminaries on L-concave Functions

We review the concept of polyhedral L-concave functions. Throughout this paper, let V be
a finite set. For a function g : RV → R ∪ {−∞}, its effective domain is defined as

dom g = {p ∈ RV | g(p) > −∞}.

A function g : RV → R ∪ {−∞} is said to be a polyhedral concave function if the set

{(p, α) ∈ RV × R | p ∈ dom g, α ≤ g(p)}

is a (nonempty) polyhedron. Equivalently, g : RV → R ∪ {−∞} is a polyhedral concave
function if there exist a nonempty polyhedron S ⊆ RV , a finite number of vectors a1, . . . , at ∈
RV , and scalars b1, . . . , bt ∈ R such that

dom g = S, g(p) = min
1≤i≤t

{aTi p+ bi} (p ∈ S). (2.1)

For p ∈ dom g and d ∈ RV , the directional derivative of g at p in direction d is defined
as the limit

g′(p; d) = lim
λ↓0

g(p+ λd)− g(p)

λ
,

if it exists. We also define g′(p; d) = −∞ if p + λd /∈ dom g for all λ > 0. Moreover, when
g′(p; d) > −∞, define the value c̄(p; d) ∈ R ∪ {+∞} by

c̄(p; d) = sup{λ ∈ R+ | g(p+ λd)− g(p) = λ g′(p; d)}. (2.2)
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If function g is given in the form (2.1), then we have

g′(p; d) = aTi d, c̄(p; d) = sup{λ ∈ R+ | g(p+ λd) = aTi (p+ λd) + bi}

for some i with 1 ≤ i ≤ t. Note that c̄(p; d) > 0 and g(p + λd) − g(p) = λ g′(p; d) holds
for every λ with 0 ≤ λ ≤ c̄(p; d). Hence, if g′(p; d) > 0 and g is bounded from above, then
c̄(p; d) < +∞.

A polyhedral concave function g : RV → R ∪ {−∞} is said to be polyhedral L-concave
[12] if it satisfies the following conditions:

(LF1) g(p) + g(q) ≤ g(p ∧ q) + g(p ∨ q) (∀p, q ∈ dom g),
(LF2) ∃r ∈ R s.t. g(p+ λ1) = g(p) + λr (∀p ∈ dom g, ∀λ ∈ R),

where p ∧ q, p ∨ q (∈ RV ) denote the vectors with

(p ∧ q)(v) = min{p(v), q(v)}, (p ∨ q)(v) = max{p(v), q(v)} (v ∈ V ),

and 1 (∈ RV ) is the vector with each component being equal to one. Note that r = 0 is
assumed in (LF2) whenever we consider maximization of a polyhedral L-concave function
since otherwise there exists no maximizer.

A typical example of a polyhedral L-concave function arises from the maximum weight
tension problem. For a directed graph G = (V,E), let φuv : R → R ∪ {−∞} be an edge
weight function for (u, v) ∈ E. We assume that functions φuv ((u, v) ∈ E) are polyhedral (or
piecewise-linear) concave functions. The maximum weight tension problem is formulated as
follows:

(MWT)
Maximize

∑
(u,v)∈E

φuv(p(u)− p(v))

subject to p ∈ RV .

We denote by gT : RV → R ∪ {−∞} the objective function of the problem (MWT). Note
that dom gT ̸= ∅ if and only if (MWT) has a feasible solution, i.e., there exists some p ∈ RV

such that φuv(p(u)− p(v)) > −∞ for all (u, v) ∈ E.
Proposition 2.1 ([12, Example 2.4]). Suppose that dom gT ̸= ∅. Then, the function gT is
polyhedral L-concave with r = 0 in (LF2).

Another example of a polyhedral L-concave function comes from the so-called Lovász
extension of a submodular function. A set function ρ : 2V → R is said to be submodular if
it satisfies

ρ(X) + ρ(Y ) ≥ ρ(X ∩ Y ) + ρ(X ∪ Y ) (∀X, Y ⊆ V ).

Given a set function ρ : 2V → R with ρ(∅) = 0, define a function ρ̂ : RV → R by

ρ̂(p) =
h−1∑
i=1

(p̃i − p̃i+1)ρ(Li) + p̃hρ(Lh) (p ∈ RV ), (2.3)

where p̃1 > p̃2 > · · · > p̃h are the distinct values of components of p and

Li = {v ∈ V | p(v) ≥ p̃i} (i = 1, 2, . . . , h).

The function ρ̂ is called the Lovász extension of ρ.
Proposition 2.2 ([12, Theorem 4.36]). For a submodular set function ρ : 2V → R with
ρ(∅) = 0, the function −ρ̂ is a polyhedral L-concave function. If ρ(V ) = 0, then −ρ̂ satisfies
property (LF2) with r = 0.
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3. Hassin’s and Chung and Tcha’s Algorithms

As the motivation of the present paper, we review the dual algorithm for the minimum
cost flow problem by Hassin [6] and that for the minimum cost submodular flow problem
by Chung and Tcha [2]. We also observe the polyhedral L-concavity of the dual objective
functions of the problems in [6] and in [2]. In the following, we denote by χX ∈ {0, 1}V the
characteristic vector of X ⊆ V , i.e., χX(v) = 1 if v ∈ X and χX(v) = 0 if v ∈ V \X.

3.1. Hassin’s algorithm

For a directed graph G = (V,E) with nonnegative edge capacity c(e) and edge cost γ(e) for
e ∈ E, the minimum cost flow problem treated in [6] is formulated as follows:

Minimize
∑

(u,v)∈E

γ(u, v)x(u, v)

subject to ∂x(u) = 0 (u ∈ V ),
0 ≤ x(u, v) ≤ c(u, v) ((u, v) ∈ E),

where
∂x(u) =

∑
v:(u,v)∈E

x(u, v)−
∑

v:(v,u)∈E

x(v, u) (u ∈ V ).

The dual problem is given as

Maximize gH(p) ≡
∑

(u,v)∈E

c(u, v)min{0, p(u)− p(v) + γ(u, v)} (3.1)

subject to p ∈ RV .

The function gH is polyhedral L-concave since it is a special case of the function gT in
Proposition 2.1.

Hassin’s algorithm is described as follows. For p ∈ RV and X ⊆ V , we define

I(p,X) =
∑

(u,v)∈E<
out(p,X)

c(u, v)−
∑

(u,v)∈E≤
in(p,X)

c(u, v), (3.2)

where

E<
out(p,X) = {(u, v) ∈ E | p(u)− p(v) + γ(u, v) < 0, u ∈ X, v ∈ V \X},
E≤

in(p,X) = {(u, v) ∈ E | p(u)− p(v) + γ(u, v) ≤ 0, u ∈ V \X, v ∈ X}.

We also define λ(p,X) by

λ(p,X) = min
{
|p(u)− p(v) + γ(u, v)|

∣∣ (u, v) ∈ E<
out(p,X) ∪ E>

in(p,X)
}
, (3.3)

where

E>
in(p,X) = {(u, v) ∈ E | p(u)− p(v) + γ(u, v) > 0, u ∈ V \X, v ∈ X}.

Then, it holds that

gH(p+ αχX)− gH(p) = αI(p,X) (0 ≤ ∀α ≤ λ(p,X)).

Hassin’s Algorithm
Step 0: Set p := p◦, where p◦ is an initial vector chosen from RV .
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Step 1: Find X ⊆ V that maximizes I(p,X); if there exists more than one such X, then
take a (unique) minimal one.

Step 2: If I(p,X) ≤ 0, then stop; p is a maximizer of gH.
Step 3: Set p := p+ λ(p,X)χX . Go to Step 1.

We note that the set X in Step 1 can be obtained by solving a minimum cut problem.
For each positive integer k, we denote by Xk and pk, respectively, the set X and the

vector p just after Step 1 in the k-th iteration. The next property shows that the value
I(pk, Xk) is monotone nonincreasing.
Proposition 3.1 ([6]). For k = 1, 2, . . . , I(pk, Xk) ≥ I(pk+1, Xk+1) holds. Moreover, if
I(pk, Xk) = I(pk+1, Xk+1), then we have Xk ⊊ Xk+1.

It is observed in [6] that the set of possible values of I(p,X) is finite, and hence the
algorithm terminates in a finite number of iterations by Proposition 3.1 (see [6] for details).

3.2. Chung and Tcha’s algorithm

Suppose now that a submodular function ρ : 2V → R with ρ(∅) = ρ(V ) = 0 is given, in
addition to a directed graph G = (V,E) with nonnegative edge capacity c(e) and edge cost
γ(e) for e ∈ E. Then, the minimum cost submodular flow problem is formulated as follows:

Minimize
∑

(u,v)∈E

γ(u, v)x(u, v)

subject to
∑
u∈Y

∂x(u) ≤ ρ(Y ) (Y ⊊ V ),
∑
u∈V

∂x(u) = ρ(V ),

0 ≤ x(u, v) ≤ c(u, v) ((u, v) ∈ E).

