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Abstract 34 

Various types of crystalline celluloses I, II, IIII, IIIII, IVI and IVII that have been adjusted for 35 

their degree of polymerization (DP) were treated by semi-flow hot-compressed water (HCW) 36 

at 230-270˚C/10 MPa/15 min in order to study their chemical decomposition. The treatments 37 

resulted in either partial or complete decomposition of the celluloses and the decomposed 38 

products were primarily recovered as hydrolyzed, dehydrated and fragmented ones as well as 39 

organic acids in the water-soluble (WS) portions. Their results of chemical decomposition 40 

and its kinetics revealed that the celluloses decomposition is dependent on the types of 41 

crystalline celluloses as well as temperature of the HCW treatment. The outcome from the 42 

WS portions at 270˚C/10 MPa/15 min showed that the degree of difficulty for decomposition 43 

is lower in group II (cell II, cell IIIII, cell IVII) than group I (cell I, cell IIII, cell IVI), 44 

indicating that group II is less resistant to decomposition by HCW treatment. Therefore, the 45 

decomposition behaviors of the cellulose are due to the inherent differences in the crystalline 46 

structures.  47 

 48 

Keywords Cellulose, Cotton linter, Crystalline structure, Hydrolysis, Semi-flow hot-49 

compressed water 50 

 51 

 52 

 53 

 54 

 55 

 56 

 57 

 58 

 59 

 60 

 61 

 62 

 63 

 64 

 65 

 66 

 67 



3 

 

Introduction 68 

 Currently, almost all ethanol from renewable carbon is obtained from food-based 69 

sources such as starch and molasses. The shortage of capacity and competition from food 70 

requirement drives the need for lignocellulose, such as grasses and woods, to serve carbon 71 

resources for promising biofuels [1]. Cellulose as one of the main components in 72 

lignocellulose with approximate production of 1.5 x1012 tons each year globally has high 73 

potential to be exploited for this purpose [2, 3]. It can be chemically converted into 74 

fermentable saccharides, however, this is usually hindered by its great resistance to 75 

hydrolysis [4].  76 

 Cellulose is a linear crystalline homopolymer consisting of β-1,4-linked D-77 

glucopyranose units. It exists in six known polymorphs of celluloses (I, II, IIII, IIIII, IVI, IVII) 78 

identified by their characteristic X-ray diffraction (XRD) patterns as well as 13C nuclear 79 

magnetic resonance (NMR) spectra. In nature, cellulose has high degree of polymerization 80 

(DP), in a range of about 6000 to 15000 glucopyranose units [5] which makes it highly 81 

crystalline and not easy to be separated or dissolved in almost any solvents [6,7]. Thus, 82 

numerous biological, chemical, and/or physical treatments such as enzymatic saccharification, 83 

acid/alkali treatments, steam explosion, supercritical and subcritical treatments have been 84 

applied and developed for cellulose hydrolysis [8-14].   85 

 Hydrothermal treatment in hot-compressed water (HCW) has been proposed as a 86 

promising method to hydrolyze cellulose mostly due to its non-toxic, non-catalytic and 87 

environmentally benign properties [15-18]. Furthermore, over conventional method, it has 88 

advantages such as limited corrosion problem, no sludge generation, low capital and 89 

operational cost, as well as no significant degradation of cellulose at normal operating 90 

conditions [19]. The conventional methods such as acid/alkali treatment and acid/alkali 91 

pretreatment followed by enzymatic hydrolysis are associated with serious economic and 92 

environmental constraints due to the heavy use of chemicals.  93 

 Hot-compressed water is highly pressurized, high temperature liquid water at 94 

subcritical condition, below the critical point of water at 374˚C/22.1 MPa [20]. It is 95 

characterized by a higher ionic product and thus higher concentration of H+ and OH- ions, 96 

compared to ambient water, offering a highly interesting reaction medium for hydrolysis 97 

processes. In addition, acid neutralization is not required because the concentration of H+ ion 98 

is a function of temperature, and decreases when the temperature is lowered. Many studies 99 

have confirmed that cellulose can be largely hydrolyzed in subcritical water without addition 100 

of a catalyst [21-26].  101 
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 The experimental results using a flow-type HCW treatment showed that glucose yield 102 

increases with increasing temperature [27]. It has less significant degradation reactions as 103 

compared with batch-type treatment that makes it preferable for hydrolysis process of 104 

lignocellulose [28-30]. It has been reported that 4-22 % of cellulose could be hydrolyzed by 105 

flow-type HCW treatment (200-230˚C/34.5 MPa/15 min) [31]. 106 

 To the best of authors’ knowledge, studies have been done on analysis of cellulose 107 

hydrolysis by using HCW treatment; however, the comprehensive investigation has been 108 

rarely conducted on various crystalline celluloses as feedstocks. The physical characteristics 109 

such as crystalinity and DP of various crystalline cellulose residues as treated by semi-flow 110 

HCW were thoroughly explored in previous study together with a brief evaluation on the 111 

water-soluble (WS) portions [32]. Therefore, as a further approach, the primary objective of 112 

this work is to study quantitatively the chemical decomposition from various crystalline 113 

celluloses as treated by semi-flow HCW through the yields of WS portions. 114 

 115 

Materials and Methods  116 

Preparation of various types of crystalline cellulose samples 117 

Cotton linter (Buckeye 1AY-500), in the form of cellulose I (cell I), was used to 118 

prepare various types of crystalline celluloses. Cellulose II (cell II) was prepared from cell I 119 

through mercerization by soaking it into 20.0 % of aqueous NaOH solution for 24 h at 120 

ambient condition of temperature (20˚C) and pressure (0.1 MPa), followed by washing 121 

thoroughly with water and freeze-drying [33]. As for celluloses IIII (cell IIII) and IIIII (cell 122 

IIIII), they were prepared from cell I and cell II, respectively. Cell I and cell II were soaked in 123 

100 % ethylenediamine for 24 h at ambient condition, washed with dried methanol and kept 124 

under vacuum.   125 

The prepared cell IIII and cell IIIII were further used for the preparation of celluloses 126 

IVI (cell IVI) and IVII (cell IVII), by firstly soaking them in glycerol for 3 d at ambient 127 

condition. They were then heated in a reaction vessel at 260˚C/0.6 MPa for 30 min and 128 

cooled down to ambient condition [34]. The product was, then, washed with water and 129 

acetone successively, and dried in vacuum. Basically, the converted celluloses consisted of 130 

group I (celI I, cell IIII, cell IVI) and group II (cell II, cell IIIII, cell IVII). Their chemical 131 

compositions were also analyzed and all these celluloses were found to contain similar 132 

monosaccharide components of about 99.9 wt% glucose and 0.1 wt% xylose [35].   133 

To compare the decomposition products from the water-soluble (WS) portions on 134 

various types of crystalline celluloses by semi-flow HCW treatment, cellulose with similar 135 
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DP are necessary for their evaluation. Consequently, these celluloses were adjusted by trial 136 

and error for their DPs by changing the treatment condition mentioned above for converting 137 

cell I to various forms of celluloses.   138 

 139 

The determination of DP and crystallinity of the celluloses 140 

 The celluloses were dissolved in 0.5 M cupriethylenediamine (Cuen) by viscometry as 141 

per TAPPI method [36]. The DP of the celluloses was then calculated from the intrinsic 142 

viscosity [η] according to the equation DP0.905 = 0.75[η] [37].  For the crystallinity 143 

determination, Gaussian functions were used to deconvulate the XRD patterns of various 144 

crystalline celluloses [38]. These XRD patterns were recorded by X-ray diffractometer 145 

Rigaku RINT 2200 [32].  146 

 147 

Treatment of various crystalline cellulose samples by semi-flow HCW treatment 148 