The linear programming dual is given as

Maximize −
∑

(u,v)∈E

c(u, v)s(u, v)−
∑
Y⊆V

ρ(Y )t(Y )

subject to −s(u, v)−
∑

Y :u∈Y

t(Y ) +
∑

Y :v∈Y

t(Y ) ≤ γ(u, v) ((u, v) ∈ E),

s(u, v) ≥ 0 ((u, v) ∈ E),
t(Y ) ≥ 0 (Y ⊊ V ), t(V ) ∈ R.

It is known that for every vector p ∈ RV , the real numbers sp(u, v) ((u, v) ∈ E) and tp(Y )
(Y ⊆ V ) defined by

sp(u, v) = −min{0, p(u)− p(v) + γ(u, v)} ((u, v) ∈ E),

tp(Y ) =


p̃i − p̃i+1 (if Y = Li, 1 ≤ i ≤ h− 1),
p̃h (if Y = Lh),
0 (otherwise)

(3.4)

provide a feasible solution of the dual problem, where p̃1 > p̃2 > · · · > p̃h are the distinct
values of components of p and Li = {v ∈ V | p(v) ≥ p̃i} (i = 1, 2, . . . , h). Moreover, some
optimal solution of the dual problem can be represented in the form of (3.4) for some p (see
[2, 3]; see also Theorem 5.6 and its proof in [4]). Hence, the dual problem is rewritten as
follows:

Maximize gCT(p) ≡
∑

(u,v)∈E

c(u, v)min{0, p(u)− p(v) + γ(u, v)} − ρ̂(p) (3.5)

subject to p ∈ RV ,
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where ρ̂ : RV → R is the Lovász extension of ρ given by (2.3). It is observed that the
objective function gCT is expressed as gCT = gH − ρ̂, which implies that gCT is polyhedral
L-concave since both of gH and −ρ̂ are polyhedral L-concave functions and polyhedral L-
concavity is closed under addition.

Chung and Tcha’s algorithm is described as follows. Recall the definitions of I(p,X)
and λ(p,X) in (3.2) and in (3.3), respectively. We also define

µ(p,X) = min{p̃i − p̃i+1 | 1 ≤ i ≤ h− 1, (Li+1 \ Li) ∩X ̸= ∅, (Li \ Li−1) \X ̸= ∅}, (3.6)

where L0 is defined to be the empty set. Then, it holds that

gCT(p+ αχX)− gCT(p) = α(I(p,X)− ρ̂′(p;χX))

for every α ∈ R with 0 ≤ α ≤ min{λ(p,X), µ(p,X)}, where ρ̂′(p;χX) is the directional
derivative∗ of ρ̂ at p in direction χX .

Chung and Tcha’s Algorithm
Step 0: Set p := p◦, where p◦ is an initial vector chosen from RV .
Step 1: Find X ⊆ V that maximizes I(p,X)− ρ̂′(p;χX).
Step 2: If I(p,X) ≤ ρ̂′(p;χX), then stop; p is a maximizer of gCT.
Step 3: Set p := p+min{λ(p,X), µ(p,X)}χX . Go to Step 1.

Chung and Tcha derive a pseudo-polynomial bound on the number of iterations of the
algorithm by assuming that the edge costs γ(e) are all integer-valued [2]. We note that the
set X in Step 1 can be obtained by solving a maximum submodular flow problem; see, e.g.,
[4, Section 5.5] and [5] for algorithms of the maximum submodular flow problem.

4. Steepest Ascent Algorithm for Polyhedral L-concave Functions

4.1. Algorithm

We consider the following steepest ascent algorithm for the maximization of a polyhedral
L-concave function g : RV → R ∪ {−∞}, where it is assumed that argmax g is nonempty.
Since g is a polyhedral concave function, the nonemptiness of argmax g is equivalent to the
condition that g is bounded from above; in particular, g satisfies property (LF2) with r = 0.

Whereas a standard steepest ascent algorithm iteratively updates a current solution p
by using a direction d ∈ RV which maximizes the value of directional derivative g′(p; d), our
algorithm uses a restricted class of directions given by 0-1 vectors. Recall the definition of
c̄(p; d) in (2.2). It is assumed that we have an oracle for computing the value c̄(p; d) exactly;
see Section 4.4 for more details on such an oracle.

Steepest Ascent Algorithm for Polyhedral L-concave Functions
Step 0: Set k := 1 and p1 := p◦, where p◦ is an initial vector chosen from dom g.
Step 1: Let Xk ⊆ V be a set maximizing the value g′(pk;χXk

); if there exists more than
one such Xk, then take a (unique) minimal one.

Step 2: If g′(pk;χXk
) ≤ 0, then output the current vector pk and stop† (pk is a maximizer

of g).
Step 3: Set λk := c̄(pk;χXk

), pk+1 := pk + λkχXk
, and k := k + 1. Go to Step 1.

We note that the minimalXk that maximizes g′(pk;χXk
) in Step 1 is uniquely determined

by the following property:

∗ρ̂′(p;χX) admits an explicit formula [2], which is omitted here.
†If the algorithm stops, we have Xk = ∅ since it is the smallest set with g′(pk;χXk

) ≤ 0.
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Proposition 4.1. Let p ∈ dom g. If X,Z ∈ argmax{g′(p;χY ) | Y ⊆ V }, then it holds that
X ∩ Z,X ∪ Z ∈ argmax{g′(p;χY ) | Y ⊆ V }.

Proof. By (LF1) for g, we have g′(p;χX) + g′(p;χZ) ≤ g′(p;χX∩Z) + g′(p;χX∪Z). Hence,
X∩Z,X∪Z ∈ argmax{g′(p;χY ) | Y ⊆ V } holds if X,Z ∈ argmax{g′(p;χY ) | Y ⊆ V }.

The validity of the steepest ascent algorithm follows immediately from the following
proposition, stating that maximizers of a polyhedral L-concave function are characterized
by a local property.

Proposition 4.2 ([12, Theorem 4.29]). Let g : RV → R∪ {−∞} be a polyhedral L-concave
function. Then, p ∈ dom g is a maximizer of g if and only if g′(p;χX) ≤ 0 for every X ⊆ V .

Hence, the output of the algorithm is a maximizer of function g.

Remark 4.3. It is easy to see that the steepest ascent algorithm described above coincides
with Hassin’s and Chung and Tcha’s algorithms when applied to polyhedral L-concave
functions gH in (3.1) and gCT in (3.5), respectively. Our algorithm is different from Chung
and Tcha’s algorithm in the choice of X in Step 1. The unique minimal maximizer X
of g′(p;χX) is chosen in our algorithm to guarantee the finite termination (see Theorem
4.7), whereas Chung and Tcha’s algorithm takes an arbitrary maximizer and imposes an
integrality assumption on the input to show the finite termination.

Remark 4.4. The steepest ascent algorithm presented in this section can also be seen as
a natural generalization of the steepest ascent algorithm for L-concave functions defined on
integer lattice points (see [10, 11]), for which an analysis of the number of iterations is given
in [14].

4.2. Monotonicity properties

In the analysis of the steepest ascent algorithm, the smallest maximizer that is not smaller
than the initial vector p◦ plays an important role. Note that a maximizer p satisfying
p ≥ p◦ always exists by property (LF2) with r = 0. Moreover, the existence of the unique
minimal maximizer p satisfying p ≥ p◦ follows from the closedness of dom g and the following
property.

Proposition 4.5. Let p, q ∈ dom g be maximizers of g satisfying p ≥ p◦ and q ≥ p◦. Then,
p ∧ q is also a maximizer of g and satisfies p ∧ q ≥ p◦.

Proof. It follows from p ≥ p◦ and q ≥ p◦ that p ∧ q ≥ p◦. By property (LF1), we have

g(p ∧ q) + g(p ∨ q) ≥ g(p) + g(q) = 2max{g(p′) | p′ ∈ RV },

from which it follows that both of p ∧ q and p ∨ q are maximizers of g.

Denote by p̂ the unique minimal maximizer of g such that p̂ ≥ p◦. Note that the
maximizer p̂ is “nearest” to p◦ in the sense that

∥p̂− p◦∥∞ = min{∥p− p◦∥∞ | p ∈ argmax g, p ≥ p◦}. (4.1)

We now present the main theorem of this paper. For k = 1, 2, . . ., we define real numbers
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αk, βk and sets Ak, Bk ⊆ V by‡

αk = min{p̂(i)− pk(i) | i ∈ Xk},
βk = max{p̂(i)− pk(i) | i ∈ V } −max{p̂(i)− pk(i) | i ∈ V \Xk},
Ak = argmax{p̂(i)− pk(i) | i ∈ V },
Bk = {i ∈ V | p̂(i) = pk(i)},

where pk and Xk are the variables in the k-th iteration of the steepest ascent algorithm.
Note that set B1 is nonempty due to the choice of p̂ and property (LF2) of the function g.
Theorem 4.6. In the steepest ascent algorithm for a polyhedral L-concave function g, the
following hold for k = 1, 2, . . .:

pk ≤ p̂, (4.2)

λk ≤ min{αk, βk}, (4.3)

Ak ⊆ Xk ⊆ V \Bk, (4.4)

Ak ⊆ Ak+1;moreover, Ak ⊊ Ak+1 if λk = βk and Ak = Ak+1 if λk < βk, (4.5)

Bk ⊆ Bk+1;moreover, Bk ⊊ Bk+1 if λk = αk and Bk = Bk+1 if λk < αk, (4.6)

g′(pk;χXk
) ≥ g′(pk+1;χXk+1

);moreover, Xk ⊊ Xk+1 if g′(pk;χXk
) = g′(pk+1;χXk+1

). (4.7)

The proof of Theorem 4.6 is given in Section 4.3.
From this technical theorem we obtain various nice properties which are peculiar to the

steepest ascent algorithm described above for polyhedral L-concave functions and are not
shared by the ordinary steepest ascent algorithm for general concave functions.