 The prepared celluloses as starting materials were then treated individually in a semi-149 

flow HCW system. The conversion system and its operational procedures as explained 150 

elsewhere were adapted for this study [24-26]. Briefly, about 0.4 g of cellulose was treated 151 

individually within a 5 mL reaction vessel. The ambient distilled water from a water tank was 152 

flown through the reaction vessel by a pump in order to pressurize the system at 10 MPa 153 

controlled by a back-pressure regulator. To raise the temperature, the preheating unit 154 

monitored by thermocouples was used to reach at the designated temperatures of 230, 250 155 

and 270˚C for about 20 min under 10 MPa and remain constant for additional 15 min, totally 156 

35 min. In addition, another heating unit was installed at the reaction vessel to maintain the 157 

designated temperature in the reaction vessel, into which the HCW was passed through at the 158 

flow-rate of 10 mL/min. 159 

These treatments yielded insoluble residues [32] and WS portions. After the HCW 160 

passing through the reaction vessel, the WS portions were cooled down immediately by the 161 

cooling system to terminate all reactions and collected every 5 min. They were allowed to 162 

settle in ambient temperature and pressure for a minimum of 12 h. Though no precipitation 163 

was observed after at least 12 h, it was filtered by 0.45 μm membrane prior to the subsequent 164 

analyses.  165 

 166 

Analytical methods 167 

 The WS portions collected were analyzed and characterized by using high-168 

performance anion exchange chromatography (HPAEC), high-performance liquid 169 
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chromatography (HPLC) and capillary electrophoresis (CE). The HPAEC system (Dionex 170 

ICS-1000 system) equipped with the CarboPac PA-1 column (4 mm x 250 mm) and 171 

electrochemical detector for pulsed amperometric detection was employed and operated at   172 

35˚C and flow-rate of 1.0 mL/min under the helium atmosphere for monosaccharides and 173 

cello-oligosaccharides in the WS portions. The mobile phase was a gradient-programmed 174 

mixture of deionized water, 0.2 M NaOH and 2.0 M CH3COONa, as eluents. All eluents 175 

contained in 3 separate reservoirs were degassed by an aspirator and subsequently purged 176 

with helium to prevent the absorption of CO2.  177 

The HPLC system (Shidmadzu, LC-10A) equipped with a Shodex Sugar KS-178 

801/Ultron PS-80P columns and refractive index/UV-Vis detector was applied. The eluent 179 

used was deionized water at a flow-rate of 1.0 mL/min and oven temperature was set to be    180 

80˚C for the columns. The CE (Agilent; Germany) was used to assay the low molecular 181 

weight organic acids. A fused-silica capillary (Agilent; 75 μm diameter, 104 cm total length, 182 

95.5 cm effective length) was used at 15˚C.   183 

Concentrations of the products in the WS portions were calculated based on the peak 184 

areas on chromatograms obtained from HPAEC, HPLC and CE. A set of standards with 185 

known concentrations, containing the compounds that were to be identified both 186 

quantitatively and qualitatively, was prepared and analyzed together with the samples by 187 

using the relevant analytical equipment as mentioned above [18, 24, 25].  188 

 189 

Results and Discussion 190 

 To investigate the decomposition behaviors on various types of crystalline celluloses 191 

by semi-flow HCW treatment, the celluloses must have the same DPs as the starting 192 

materials. Thus, a direct comparison between the celluloses is feasible, as listed in Table 1. 193 

Treatments by semi-flow HCW were then carried out for these celluloses at temperatures of 194 

230, 250 and 270˚C under 10 MPa for 15 min (230-270˚C/10 MPa/15 min).  195 

 196 

Decomposition kinetics 197 

 The semi-flow HCW treatment decomposed various crystalline celluloses either 198 

partially or completely to the WS portions. The yield on WS portions from various crystalline 199 

celluloses as shown in Fig. 1, is a function of treatment temperatures. At constant treatment 200 

time, the yield on WS portions increased as the temperature increased. They were measurable 201 

even at lower temperature, 230˚C/10 MPa, with approximately 10-30 wt% and increased to 202 

more than 70 wt% at higher temperature, 270˚C/10 MPa. At 270˚C/10 MPa/15 min, cell II 203 
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was shown to be totally decomposed to WS portions as compared with other celluloses. The 204 

overall results from Fig.1 illustrated that higher yields were obtainable for group II celluloses 205 

than group I.   206 

  Figure 2 shows the Arrhenius plot of the present results according to the pseudo-first-207 

order reaction kinetics. The relationship between natural logarithms of reaction constants, ln k, 208 

and T-1 shows good linear fits with the results indicating that the decomposition follows the 209 

pseudo-first-order reaction kinetics. Every parameter used such as time, pressure and DP on 210 

the celluloses were kept constant, satisfying the assumption that the Arrhenius-plot is 211 

temperature dependent. Though, the data points obtained in this study are only based on three 212 

different temperatures profile, the degree of decomposition could be determined reliably and 213 

the comparison of kinetics on various crystalline celluloses can be done directly. 214 

 The apparent activation energies, Ea, for the celluloses can be calculated from Fig. 2. 215 

Activation energy of any reaction mainly explains its degree of temperature-sensitiveness; 216 

reactions with higher Ea are high in temperature-sensitiveness, while the reactions with lower 217 

Ea are low temperature-sensitive [39]. It can also be said that Ea is defined as the minimum 218 

energy required for decomposition to occur. The smaller Ea for decomposition of cellulose 219 

signifies the requirement of less energy for its decomposition and vice versa. In Fig.2, it was 220 

shown that different slopes obtained for each of the celluloses suggested different Ea for 221 

cellulose decomposition in the studied temperature range. 222 

 Table 2 shows the obtained Ea for all celluloses within the treatment temperatures. 223 

The Ea for group I and group II celluloses are, respectively, greater than 70 kJ/mol and in 224 

between 50-60 kJ/mol. It is apparent that the celluloses in group I have higher Ea than those in 225 

group II, which implies an easier decomposition process for group II celluloses by semi-flow 226 

HCW treatment. However, due to the aforementioned limitations such as limited numbers of 227 

experiments carried out in a relatively narrow temperature range, the obtained Ea must be 228 

judged critically. The acquired Ea was based on the best fit curves. As a result, a higher Ea 229 

was obtained for cell IVI as compared with cell I and cell IIII. Since comparison of Ea was 230 

done between group I and group II, the above observation of group I having higher Ea than 231 

group II is valid.  232 

 These Ea are lower than previously reported, 164 kJ/mol [7] and 145 kJ/mol [40] 233 

without catalysts, whereas, 144 kJ/mol and 100 kJ/mol [41] in dilute sulfuric acid catalyst. 234 

The differences in Ea could be due to various definitions of decomposition processes and 235 

treatment conditions used. For instance, Sasaki et al. [40] studied just the kinetics of cellulose 236 
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hydrolysis only at elevated temperatures (above 290˚C/25 MPa), whereby in this work the 237 

kinetics of various cellulose decomposition was measured at 230-270˚C/10 MPa. 238 

  Here, the observed decomposition of cellulose in subcritical water appears to be as 239 

good as that occurring in dilute sulphuric acid hydrolysis [41]. Cellulose firstly undergoes a 240 

rapid weight loss and followed by a slow hydrolysis step of the remaining cellulose. The high 241 

reactivity is associated with accessible amorphous regions in cellulose that are more 242 

vulnerable to chemical attacks than the crystalline regions [42]. The reaction temperature has 243 

influence on the solvent properties of water [15, 43]. It has been suggested that the shift in 244 

solvent properties affects the kinetics of cellulose decomposition [44, 45]. However, in this 245 

present work, the constant Ea implies that the reaction mechanism of the hydrothermal 246 