The first property is the finite termination of the algorithm.
Theorem 4.7. The steepest ascent algorithm for polyhedral L-concave functions terminates
in a finite number of iterations.

Proof. By (4.7) in Theorem 4.6, it suffices to show that g′(pk;χXk
) takes a value in a finite

set of real numbers. Let

D = {g′(p;χX) | p ∈ dom g, X ⊆ V, g′(p;χX) > −∞}.

Since g is a polyhedral concave function, it can be represented as g(p) = min1≤i≤t{aTi p+ bi}
(p ∈ dom g) for some ai ∈ RV and bi ∈ R (i = 1, 2, . . . , t). Hence, if g′(p;χX) > −∞, then
we have g′(p;χX) = aTi χX for some i. This implies that D is a finite set.

In the following, we denote bym the total number of iterations executed in the algorithm.
The next property is that the algorithm outputs the maximizer p̂ that is smallest with p̂ ≥ p◦.
Theorem 4.8. The steepest ascent algorithm outputs the maximizer p̂.

Proof. By (4.2) in Theorem 4.6, we have pk ≤ p̂ for all k. Since pk ≥ p◦, if pk ̸= p̂, then
pk is not a maximizer of g, and the algorithm continues to the next iteration. Hence, the
algorithm outputs the vector p̂ when it terminates.

The third property is that the trajectory of the solutions generated by the algorithm
is a “shortest” path from the initial solution p◦ to the “nearest” maximizer p̂ in the sense
that the total sum of the step lengths is equal to the ℓ∞-distance ∥p̂− p◦∥∞ from the initial
solution p◦ to the nearest optimal solution p̂.
‡It should be understood that αk, βk, Ak, and Bk are defined for each k which is less than the total number
of the iterations executed in the algorithm.
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Theorem 4.9. The total sum
∑m−1

k=1 λk of the step lengths is equal to ∥p̂− p◦∥∞.

Proof. By (4.4) in Theorem 4.6, we have ∥p̂−pk+1∥∞ = ∥p̂−pk∥∞−λk for k = 1, 2, . . . ,m−1.
This implies

∑m−1
k=1 λk = ∥p̂− p◦∥∞.

The fourth property is the concavity of the function g on the trajectory of the solutions
generated by the algorithm.
Theorem 4.10. Let ψ : [0,Λm−1] → R be a function defined by

ψ(λ) = g(pk + (λ− Λk−1)χXk
) (k = 1, 2, . . . ,m− 1, Λk−1 ≤ λ ≤ Λk),

where Λk =
∑k

j=1 λj (k = 0, 1, . . . ,m− 1). Then, ψ is a piecewise-linear increasing concave
function.

Proof. For each k = 1, 2, . . . ,m−1, the function ψ is linear in each subinterval and its slope
is given by g′(pk;χXk

), which is a positive number due to the choice of Xk. Hence, the claim
follows from (4.7) in Theorem 4.6.

Remark 4.11. We see from Theorem 4.6 that the monotonicity property of Hassin’s algo-
rithm extends to the steepest ascent algorithm for L-concave functions. Indeed, Proposition
3.1 for Hassin’s algorithm can be obtained as a special case of Theorem 4.6 applied to the
polyhedral L-concave functions gH given by (3.1), where g′(pk;χXk

) = I(pk, Xk) for each k.

Remark 4.12. The results in this section can be naturally extended to locally polyhedral
concave functions with L-concavity (i.e., (LF1) and (LF2)); a function g : RV → R∪{−∞}
is said to be a locally polyhedral concave function if for every bounded interval [a, b] with
dom g∩ [a, b] ̸= ∅, the restriction of the effective domain of g to dom g∩ [a, b] is a polyhedral
concave function. We note that the concave closure of an L-concave function defined on
integer lattice points (see [10, 11]) is a locally polyhedral concave function with L-concavity.

4.3. Proof

In this section we give a proof of Theorem 4.6. We assume that g : RV → R ∪ {−∞} is a
polyhedral L-concave function that has a maximizer.
Lemma 4.13 ([12, Lemma 4.28]). It holds that

g(p) + g(q) ≤ g(p+ λχX) + g(q − λχX)

for every p, q ∈ dom g and λ ∈ R with 0 ≤ λ ≤ λ′ − λ′′, where

λ′ = max
i∈V

{q(i)− p(i)}, X = argmax{q(i)− p(i) | i ∈ V },

λ′′ = max
i∈V \X

{q(i)− p(i)} (λ′′ = −∞ if V \X = ∅).

The following two lemmas show two properties for the proof of Theorem 4.6. We say
that X ⊆ V is a steepest ascent direction of function g at p ∈ dom g if

g′(p;χX) = max{g′(p;χY ) | Y ⊆ V }.

By Proposition 4.2 and property (LF2) with r = 0, every steepest ascent direction X is a
nonempty proper subset of V (i.e., ∅ ⊊ X ⊊ V ) if p is not a maximizer of g. Note that
for p ∈ dom g with p ̸∈ argmax g and every steepest ascent direction X at p, we have
c̄(p;χX) < +∞ since g′(p;χX) > 0 holds by Proposition 4.2 and there exists a maximizer
of g by our assumption.
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Lemma 4.14. Let p ∈ dom g be a vector with p◦ ≤ p ≤ p̂ and p ̸= p̂, and X be a steepest
ascent direction of g at p. Put

A = argmax
i∈V

{p̂(i)− p(i)}, B = {i ∈ V | p̂(i) = p(i)}.

(i) A ⊆ X holds.
(ii) X \B is also a steepest ascent direction at p.
(iii) X ∩B = ∅ holds if X is the unique minimal steepest ascent direction at p.

Proof. We first note that p is not a maximizer of g. Let ε be a sufficiently small positive
real number such that

g(p+ εχX)− g(p) = εg′(p;χX). (4.8)

To prove (i), assume, to the contrary, that A \X ̸= ∅ holds. Then, we have

argmax
i∈V

{p̂(i)− (p+ εχX)(i)} = A \X.

Hence, Lemma 4.13 implies that

g(p̂) + g(p+ εχX) ≤ g(p̂− εχA\X) + g(p+ εχX + εχA\X)

= g(p̂− εχA\X) + g(p+ εχX∪A). (4.9)

Since p̂ ≥ p and p̂ ̸= p, we have A \X ⊆ {i ∈ V | p̂(i) > p(i)}. Therefore, we may assume
that ε is chosen so that

p̂ ≥ p̂− εχA\X ≥ p (4.10)

holds. It follows from (4.10) and the choice of p̂ that g(p̂) > g(p̂− εχA\X), which, together
with (4.9), implies g(p + εχX∪A) > g(p + εχX). From this inequality and (4.8) it follows
that

εg′(p;χX∪A) ≥ g(p+ εχX∪A)− g(p) > g(p+ εχX)− g(p) = εg′(p;χX),

where the first inequality is by the concavity of g. This, however, is a contradiction to the
choice of X. Hence, we have A \X = ∅, i.e., A ⊆ X.

We then show that X \ B is also a steepest ascent direction at p. We may assume that
X ∩B ̸= ∅ since otherwise the claim holds immediately. Then, we have

argmax
i∈V

{(p+ εχX)(i)− p̂(i)} = X ∩B.

It follows from Lemma 4.13 that

g(p+ εχX) + g(p̂) ≤ g(p+ εχX − εχX∩B) + g(p̂+ εχX∩B)

= g(p+ εχX\B) + g(p̂+ εχX∩B). (4.11)

Since p̂ is a maximizer of g, we have g(p̂) ≥ g(p̂ + εχX∩B), which, together with (4.11),
implies g(p+ εχX) ≤ g(p+ εχX\B). Hence, it follows that

εg′(p, χX) = g(p+ εχX)− g(p) ≤ g(p+ εχX\B)− g(p) ≤ εg′(p, χX\B),

i.e., X \B is also a steepest ascent direction at p. Hence Claim (ii) holds.
Finally, (iii) follows easily from (ii) since (ii) implies X \ B ⊇ X if X is the unique

minimal steepest ascent direction at p.
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Lemma 4.15. Let p ∈ dom g be a vector with p ̸∈ argmax g, X ⊆ V be a steepest ascent
direction of g at p, and λ ∈ R be a real number with 0 < λ ≤ c̄(p;χX). Put q = p + λχX ,
and let Y ⊆ V be a steepest ascent direction of g at q. Then, the following three properties
hold:
(i) g′(p;χX) ≥ g′(q;χY ).
(ii) If g′(p;χX) = g′(q;χY ), then X ∩ Y is also a steepest ascent direction at p.
(iii) If λ < c̄(p;χX), then X is a steepest ascent direction at q.
Moreover, under the assumption that X (resp., Y ) is the unique minimal steepest ascent
direction at p (resp., at q), the following two properties also hold:
(iv) If g′(p;χX) = g′(q;χY ), then X ⊆ Y holds.
(v) If λ < c̄(p;χX), then X = Y holds.