decomposition is not distinctly affected. The lower Ea obtained indirectly showed that the 247 

decomposition of various celluloses in this system is a catalytic process, in agreement with 248 

the literature [41]. 249 

 250 

Quantification of water-soluble (WS) portions 251 

 Figure 3 shows the reaction scheme of cellulose I decomposition into hydrolyzed and 252 

degraded products as treated by semi-flow HCW treatment, adapted from [32]. In the present 253 

work, the WS portions for various crystalline celluloses obtained from each treatment were 254 

found to follow a similar decomposition pathway as in Fig. 3. It is important to know the 255 

decomposition pathway of cellulose as the degraded products inhibit the fermentation process 256 

for ethanol production [46].  257 

 Under the HCW conditions, the ionization constant of water increases with 258 

temperature and the amount of dissociation also increases, compared with normal 259 

temperature and pressure.  The glucosidic linkages of cellulose are cleaved and cellulose 260 

starts to hydrolyze into cello-oligosaccharides, and subsequently, hydrolyzed to 261 

monosaccharide of glucose [20, 25, 47, 48]. Isomerization of glucose occurred producing 262 

fructose and mannose. These monosaccharides are unstable at high temperature and thus 263 

some parts of them are further converted into their degraded products such as furfural,          264 

5-hydroxymethyl furfural (5HMF), levoglucosan through dehydration, and erythrose, 265 

glycolaldehyde, methylglyoxal through fragmentation [49]. Prolonged treatment, however, 266 

allows further degradation to take place, generating other products such as organic acids.  267 

 The resulted WS portion percentages based on the dried weight of cellulose samples 268 

clearly indicated that the celluloses have been converted to the hydrolyzed and degraded 269 

products. The hydrolyzed products are comprised of cello-oligosaccharides, glucose, fructose 270 
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and mannose, whereas the degraded products consist of dehydrated and fragmented products, 271 

as well as organic acids. Their productions were recorded higher in hydrolyzed products as 272 

compared with degraded products, and more yields were obtained as treatment temperatures 273 

increased. 274 

These WS portions were calculated similarly as in the previous studies [24, 25]. The 275 

cello-oligosaccharides were consisted of cellobiose, cellotriose, cellotetraose, cellopentaose, 276 

cellohexaose and other cello-oligosaccharides with the higher DP. The more existence of the 277 

cello-oligosaccharides with the higher DP shows that the cellulose has more resistance 278 

against hydrolysis by semi-flow HCW treatment. In addition to cello-oligosaccharides and 279 

glucose, a smaller amount of fructose was also detected and only traces of mannose were 280 

identified.   281 

 A much lower yield of the WS portions obtained at 230˚C/10 MPa/15 min (data not 282 

shown) was due to the difficulty of the crystalline structures of celluloses to be hydrolyzed at 283 

such lower temperature [26]. The cello-oligosaccharides observed could be obtained from the 284 

paracrystalline cellulose. The observed fructose is not a sugar component in cotton linter, but 285 

it may be isomerized from glucose after hydrolysis from cellulose [50, 51].   286 

 To evaluate the decomposition behavior of various crystalline celluloses in details, the 287 

results from 270˚C/10 MPa/15 min would be more appropriate, as at this condition, 288 

crystalline cellulose is known to decompose [20, 25, 26]. Table 3 shows the comparison 289 

between hydrolyzed and degraded products for the two groups of cellulose samples at                      290 

270˚C/10 MPa/15 min. It can be seen that for both group I and group II celluloses, more than 291 

50 wt% of hydrolyzed products were obtained as compared with degraded products.  It was 292 

reported that about 31.2, 28.1 and 20.5 wt% of hydrolyzed products obtained from the 293 

cellulose of Japanese cedar, Japanese beech and Nipa frond, respectively [52]. However, 294 

there were no results for DP of the cellulose from this study that it can be compared with. 295 

The higher yield in WS portions observed in this present work could probably due to the 296 

shorter DP celluloses used for the starting materials.   297 

 According to Fig. 3, the hydrolyzed products were produced at the early stage of 298 

cellulose decomposition pathway. This could signify that these celluloses have resistance 299 

against decomposition.  The total hydrolyzed products for cell I and cell IIII is similar but 300 

much lesser than cell IVI, whereas the highest hydrolyzed products obtained in group II is 301 

from cell IIIII, followed by cell IVII and cell II. Overall, celluloses in group II have resulted 302 

more hydrolyzed products than those in group I. The observation is similar for the degraded 303 

products.  304 
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 Figures 4 and 5, respectively, illustrated how the hydrolyzed and degraded products 305 

were obtained at every 5 min intervals at 270˚C/10 MPa/15 min.  In Fig. 4, only the yields of 306 

cello-oligosaccharides, glucose and fructose were shown. These yields are comparable with 307 

the results in the literatures [20, 24-26]. Based on these results, the cellulose has been cleaved 308 

into cello-oligosaccharides at the early stage of the treatment time and the production of 309 

glucose and fructose was seen to occur simultaneously. Celluloses in both group I and group 310 

II have similar behaviors; however, more products were seen from group II celluloses. The 311 

cello-oligosaccharides and glucose were recovered from the treatment time of 35 min. The 312 

crystalline structure of cellulose remained unchanged at temperatures around 230˚C [53], thus, 313 

the WS portions emerged from the time-up (0-20 min treatment time) could be from 314 

paracrystalline cellulose, and the time-at (20-35 min treatment time) was from cellulose. 315 

 Generally, these monosaccharides are further degraded by dehydration or 316 

fragmentation process [15, 24, 54, 55]. Figure 5 illustrated more dehydrated products were 317 

obtained than fragmented products and organic acids. During the treatments, it can be seen 318 

that the degraded products were generated at almost similar time as the hydrolyzed products 319 

(Fig.4). Moreover, the productions of dehydrated and fragmented products as well as organic 320 

acids were generated concurrently. Both group I and group II celluloses in Fig.5 have the 321 

same trends as in Fig. 4, i.e., more products resulted from group II celluloses. The generation 322 

of hydrolyzed products started to be noticeable from around 3 min (Fig. 4) and followed by 323 

degraded products (Fig. 5) about 10 min later. This sequence is parallel with that shown in 324 

Fig. 3 at which the hydrolyzed products were produced earlier in the decomposition pathway, 325 

and later on followed by the production of degraded products.    326 

Figure 6 shows the yield in wt% for the individual degraded products in the WS 327 

portions for both group I and group II celluloses as treated by semi-flow HCW at                  328 

270˚C/10 MPa/15 min. The dehydrated products detected were consisted of furfural, 5HMF 329 

and levoglucosan, whereas fragmented products such as erythrose, glycolaldehyde and 330 

methylglyoxal. While for organic acids, acetic, formic, lactic and glycolic acids were 331 

identified. The furfural in Fig. 6 can not only be produced from pentose but also from hexose 332 

such as glucose. This means that the formation of furfural is possible without pentose via 333 

five-carbon ketoses pathway as proposed in the literature [56].  334 

Glycolaldehyde and erythrose were formed via retro-aldol condensation in 335 

glycolaldehyde/erythrose pathway [44, 51], while methylglyoxal was produced via 336 

glyceraldehyde/dihdroxyacetone pathway in hexose fragmentation. Nevertheless, the 337 

production of methylglyoxal in this case was too minute that it was excluded from Fig.6. The 338 
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production of furfural and 5HMF was significant as compared with other degraded products. 339 

The organic acids produced are the results of further degradation of dehydrated and 340 

fragmented products [51, 57]. Lactic acid production was only a trace to be included in Fig. 6. 341 

All the sequences of degradation reactions and productions are agreeable with Fig. 3.   342 