Proof. By the choice of λ and concavity of g, we have

g(p+ λχX)− g(p) = λ g′(p;χX). (4.12)

Let ε ∈ R be a positive real number with ε < λ such that

g(q + εχY )− g(q) = εg′(q;χY ). (4.13)

Put q̂ = q + εχY . By (4.12) and (4.13), we have

g(q̂)− g(p) = λg′(p;χX) + εg′(q;χY ). (4.14)

Note that q̂ can be represented as

q̂ = p+ εχX∪Y + (λ− ε)χX + εχX∩Y .

Claim: The following inequalities hold:

g(q̂)− g(q̂ − εχX∩Y ) ≤ εg′(p;χX), (4.15)

g(p+ εχX∪Y + (λ− ε)χX)− g(p+ εχX∪Y ) ≤ (λ− ε)g′(p;χX), (4.16)

g(p+ εχX∪Y )− g(p) ≤ εg′(p;χX). (4.17)

[Proof of Claim] Inequality (4.17) can be shown as follows:

g(p+ εχX∪Y )− g(p) ≤ εg′(p;χX∪Y ) ≤ εg′(p;χX),

where the first inequality is by the concavity of g and the second inequality follows from the
fact that X is a steepest ascent direction of g at p.

We then prove (4.15). It may be assumed that X ∩ Y ̸= ∅ since otherwise

g(q̂)− g(q̂ − εχX∩Y ) = g(q̂)− g(q̂) = 0 < εg′(p;χX)

holds, where the inequality follows from p ̸∈ argmax g and Proposition 4.2. Since argmax{q̂(i)−
p(i) | i ∈ V } = X ∩ Y , Lemma 4.13 implies that

g(p) + g(q̂) ≤ g(p+ εχX∩Y ) + g(q̂ − εχX∩Y ),

from which it follows that

g(q̂)− g(q̂ − εχX∩Y ) ≤ g(p+ εχX∩Y )− g(p) ≤ εg′(p;χX∩Y ) ≤ εg′(p;χX). (4.18)
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Inequality (4.16) can be shown similarly to (4.15) as follows. Lemma 4.13 implies that

g(p) + g(p+ εχX∪Y + (λ− ε)χX)

≤ g(p+ (λ− ε)χX) + g((p+ εχX∪Y + (λ− ε)χX)− (λ− ε)χX)

= g(p+ (λ− ε)χX) + g(p+ εχX∪Y ),

from which it follows that

g(p+ εχX∪Y + (λ− ε)χX)− g(p+ εχX∪Y ) ≤ g(p+ (λ− ε)χX)− g(p) ≤ (λ− ε)g′(p;χX).

[End of Claim]

Inequalities (4.15), (4.16), and (4.17) imply

g(q̂)− g(p) ≤ (λ+ ε)g′(p;χX). (4.19)

Then, Claim (i) follows from (4.14) and (4.19).
To prove Claims (ii) and (iv), assume that g′(p;χX) = g′(q;χY ). It follows from (4.14)

that g(q̂) − g(p) = (λ + ε)g′(p;χX), which, together with the inequalities (4.15), (4.16),
and (4.17), implies that all the inequalities (4.15), (4.16), and (4.17) hold with equality. In
particular, we have

g(q̂)− g(q̂ − εχX∩Y ) = εg′(p;χX), (4.20)

from which it follows that X ∩ Y ̸= ∅ since g′(p;χX) > 0 by Proposition 4.2. By (4.18) and
(4.20), we have

εg′(p;χX) = g(q̂)− g(q̂ − εχX∩Y ) ≤ g(p+ εχX∩Y )− g(p) ≤ εg′(p;χX∩Y ).

This shows that X ∩ Y is also a steepest ascent direction of g at p, i.e., (ii) holds. If X is
the unique minimal steepest ascent direction at p, then we have X ⊆ X ∩ Y , i.e., X ⊆ Y .
Thus, (iv) holds.

We finally prove Claims (iii) and (v). For λ < c̄(p;χX), we have g′(q;χX) = g′(p;χX),
which, together with (i), implies

g′(q;χX) = g′(p;χX) ≥ g′(q;χY ).

This shows that X is also a steepest ascent direction at q and that g′(p;χX) = g′(q;χY ). If
Y is the unique minimal steepest ascent direction at q, we have X ⊇ Y , which, combined
with Claim (iv), implies X = Y .

We now give a proof of Theorem 4.6.
[Proofs of (4.2) and (4.3)] It suffices to show that for k = 1, 2, . . . ,m − 1, if pk ≤ p̂

then λk ≤ min{αk, βk} and pk+1 ≤ p̂ hold.
Assume that pk ≤ p̂ holds. First suppose, to the contrary, that αk < λk. Let p′ =

pk+αkχXk
. Since pk ≤ p̂, the definition of p′ implies p′ ≤ p̂. Note that p′ is not a maximizer

of g since
g(pk+1)− g(p′) = (λk − αk)g

′(pk;χXk
) > 0.

Hence, p′ ̸= p̂ holds. Since p′ is given as p′ = pk + αkχXk
with αk < λk = c̄(pk;χXk

), the
set Xk is also the unique minimal steepest ascent direction at p′ by Lemma 4.15 (v). By
Lemma 4.14, we have Xk ∩ B′ = ∅, where B′ = {i ∈ V | p̂(i) = p′(i)}. On the other hand,
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the definition of p′ implies that B′ contains some element in Xk, a contradiction. Hence, we
have αk ≥ λk.

Next suppose that βk < λk. Let p
′′ = pk+βkχXk

. In a similar way as in the previous case,
we can show that p′′ ≤ p̂, p′′ ̸= p̂, and that the set Xk is also the unique minimal steepest
ascent direction at p′′. By Lemma 4.14, we have A′′ ⊆ Xk, where A

′′ = argmaxi∈V {p̂(i) −
p′′(i)}. On the other hand, the definition of p′′ implies that A′′ contains some element in
V \Xk, a contradiction. Hence, we have βk ≥ λk.

Finally, the inequality pk+1 ≤ p̂ follows immediately from pk ≤ p̂ and λk ≤ αk.
[Proof of (4.4)] By Lemma 4.14 applied to p = pk and X = Xk, we obtain Ak ⊆ Xk ⊆

V \Bk, i.e., (4.4) holds.
[Proofs of (4.5) and (4.6)] Claims (4.5) and (4.6) follow from (4.3), (4.4), and definitions

of αk, βk, and pk+1.
[Proof of (4.7)] The inequality g′(pk;χXk

) ≥ g′(pk+1;χXk+1
) follows immediately from

Lemma 4.15 (i). Suppose that g′(pk;χXk
) = g′(pk+1;χXk+1

) holds. By the definition of pk+1

(and c̄(pk;χXk
)), we have g′(pk+1;χXk

) < g′(pk;χXk
), and therefore Xk ̸= Xk+1 holds. This,

together with Lemma 4.15 (iv), implies Xk ⊊ Xk+1.
This completes the proof of Theorem 4.6.

4.4. Computation of step size

So far we have assumed that the value c̄(p;χX) is given by some “oracle,” i.e., that the
exact value of c̄(p;χX) can be computed efficiently for every p ∈ dom g and X ⊆ V . Here
we discuss the computation of the value c̄(p;χX) for a polyhedral L-concave function g.

We can indeed compute the value c̄(p;χX) efficiently for the special case of polyhedral
L-concave functions arising from the minimum cost (submodular) flow problems discussed in
Section 3. For the minimum cost flow problem considered in Section 3.1, the value c̄(p;χX)
is equal to λ(p,X) given by (3.3), which can be computed in linear time in the size of the
edge set E. In the minimum cost submodular flow problem considered in Section 3.2, the
value c̄(p;χX) is equal to min{λ(p,X), µ(p,X)}, where µ(p,X) given by (3.6) can also be
computed in polynomial time in the size of the set V .

For a general polyhedral L-concave function g, we can still compute the value c̄(p;χX)
efficiently if the function g has a certain “integrality” property. For a polyhedral concave
function g : RV → R ∪ {−∞} and x ∈ RV , we denote

argmax g[−x] = argmax{g(p)− pTx | p ∈ dom g}. (4.21)

A polyhedral L-concave function g : RV → R ∪ {−∞} is said to be integral if for every
x ∈ RV with argmax g[−x] ̸= ∅, the polyhedron argmax g[−x] is integral. Note that the
polyhedral L-concave function gH in (3.1) is integral if γ(e) ∈ Z ∪ {+∞} for all e ∈ E, and
gCT in (3.5) is integral if γ(e) ∈ Z∪ {+∞} for all e ∈ E and ρ is an integer-valued function
[10].

It is known (see, e.g., [10, Chapter 7]) that for every integral polyhedral L-concave
function g and every x ∈ RV with argmax g[−x] ̸= ∅, there exists an integer-valued function
µ : V × V → Z ∪ {+∞} such that

argmax g[−x] = {p ∈ RV | p(v)− p(u) ≤ µ(u, v) (u, v ∈ V )}.

It follows from this fact that the value c̄(p;χX) is an integer for every p ∈ dom g ∩ ZV and
X ⊆ V . Hence, c̄(p;χX) can be computed exactly by binary search, and its running time is
bounded by log Φ, where

Φ = max
i,j∈V

max{|(p(i)− p(j))− (q(i)− q(j))| | p, q ∈ dom g}.
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Even for a non-integral polyhedral L-concave function g, we can compute an approximate
value of c̄(p;χX) with additive error at most ε in time polynomial in log Φ and log(1/ε).
Note that if an approximate value of c̄(p;χX) with additive error at most ε is used in the
steepest ascent algorithm, we can compute a vector p ∈ dom g satisfying

inf{∥p− p∗∥∞ | p∗ ∈ argmax g} ≤ |V | · ε

(i.e., p is in the neighbor of an optimal solution) by the proximity result shown in [8].

5. Algorithm for Polyhedral L♮-concave Functions

The steepest ascent algorithm for maximization of polyhedral L-concave functions is natu-
rally adapted to polyhedral L♮-concave functions. A polyhedral concave function g : RV →
R ∪ {−∞} is said to be polyhedral L♮-concave if the function g̃ : RṼ → R ∪ {−∞} defined
by

g̃(η, p) = g(p− η1) ((η, p) ∈ R× RV = RṼ ) (5.1)

is polyhedral L-concave, where Ṽ = {v0} ∪ V . Polyhedral L♮-concavity of g is characterized
by the following “translation-supermodularity” [12, Theorem 4.39]:

g(p) + g(q) ≤ g(p ∨ (q − λ1)) + g((p+ λ1) ∧ q) (∀p, q ∈ dom g, ∀λ ≥ 0). (5.2)

We now consider the maximization of a polyhedral L♮-concave function g : RV → R ∪
{−∞}, where it is assumed that argmax g is nonempty. The steepest ascent algorithm in
Section 4.1 applied to the polyhedral L-concave function g̃ given by (5.1) with an initial

vector (0, p◦) ∈ RṼ yields the following algorithm for the polyhedral L♮-concave function g
and the initial vector p◦ through the following correspondence (see also [10, Section 10.3.1]):

g̃ g
(η, p) ⇐⇒ q = p− η1

(η, p) + λ(0, χX) ⇐⇒ q + λχX

(η, p) + λ(1, χX) ⇐⇒ q − λχV \X

(5.3)

Steepest Ascent Algorithm for Polyhedral L♮-concave Functions
Step 0: Set k := 1 and p1 := p◦, where p◦ is an initial vector chosen from dom g.
Step 1: Let σk ∈ {+1,−1} and Xk ⊆ V be a pair of a sign and a set maximizing the value

g′(pk;σk χXk
); if there exists more than one such pair, then choose σk and Xk according

to the following rule:
(i) if there exists such (σk, Xk) with σk = +1, then set σk = +1 and take a (unique)
minimal Xk.
(ii) otherwise, set σk = −1 and take a (unique) maximal Xk.

Step 2: If g′(pk;σk χXk
) ≤ 0, then output the current vector pk and stop (pk is a maximizer

of g).
Step 3: Set λk := c̄(pk;σk χXk

), pk+1 := pk + λk σk χXk
, and k := k+ 1. Go to Step 1.

The finite termination of the algorithm follows immediately from Theorem 4.7.
Corollary 5.1. The steepest ascent algorithm for polyhedral L♮-concave functions terminates
in a finite number of iterations.

In the following, we denote bym the total number of iterations executed in the algorithm.
The properties of the steepest ascent algorithm for polyhedral L♮-concave functions in

this section can be derived from the corresponding results for polyhedral L-concave functions
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in Section 4.1 through rather mechanical translations based on the correspondence (5.3).
Although the concept of polyhedral L♮-concave function is equivalent to that of polyhedral
L-concave function by definition, it is emphasized that the class of polyhedral L♮-concave
functions contains that of polyhedral L-concave functions as a special case, and accordingly,
the results to be established in this section have wider applicability than those in Section 4.

Remark 5.2. If the steepest ascent algorithm in this section is applied to a polyhedral
L-concave function g, then its behavior coincides with that of the steepest ascent algorithm
for polyhedral L-concave functions in Section 4.1.

For a vector q ∈ RV , define

∥q∥+∞ = max
[
0,max

i∈V
q(i)

]
, ∥q∥−∞ = max

[
0,max

i∈V
{−q(i)}

]
.

Note that ∥q∥+∞ + ∥q∥−∞ serves as a norm of q (satisfying the axioms of norms), and accord-
ingly, the value ∥p − q∥+∞ + ∥p − q∥−∞ represents a “distance” between two vectors p and
q.

Let
η̂ = min{η | η ∈ R+, ∃p ∈ argmax g s.t. p ≥ p◦ − η1}, (5.4)

and denote by p̂ the unique minimal maximizer of g under the condition p̂ ≥ p◦ − η̂1. Note
that the vector (η̂, p̂ + η̂1) is the unique minimal maximizer of the associated L-concave
function g̃ under the condition (η̂, p̂+ η̂1) ≥ (0, p◦), and satisfies

∥(η̂, p̂+ η̂1)− (0, p◦)∥∞ = ∥p̂− p◦∥+∞ + ∥p̂− p◦∥−∞. (5.5)

The maximizer p̂ is “nearest” to the initial vector p◦ in the following sense.

Proposition 5.3. The maximizer p̂ satisfies

∥p̂− p◦∥+∞ + ∥p̂− p◦∥−∞ = min{∥p− p◦∥+∞ + ∥p− p◦∥−∞ | p ∈ argmax g}. (5.6)

Proof. Let η̂ be the real number defined by (5.4). Since the vector (η̂, p̂+ η̂1) is the unique
minimal maximizer of g̃ under the condition (η̂, p̂+ η̂1) ≥ (0, p◦), we have

∥(η̂, p̂+ η̂1)− (0, p◦)∥∞
= min{∥(ζ, p+ ζ1)− (0, p◦)∥∞ | (ζ, p+ ζ1) ∈ argmax g̃, (ζ, p+ ζ1) ≥ (0, p◦)}. (5.7)

The left-hand side of (5.7) can be rewritten by (5.5). On the right-hand side of (5.7), we
have

(ζ, p+ ζ1) ∈ argmax g̃ ⇐⇒ p ∈ argmax g,

(ζ, p+ ζ1) ≥ (0, p◦) ⇐⇒ ζ ≥ ∥p− p◦∥−∞,

and the latter implies

∥(ζ, p+ ζ1)− (0, p◦)∥∞ = ∥p− p◦∥+∞ + ζ.

Therefore, the right-hand side of (5.7) is equal to

min{∥p− p◦∥+∞ + ∥p− p◦∥−∞ | p ∈ argmax g}.

Hence, the equation (5.6) follows from (5.7).
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The next property, which follows from Theorem 4.8, states that the algorithm outputs
the “nearest” maximizer p̂.

Corollary 5.4. The steepest ascent algorithm for polyhedral L♮-concave functions outputs
the maximizer p̂.

As in Theorem 4.9, the trajectory of the solutions generated by the algorithm is a
“shortest” path from the initial solution p◦ to the “nearest” maximizer p̂.

Corollary 5.5. The total sum
∑m−1

k=1 λk of the step lengths is equal to ∥p̂−p◦∥+∞+∥p̂−p◦∥−∞.

Proof. By Theorem 4.9 applied to the L-concave function g̃ and the initial vector (0, p◦), it
holds that

m−1∑
k=1

λk = ∥(η̂, p̂+ η̂1)− (0, p◦)∥∞ = ∥p̂− p◦∥+∞ + ∥p̂− p◦∥−∞,

where the second equality is due to (5.5).

The next property is the concavity of the function g on the trajectory of the solutions
generated by the algorithm.

Corollary 5.6. Let ψ : [0,Λm−1] → R be a function defined by

ψ(λ) = g(pk + (λ− Λk−1)σkχXk
) (k = 1, 2, . . . ,m− 1, Λk−1 ≤ λ ≤ Λk),

where Λk =
∑k

j=1 λj (k = 0, 1, . . . ,m− 1). Then, ψ is a piecewise-linear increasing concave
function.

Proof. The claim follows from Theorem 4.10 and the correspondence (5.3) between the two
algorithms.

We finally show some monotonicity properties of the algorithm by using Theorem 4.6.
For q ∈ RV , we denote

supp+(q) = {i ∈ V | q(i) > 0}, supp−(q) = {i ∈ V | q(i) < 0}.

For k = 1, 2, . . . ,m, we define sets Ak, Bk ⊆ V by

Ak = argmax{p̂(i)− pk(i) | i ∈ V, p̂(i) ≥ pk(i)}

=

{
argmax{p̂(i)− pk(i) | i ∈ V } (if supp+(p̂− pk) ̸= ∅),
{i ∈ V | p̂(i) = pk(i)} (if supp+(p̂− pk) = ∅),

Bk = argmin{p̂(i)− pk(i) | i ∈ V, p̂(i) ≤ pk(i)}

=

{
argmin{p̂(i)− pk(i) | i ∈ V } (if supp−(p̂− pk) ̸= ∅),
{i ∈ V | p̂(i) = pk(i)} (if supp−(p̂− pk) = ∅),

ηk =
∑

{λj | 1 ≤ j ≤ k − 1, σj = −1},

where pk is the vector in the k-th iteration of the steepest ascent algorithm.

Corollary 5.7. In the steepest ascent algorithm for a polyhedral L♮-concave function g, the
following hold for k = 1, 2, . . . ,m− 1:
(i) (ηk, pk + ηk1) ≤ (η̂, p̂+ η̂1).
(ii) Ak ⊆ Xk ⊆ V \Bk if σk = +1; Bk ⊆ Xk ⊆ V \ Ak if σk = −1.
(iii) Ak ⊆ Ak+1 and Bk ⊆ Bk+1.
(iv) g′(pk;σkχXk

) ≥ g′(pk+1;σk+1χXk+1
); moreover, if g′(pk;σkχXk

) = g′(pk+1; σk+1χXk+1
),
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then we have the following:
(iv-a) If σk = −1, then σk+1 = −1.
(iv-b) If σk = σk+1 = +1, then Xk ⊊ Xk+1.
(iv-c) If σk = σk+1 = −1, then Xk ⊋ Xk+1.
(iv-d) If σk = +1 and σk+1 = −1, then Xk ⊆ V \Xk+1.

Proof. For k = 1, 2, . . . ,m, let p̃k ∈ RṼ and X̃k ⊆ Ṽ be the variables obtained in the k-th
iteration of the steepest ascent algorithm in Section 4.1 applied to the L-concave function
g̃ and the initial vector p̃◦ = (0, p◦). Note that

p̃1 = p̃◦, p̃m = (η̂, p̂+ η̂1).

We denote p̃∗ = (η̂, p̂+ η̂1), and define

Ãk = argmax{p̃∗(i)− p̃k(i) | i ∈ Ṽ },
B̃k = {i ∈ Ṽ | p̃∗(i)− p̃k(i) = 0}.

Then, Theorem 4.6 implies the following properties:
(i ′) p̃k ≤ p̃∗.
(ii ′) Ãk ⊆ X̃k ⊆ Ṽ \ B̃k.
(iii ′) Ãk ⊆ Ãk+1 and B̃k ⊆ B̃k+1.
(iv ′) g̃′(p̃k;χX̃k

) ≥ g̃′(p̃k+1;χX̃k+1
); moreover, X̃k ⊊ X̃k+1 if g̃′(p̃k;χX̃k

) = g̃′(p̃k+1;χX̃k+1
).

We show below that Claims (i), (ii), (iii), and (iv) follow from (i ′), (ii ′), (iii ′), and (iv ′),
respectively.

By the correspondence (5.3) between the two algorithms, the following property holds:

if σk = +1, then v0 ̸∈ X̃k and Xk = X̃k;

if σk = −1, then v0 ∈ X̃k and Xk = V \ X̃k.

}
(5.8)

Hence, we have ηk = p̃k(v0) for all k, and therefore p̃k = (ηk, pk + ηk1) holds. From this and
(i ′), Claim (i) follows.

We then prove (ii) and (iii). By (ii ′), (iii ′), and (5.8), it suffices to show that Ãk∩V = Ak

and B̃k ∩ V = Bk. Since

max{p̃∗(i)− p̃k(i) | i ∈ Ṽ } = max
[
η̂ − ηk, max{(p̂(i) + η̂)− (pk(i) + ηk) | i ∈ V }

]
= η̂ − ηk +max

[
0,max{p̂(i)− pk(i) | i ∈ V }

]
,

it holds that

Ãk =

{
argmax{p̂(i)− pk(i) | i ∈ V } (if supp+(p̂− pk) ̸= ∅),
{i ∈ V | p̂(i) = pk(i)} ∪ {v0} (if supp+(p̂− pk) = ∅). (5.9)

Hence, we have Ãk ∩ V = Ak.
Note that B̃k is rewritten as

B̃k = argmin{p̃∗(i)− p̃k(i) | i ∈ Ṽ }

since B̃k ̸= ∅ and p̃∗ ≥ p̃k for each k. Hence, we can show the following equation in the
same way as (5.9):

B̃k =

{
argmin{p̂(i)− pk(i) | i ∈ V } (if supp−(p̂− pk) ̸= ∅),
{i ∈ V | p̂(i) = pk(i)} ∪ {v0} (if supp−(p̂− pk) = ∅). (5.10)

This implies B̃k ∩ V = Bk, and therefore Claims (ii) and (iii) hold.
Finally, Claim (iv) follows from (iv ′) and (5.8).
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6. Variant of Steepest Ascent Algorithm

We discuss a variant of the steepest ascent algorithm for polyhedral L-concave functions,
where the set Xk in Step 1 is chosen arbitrarily from among the sets maximizing the value
g′(pk;χXk

) (i.e., not necessarily minimal); in this section we call this variant the modified
(steepest ascent) algorithm.

We see from Proposition 4.2 that the modified algorithm still outputs a maximizer of
a polyhedral L-concave function g if it terminates. While the output of the algorithm
is not necessarily the unique minimal maximizer p̂ of g under the condition p̂ ≥ p◦, the
output inherits a nice property of p̂ as shown in Section 6.1 (see Theorems 6.1 and 6.2). In
addition, it is shown that the modified algorithm terminates if the function g has a certain
“rationality” property (see Theorem 6.3).

On the other hand, we demonstrate in Section 6.2 that the modified algorithm may not
terminate in any finite number of iterations if the function g is not “rational.” This fact
shows that the choice of the unique minimal steepest ascent direction is essential for the
finite termination of the steepest ascent algorithm for polyhedral L-concave functions.

6.1. Monotonicity properties of modified algorithm

We show three properties of the modified algorithm. The first property is that the output
is the “nearest” maximizer of g from the initial vector p◦. This property is a generalization
of Theorem 4.8 (see (4.1)).
Theorem 6.1. Suppose that the modified steepest ascent algorithm for a polyhedral L-
concave function g with an initial solution p◦ ∈ dom g terminates. Then, the output p∗

of the algorithm is a maximizer of g satisfying

∥p∗ − p◦∥∞ = min{∥p− p◦∥∞ | p ∈ argmax g, p ≥ p◦}. (6.1)

Note that (6.1) with (4.1) shows ∥p∗ − p◦∥∞ = ∥p̂− p◦∥∞, which, however, does not imply
p∗ = p̂.

The second property, which is a generalization of Theorem 4.9, is that the trajectory
of the solutions generated by the modified algorithm is a “shortest” path from the initial
solution p◦ to the “nearest” maximizer p∗.
Theorem 6.2. Suppose that the modified steepest ascent algorithm for a polyhedral L-
concave function g with an initial solution p◦ ∈ dom g terminates after m iterations. Then,
the total sum

∑m−1
k=1 λk of the step lengths is equal to ∥p∗ − p◦∥∞.

The third property is that the modified algorithm terminates if the function g has a
certain “rationality” property. Recall the definition of argmax g[−x] for x ∈ RV in (4.21).
Theorem 6.3. The modified steepest ascent algorithm for a polyhedral L-concave function g
with an initial solution p◦ ∈ dom g terminates in a finite number of iterations if the following
conditions hold:
• for every x ∈ RV with argmax g[−x] ̸= ∅, the polyhedron argmax g[−x] is rational,
• the initial solution p◦ is a rational vector.

Proofs of Theorems 6.1, 6.2, and 6.3 are given below, where the following lemma is
crucial.
Lemma 6.4. Let p ∈ dom g be a vector that is not a maximizer of g, and X ⊆ V be a
steepest ascent direction at p. Also, let p̄ be the unique minimal maximizer of g under the
condition p̄ ≥ p. Then, the following properties hold with λ̄ = c̄(p;χX):
(i) For every λ ∈ [0, λ̄], the vector p̄λ = p̄ ∨ (p + λχX) is the unique minimal maximizer of
g under the condition p̄λ ≥ p+ λχX .
(ii) For every λ ∈ [0, λ̄], it holds that ∥p̄λ − (p+ λχX)∥∞ = ∥p̄− p∥∞ − λ.
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Proof. [Proof of (i)] Let λ∗ ∈ [0, λ̄] be the maximum real number such that p̄λ ∈ argmax g
for every λ ∈ [0, λ∗]. In the following, we assume, to the contrary, that λ∗ < λ̄ and derive a
contradiction.

Put q = p+λ∗χX and qε = p+(λ∗ + ε)χX with a sufficiently small positive real number
ε. Then, for Y = {i ∈ X | p̄(i) ≤ p(i) + λ∗}, we have

qε ∧ p̄λ∗ = q + εχX\Y , qε ∨ p̄λ∗ = p̄λ∗+ε.

By (LF1) for g, it holds that

g(qε) + g(p̄λ∗) ≤ g(qε ∧ p̄λ∗) + g(qε ∨ p̄λ∗) = g(q + εχX\Y ) + g(p̄λ∗+ε). (6.2)

By Lemma 4.15 (iii), X is a steepest ascent direction at q since λ∗ < λ̄. Hence, we have

g′(q;χX) ≥ g′(q;χX\Y ),

from which it follows that

g(qε)− g(q) = εg′(q;χX) ≥ εg′(q;χX\Y ) ≥ g(q + εχX\Y )− g(q), (6.3)

where the second inequality is by the concavity of g. By (6.2) and (6.3), it holds that
g(p̄λ∗) ≤ g(p̄λ∗+ε), i.e., p̄λ∗+ε ∈ argmax g.

We can choose ε sufficiently small so that

p̄λ = p̄λ∗ + (λ− λ∗)χY (λ∗ ≤ ∀λ ≤ λ∗ + ε)

holds. This, together with the concavity of g, implies that p̄λ ∈ argmax g for every λ ∈
[λ∗, λ∗ + ε] since p̄λ∗ , p̄λ∗+ε ∈ argmax g. Hence, we have p̄λ ∈ argmax g for every λ ∈
[0, λ∗+ε], a contradiction to the definition of λ∗. Hence, we have λ∗ = λ̄ and p̄λ ∈ argmax g
for every λ ∈ [0, λ̄].

It remains to show the minimality of p̄λ, i.e., that for every λ ∈ [0, λ̄], if q is a maximizer
of g with q ≥ p + λχX , then it satisfies q ≥ p̄λ. Since q is a maximizer of g with q ≥
p+ λχX ≥ p, we have q ≥ p̄ by the definition of p̄. This inequality and q ≥ p+ λχX imply
that q ≥ p̄ ∨ (p+ λχX) = p̄λ.

[Proof of (ii)] Let λ be a real number with 0 ≤ λ < λ̄. To prove

∥p̄λ − (p+ λχX)∥∞ = ∥p̄− p∥∞ − λ, (6.4)

it suffices to show the following:

∥p̄λ − (p+ λχX)∥∞ = max{p̄(i)− p(i) | i ∈ X} − λ, (6.5)

∥p̄λ − (p+ λχX)∥∞ ≥ max{p̄(i)− p(i) | i ∈ V \X} − λ, (6.6)

since

∥p̄− p∥∞ = max
[
max{p̄(i)− p(i) | i ∈ X}, max{p̄(i)− p(i) | i ∈ V \X}

]
.

We first prove (6.5). By Lemma 4.15 (iii) and λ < λ̄, the set X is a steepest ascent
direction at p+ λχX . Hence, Lemma 4.14 (i) implies that

argmax{p̄λ(i)− (p+ λχX)(i) | i ∈ V } ⊆ X, (6.7)
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since p̄λ is the unique minimal maximizer of g under the condition p̄λ ≥ p+ λχX by Claim
(i) of this lemma. From (6.7) it follows that

∥p̄λ − (p+ λχX)∥∞ = max{p̄λ(i)− (p+ λχX)(i) | i ∈ X}
= max

{
max(p̄(i)− p(i)− λ, 0) | i ∈ X

}
= max

[
max{p̄(i)− p(i) | i ∈ X} − λ, 0

]
= max

[
RHS of (6.5), 0

]
,

where p̄λ = p̄∨ (p+λχX) is used. In addition, we have ∥p̄λ− (p+λχX)∥∞ ̸= 0 since p+λχX

is not a maximizer of g by:

g(p+ λχX) = g(p+ λ̄χX)− (λ̄− λ)g′(p;χX) < g(p+ λ̄χX).

Therefore, we have (6.5). The inequality (6.6) can be shown easily as follows:

∥p̄λ − (p+ λχX)∥∞ ≥ max{p̄λ(i)− (p+ λχX)(i) | i ∈ V \X}
= max{p̄(i)− p(i) | i ∈ V \X}
≥ max{p̄(i)− p(i) | i ∈ V \X} − λ.

From (6.5) and (6.6) it follows (6.4) for every λ with 0 ≤ λ < λ̄. By the continuity of
the norm, the equation (6.4) also holds with λ = λ̄. This concludes the proof of (ii).

We now prove Theorems 6.1 and 6.2. Suppose that the algorithm terminates in m
iterations, and let p∗ be the output of the algorithm, i.e., p∗ = pm. Since p

∗ ≥ p◦, we have

∥p∗ − p◦∥∞ ≥ min{∥p− p◦∥∞ | p ∈ argmax g, p ≥ p◦} = ∥p̂− p◦∥∞,

where the equality is by (4.1). We also have

∥p∗ − p◦∥∞ = ∥(p◦ +
m−1∑
k=1

λkχXk
)− p◦∥∞ ≤

m−1∑
k=1

λk.

Hence, it suffices to show that

∥p̂− p◦∥∞ =
m−1∑
k=1

λk. (6.8)

We prove (6.8). Repeated application of Lemma 6.4 implies that for k = 1, 2, . . . ,m, the
vector p̂∨pk is the unique minimal maximizer of g that is lower-bounded by pk, and satisfies

∥(p̂ ∨ pk)− pk∥∞ = ∥(p̂ ∨ pk−1)− pk−1∥∞ − λk−1 = ∥p̂− p◦∥∞ −
k−1∑
j=1

λj.

We have p̂ ∨ pm = pm since pm ∈ argmax g. Therefore, (6.8) holds. This concludes the
proofs of Theorems 6.1 and 6.2.

We next prove Theorem 6.3. We first give a proof for the special case where
• g is an integral polyhedral L-concave function, i.e., for every x ∈ RV with argmax g[−x] ̸=
∅, the polyhedron argmax g[−x] is integral (see Section 4.4 for the definition of inte-
gral polyhedral L-concave function),
• the initial solution p◦ is an integral vector.
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Then, the value c̄(p;χX) is an integer for every p ∈ dom g ∩ ZV and X ⊆ V , as shown in
Section 4.4. Hence, we can inductively show that the vector pk as well as the step size λk
are integral for each k. This fact and Lemma 6.4 (ii) imply that

∥p̂k+1 − pk+1∥∞ = ∥p̂k − pk∥∞ − λk ≤ ∥p̂k − pk∥∞ − 1 (k = 1, 2, . . .),

where p̂k denotes the unique minimal maximizer of g under the condition that p̂k ≥ pk.
Hence, the number of iterations is at most ∥p̂1 − p1∥∞ = ∥p̂− p◦∥∞.

We then consider the general case. Since g is a polyhedral concave functions, there exist
a finite number of distinct sets of the form argmax g[−x]. Hence, there exists a positive
integer τ such that

• the function gτ : RV → R ∪ {−∞} given by gτ (p) = g(τp) (p ∈ RV ) is an integral
polyhedral L-concave function,
• τp◦ is an integral vector with τp◦ ∈ dom gτ .

We see that the behavior of the modified steepest ascent algorithm applied to g with the
initial vector p◦ is essentially the same as that of the modified steepest ascent algorithm
applied to gτ with the initial vector τp◦, which terminates in a finite number of iterations
by the discussion above. This concludes the proof of Theorem 6.3.

6.2. A bad instance for the modified algorithm

We show that the modified algorithm may not terminate in any finite number of iterations
by using the polyhedral L-concave function gT arising from the maximum weight tension
problem (MWT) described in Section 2. In particular, we consider a special case of the
problem (MWT), which we call the maximum linear-weight tension problem, where the
weight function φuv for (u, v) ∈ E is of the form

φuv(α) =

{
κ(u, v)α (if µ(u, v) ≤ α ≤ µ(u, v)),
−∞ (otherwise)

with κ(u, v) ∈ R and µ(u, v), µ(u, v) ∈ R. The function gT : RV → R ∪ {−∞} associated
with the maximum linear-weight tension problem is represented as

gT(p) =


∑

(u,v)∈E

κ(u, v)(p(u)− p(v)) (if p ∈ P ),

−∞ (otherwise),

(6.9)

where
P = {p ∈ RV | µ(u, v) ≤ p(u)− p(v) ≤ µ(u, v) (∀(u, v) ∈ E)}. (6.10)

Note that gT is a linear function on dom gT = P .
We consider the function gT in (6.9) associated with an instance of the maximum linear-

weight tension problem given in Figure 1, which is a modification of the one in McCormick
and Shioura [7] (see also Queyranne [15]). Only the five broken edges have nonzero value
of κ(u, v); κ(s, t) = +1, and each of four arcs (u, v) = (s, 7), (7, 3), (8, 4), and (4, t) has
κ(u, v) = K with a sufficiently large positive numberK. We set µ(u, v) = 0 for all (u, v) ∈ E.
The value µ(u, v) of each edge (u, v) is indicated in the figure, where

r = (
√
5− 1)/2, S1 = (1 + r)/2, S2 = 1/2, S3 = r/2,

and M is a sufficiently large positive number. These numbers satisfy the identities

1 = r + r2,

S1 − r = r3S1, S2 − r2 = r3S2, S3 − r3 = r3S3,
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Figure 1: A bad instance for the modified algorithm. The number associated with an edge
(u, v) means the upper capacity µ(u, v).

and the inequalities 1 > S1 > r > S2 > r2 > S3 > r3 > S1−r = r3S1. The three thick edges
(11, 10), (9, 6), and (5, 2) are special edges, which control the behavior of the algorithm.

Suppose that the modified steepest ascent algorithm is applied to this function with the
initial vector p1 = 0. Set X1 = {s, 8, 9, 10, 11, 12} is a steepest ascent direction at p1, where
(gT)

′(p1;χX1) = 2K + 1. We assume that this steepest ascent direction is selected in the
first iteration. Then, each component p1(i) for i ∈ X1 is incremented by c̄(p1;χX1) = r, i.e.,

p2(i) =

{
r (if i ∈ X1),
0 (otherwise).

In the second iteration, the set X2 = X1∪{4, 5, 6, 7} is a steepest ascent direction, where
(gT)

′(p2;χX2) = 2K + 1. We assume that this steepest ascent direction is selected in the
second iteration. Then, each component p2(i) for i ∈ X2 is incremented by c̄(p2;χX2) = 1,
i.e.,

p3(i) =


1 + r (if i ∈ X1),
1 (if i ∈ X2 \X1),
0 (otherwise).

The values of pk(u)− pk(v) at the beginning of the k-th iteration with k = 1, 2, 3 are shown
in Table 1. In the analysis below, we mainly consider changes of values pk(u) − pk(v) for
edges (u, v) rather than the components pk(u) for u ∈ V of the vector pk.

Note that in the following iterations, every steepest ascent direction X must satisfy the
following conditions:

s ∈ X, t ∈ V \X, {s, 7} ∪ {7, 3} ⊆ X, {8, 4} ∪ {4, t} ⊆ V \X.

Hence, every steepest ascent direction X has the value of the directional derivative equal to
1 in the following iterations.

Repeated choice of the same steepest ascent directions starts from the third iteration.
In the 3ℓ-th iteration with ℓ ≥ 1, we can select a steepest ascent direction

X3ℓ = {s, 1, 2, 3, 6, 7, 11, 12}, with (gT)
′(p3ℓ;χX3ℓ

) = 1, c̄(p3ℓ;χX3ℓ
) = r3ℓ−2.

Note that the set X3ℓ cuts all edges in G with capacity S1, i.e., u ∈ X3ℓ and v ̸∈ X3ℓ for each
edge (u, v) with capacity S1. Note also that X3ℓ is not a minimal steepest ascent direction
at p3ℓ; the minimal steepest ascent direction is given by {s, 3, 7}.
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Table 1: The values pk(u)− pk(v) for (u, v) ∈ E at the beginning of the k-th iteration.

k (4, t) (8, 4) special edges
(7, 3) (s, 7) (11, 10) (9, 6) (5, 2)

1 0 0 0 0 0
2 0 r 0 r 0
3ℓ 1 r 0 r3ℓ−2 r3ℓ−3

3ℓ+ 1 1 r r3ℓ−2 0 r3ℓ−1

3ℓ+ 2 1 r r3ℓ r3ℓ−1 0

k edges with
µ(u, v) = S1 µ(u, v) = S2 µ(u, v) = S3

1 0 0 0
2 0 0 0
3ℓ S1(1− r3ℓ−3) S2(1− r3ℓ−3) S3(1− r3ℓ−3)

3ℓ+ 1 S1(1− r3ℓ) S2(1− r3ℓ−3) S3(1− r3ℓ−3)
3ℓ+ 2 S1(1− r3ℓ) S2(1− r3ℓ) S3(1− r3ℓ−3)

Similarly, in the (3ℓ + 1)-st and (3ℓ + 2)-nd iterations, we can select steepest ascent
directions X3ℓ+1 = {s, 2, 3, 7, 9, 10, 12} and X3ℓ+2 = {s, 3, 5, 6, 7, 10}, respectively, as

(gT)
′(p3ℓ+1;χX3ℓ+1

) = 1, c̄(p3ℓ+1;χX3ℓ+1
) = r3ℓ−1,

(gT)
′(p3ℓ+2;χX3ℓ+2

) = 1, c̄(p3ℓ+2;χX3ℓ+2
) = r3ℓ.

This shows that in the following iterations, there always exists a steepest ascent direction
with a positive value of the directional derivative. Hence, the modified steepest ascent
algorithm applied to the function gT given above does not terminate in any finite number of
iterations. It should be noted that this bad instance also shows that even if a given function
is linear on its effective domain, the modified steepest ascent algorithm may not terminate
in any finite number of iterations.

Remark 6.5. We see that the sequence of vector pk generated by the modified steepest as-
cent algorithm applied to the bad instance converges to an optimal solution of the maximum
linear-weight tension problem. This instance can be modified so that pk does not converge
to any optimal solution (and the algorithm does not terminate in any finite number of
iterations).

Let us consider a directed graph obtained from the one in Figure 1 by adding a new vertex
t′ and a new edge (t, t′), where µ(t, t′) = 1, µ(t, t′) = 0, and κ(t, t′) is a real number with
0 < κ(t, t′) < 1. If we apply the modified steepest ascent algorithm to the new instance, then
the same sequence of steepest ascent directions can be selected since κ(t, t′) < 1. Therefore,
we have pk(t) = pk(t

′) = 0 for all k, while every optimal solution p∗ of this instance satisfies
p∗(t)− p∗(t′) = µ(t, t′) > 0. Hence, pk does not converge to any optimal solution.

6.3. A bad instance for the modified Hassin’s algorithm

In each iteration of Hassin’s algorithm in Section 3.1, the unique minimal maximizer X ⊆ V
of the value I(p,X) is chosen and used to update the vector p. We point out that the choice
of the unique minimal set is essential for the finite termination of Hassin’s algorithm. We
show that a modified version of Hassin’s algorithm, where X is not necessarily the minimal
maximizer of the value I(p,X), does not terminate in any finite number of iterations for
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some instance of the dual of the minimum cost flow problem. This modified version of
Hassin’s algorithm coincides with a special case of the modified steepest ascent algorithm
considered in this section applied to the polyhedral L-concave function in (3.1).

In the following, we show that every instance of the maximum linear-weight tension
problem can be transformed to an instance of the dual of a minimum cost flow problem.
According to this transformation, the bad instance in Section 6.2 yields a bad instance for
the modified version of Hassin’s algorithm.

Consider an instance of the maximum linear-weight tension problem given by a directed
graph G = (V,E) and values κ(u, v), µ(u, v), µ(u, v) ∈ R for (u, v) ∈ E. Recall that the set
P of feasible vectors is given by (6.10). We assume that P ̸= ∅. We define an instance of
the dual of a minimum cost flow problem on a directed graph G̃ = (Ṽ , Ẽ) with Ṽ = V and

Ẽ = {e′, e′′ | e′, e′′ are copies of e ∈ E} ∪ {ē | ē is the reverse edge of e ∈ E}.
With sufficiently large positive numbers Γ and C, we set

γ(e′) = −Γ, c(e′) = κ(e),

γ(e′′) = −µ(e), c(e′′) = C,

γ(ē) = µ(e), c(ē) = C.

Then, the objective function of the dual minimum cost flow problem in (3.1) is given as
follows:

gH(p) =
∑

(u,v)∈E

κ(u, v)min{0, p(u)− p(v)− Γ}

+
∑

(u,v)∈E

C
[
min{0, p(u)− p(v)− µ(u, v)}+min{0, p(v)− p(u) + µ(u, v)}

]
.

We show that the resulting instance of the dual minimum cost flow problem is equivalent
to the given instance of the maximum linear-weight tension problem. Since C is sufficiently
large, every maximizer p of the function gH satisfies

p(u)− p(v)− µ(u, v) ≥ 0, p(v)− p(u) + µ(u, v) ≥ 0 ((u, v) ∈ E),

i.e., argmax gH ⊆ P . Since Γ is also sufficiently large, we have

min{0, p(u)− p(v)− Γ} = p(u)− p(v)− Γ

for p ∈ P , which implies that

gH(p) =
∑

(u,v)∈E

κ(u, v)(p(u)− p(v)− Γ)

=
∑

(u,v)∈E

κ(u, v)(p(u)− p(v))− Γ
∑

(u,v)∈E

κ(u, v) (p ∈ P ),

where
∑

(u,v)∈E κ(u, v)(p(u)− p(v)) is equal to the objective function value of the maximum

linear-weight tension problem, and the term Γ
∑

(u,v)∈E κ(u, v) is a constant. Hence, the
set of optimal solutions of the dual minimum cost flow problem coincides with that of the
maximum linear-weight tension problem. Since C is sufficiently large, every steepest ascent
direction X of gH at p ∈ P satisfies the condition that p + ε′χX ∈ P for ε′ ∈ [0, ε] with
a sufficiently small ε > 0. This fact implies that the behavior of the modified Hassin’s
algorithm for the instance of the maximum linear-weight tension problem coincides with
that of the modified steepest ascent algorithm for the given instance of the dual minimum
cost flow problem.
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