 Based on those results above, it can be seen that group II celluloses dominated both 343 

the hydrolyzed and degraded products as compared with group I celluloses. The result on the 344 

WS portions at 270˚C/10 MPa/15 min revealed that the degree of difficulty for 345 

decomposition is greater for celluloses in group I than those in group II.  346 

 347 

Conclusion 348 

 This study reveals the essential effects of various crystalline celluloses on their 349 

chemical decomposition and its kinetic behaviors as treated by semi-flow HCW. Both 350 

decomposition rate and Ea are helpful in defining the degree of difficulty for decomposition 351 

of various crystalline celluloses, however, the Ea obtained were merely based on empirical 352 

relationships of Arrhenius equation. Consequently, the direct method is more preferable than 353 

the latter. Nevertheless, this study showed the new kinetic data as there was no previous data 354 

on these specific reaction systems.  355 

 These treatments can be used as viable decomposition media for celluloses at which 356 

under the given treatment conditions, cellulose is more readily hydrolyzed with less degraded 357 

products. Group I celluloses (cell I, cell IIII, cell IVI) have shown to have more resistance to 358 

decompose than group II celluloses (cell II, cell IIIII, cell IVII). Based on this evidence, it was 359 

clear that the decomposition behaviors are due to the different crystalline forms of celluloses. 360 

Therefore, it is recommended to transform cellulose I to the other for a better hydrolysis 361 

reaction. These presented data are useful for understanding how various types of crystalline 362 

celluloses are chemically decomposed, providing useful insights to efficient utilization of 363 

lignocellulose for biofuels and biochemicals.  364 
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Fig. 2 The Arrhenius plot for various crystalline celluloses using pseudo-first order reaction 

kinetics as treated by semi-flow HCW at 230-270˚C/10 MPa/15 min 
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Fig. 3 Decomposition pathway of crystalline cellulose I as treated by semi-flow HCW  
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Fig. 4 The hydrolyzed products of cello-oligosaccharides, glucose and fructose in the WS 

portions from various types of crystalline celluloses as treated by semi-flow HCW at          

270˚C/10 MPa/15 min. Top figure corresponds to treatment temperature (open squares) 
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Fig. 5 The degraded products of dehydrated, fragmented and organic acids products in the 

WS portions from various types of crystalline celluloses as treated by semi-flow HCW at    

270˚C/10 MPa/15 min. Top figure corresponds to treatment temperature (open squares) 
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Fig. 6 The degraded products in WS portions from various types of crystalline celluloses as 

treated by semi-flow HCW at 270˚C/10 MPa/15 min 
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         Table 1 The crystallnity and DP for various types of crystalline celluloses  

         prepared in this study 

 Cellulose Crystallinity (%) DP 

Group I 

      Cell I 92 176 

      Cell IIII 86 164 

      Cell IVI 90 167 

Group II 

      Cell II 85 173 

      Cell IIIII 87 176 

      Cell IVII 85 164 

 

 

 

 

 

 

 



  Table 2 The apparent activation energies of various types of crystalline  

  celluloses as treated by semi-flow HCW at 230-270˚C/10 MPa/15 min 

 Cellulose Activation energy, Ea  (kJ/mol)  

Group I 

     Cell I 71.4 

     Cell IIII 78.0 

     Cell IVI 90.2 

Group II 

     Cell II 53.3 

     Cell IIIII 59.0 

     Cell IVII 56.6 

 



Table 3 The total hydrolyzed and degraded products of WS portions from various types of 

crystalline celluloses as treated by semi-flow HCW at 270˚C/10 MPa/15 min 

 Cellulose Hydrolyzed product (wt%) Degraded product (wt%) 

Group I 

    Cell I 52.0 10.5 

    Cell IIII 52.7 10.6 

    Cell IVI 67.0 11.1 

Group II 

    Cell II 67.3 18.8 

    Cell IIIII 71.0 8.9 

    Cell IVII 67.0 12.6 

 




