- 1 Dermal $V\gamma 4^+ \gamma \delta$ T cells possess a migratory potency to the draining lymph nodes
- 2 and modulate CD8⁺ T cell activity through TNF-α production

- 4 Satoshi Nakamizo¹, Gyohei Egawa¹, Michio Tomura², Shunsuke Sakai³, Soken
- 5 Tsuchiya⁴, Akihiko Kitoh¹, Tetsuya Honda^{1,2}, Atsushi Otsuka¹, Saeko Nakajima¹, Teruki
- 6 Dainichi¹, Hideaki Tanizaki¹, Masao Mitsuyama³, Yukihiko Sugimoto⁴, Kazuhiro
- 7 Kawai⁵, Yasunobu Yoshikai⁶, Yoshiki Miyachi¹, and Kenji Kabashima^{1,7}

8

- 9 ¹Department of Dermatology, ²Center for Innovation in Immunoregulative Technology
- and Therapeutics, and ³Microbiology, Kyoto University Graduate School of Medicine,
- 11 Japan.
- 12 ⁴Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical
- 13 Sciences, Kumamoto University, Japan.
- ⁵Department of Dermatology, Kido Hospital, Niigata, Japan.
- 15 ⁶Divisions of Host Defense, Medical Institute of Bioregulation, Kyushu University,
- 16 Fukuoka, Japan.
- ⁷PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama
- 18 332-0012, Japan

19

- 20 Correspondence to Kenji Kabashima, MD, PhD, and Gyohei Egawa, MD, PhD
- 21 Department of Dermatology, Kyoto University Graduate School of Medicine,
- 54 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- 23 Phone: +81-75-751-3310; Fax: +81-75-761-3002
- Email address: kaba@kuhp.kyoto-u.ac.jp (K.K.) and gyohei@kuhp.kyoto-u.ac.jp (G.E.)

25

26 Short title: Dermal γδ T cells enhance CD8⁺ T cell response

2728

Abstract

30

31 A large number of $\gamma\delta$ T cells are located within epithelial tissues including the skin. In 32 mice, epidermal and dermal γδ T cells consist of distinct subsets and play specific roles in cutaneous immune responses. A recent study demonstrated that γδ T cells and 33 34 cutaneous dendritic cells migrate from the skin to the draining lymph nodes (LNs). 35 However, it remains unclear whether they regulate the antigen-specific immune 36 response within the LNs. Herein, we investigated their properties and role in the LNs using the Mycobacterium bovis bacille Calmette-Guérin (BCG) infection model. In vivo 37 38 cell labeling analysis revealed that the most of migratory subset was dermal $V\gamma 4^+$ cells. 39 This population transmigrated from the skin to the LNs in a Gi-coupled chemokine receptor-independent manner. By depleting Vγ4⁺ cells, the intranodal expansion of 40 CD8⁺ T cell against BCG was significantly attenuated. In addition, in vitro analysis 41 revealed that Vγ4⁺ cells produced TNF-α and enhanced IL-12 production by dendritic 42 cells. Taken together, these findings suggest that dermal $V\gamma 4^+$ cells are a unique subset 43 44 that possesses a migratory potency to the skin-draining LNs and enhances the dendritic 45 cell function therein. 46

Introduction

- 48 Gamma delta T cells (γδ T cells) are a minor subset of T cells but are the major T cell
- 49 population in epithelial tissues, including the skin (Hayday, 2000). In contrast to αβ T
- 50 cells, γδ T cells show less T cell receptor (TCR) diversity and appear to respond to
- self-molecules that belong to danger signals (Takagaki et al., 1989). Many researchers
- 52 believe that γδ T cells function in an innate manner. On activation, γδ T cells produce a
- large amount of inflammatory molecules, such as granulocyte-macrophage colony
- 54 stimulating factor (GM-CSF), interferon (IFN)-γ, and tumor necrosis factor (TNF)-α,
- and participate in cutaneous immune surveillance (Macleod and Havran, 2011).
- In mice, the skin contains at least three subsets of $\gamma\delta$ T cells: epidermal $\gamma\delta$ T cells
- 57 (also known as dendritic epidermal T cells [DETCs]), dermal Vγ4⁺ cells, and dermal
- $V\gamma4^-$ cells (Sumaria *et al.*, 2011). Recent studies emphasize that each subset plays
- 59 distinct roles in cutaneous immune responses. Strid et al. reported that DETCs secreted
- 60 interleukin (IL)-13 on activation and are involved in the initiation of cutaneous T helper
- 61 2 (Th2)-type responses (Strid *et al.*, 2011). DETCs also play an immune-regulatory role
- 62 in irritant contact dermatitis and allergic contact dermatitis (Girardi et al., 2002). On the
- other hand, dermal γδ T cells are known as a main source of IL-17 in mycobacterium
- 64 infections (Sumaria et al., 2011) and in psoriasiform dermatitis models (Cai et al., 2011;
- 65 Mabuchi et al., 2011; Yoshiki et al., 2014). These studies suggest that γδ T cells belong
- 66 "in between" the innate and adaptive immune systems and can modulate acquired
- 67 immune responses.
- Recently, we demonstrated that some $\alpha\beta$ T cells in the skin and cutaneous dendritic
- cells (DCs) migrate to the draining lymph nodes (LNs) and modulate immune events
- 70 therein (Tomura et al., 2010). This observation suggests that the circulation of immune
- 71 cells between the skin and the draining LNs is a key mechanism for the modulation of
- 72 cutaneous immunity. As for $\gamma\delta$ T cells, Gray et al. reported that CCR6⁺ $\gamma\delta$ T cells
- 73 migrated from the skin to the draining LNs in imiquimod-induced skin inflammation
- (Gray et al., 2013). However, the function of the migratory subset of $\gamma\delta$ T cells remains
- 75 undetermined.
- 76 In the present study, we examined the properties of a migratory subset of $\gamma\delta$ T cells in
- 77 the *Mycobacterium bovis* bacille Calmette-Guérin (BCG) infection model. Dermal γδ T

78 cells are important for host defense against cutaneous BCG infection (Sumaria et al., 79 2011). We revealed that dermal $V\gamma 4^+$ cells are a unique subset that possesses a 80 migratory potency to the draining LNs and modulate immune responses against BCG 81 infection. 82 83 84 **Results** 85 Dermal y8 T cells migrate from the skin to the draining LNs We first analyzed the kinetics of cutaneous γδ T cells that migrated from the skin to the 86 87 draining LNs. To track cell migration, we used Kaede-transgenic (tg) mice that 88 expressed a photo-convertible Kaede protein throughout the body (Tomura et al., 2010). 89 Before photoconversion, all cutaneous cells in Kaede-tg mice expressed green 90 fluorescence (Kaede-green) (Fig.1a, left panel). Upon violet light exposure to the skin, 91 all cutaneous cells immediately turned their fluorescence to red (Kaede-red) (Fig.1a, 92 **right panel**). It should be noted that no detectable skin inflammation was induced by 93 the violet light exposure (Tomura et al., 2010). 94 Twenty-four hours after the violet light exposure to the footpad, the draining 95 popliteal LNs and non-draining cervical LNs were harvested. In draining LNs, $13.8 \pm$ 96 2.1% of CD11c⁺ DCs and $5.3 \pm 0.4\%$ of $\gamma\delta$ TCR⁺ cells expressed Kaede-red (**Fig. 1b**), 97 suggesting that these cells migrated from the skin. Almost no Kaede-red⁺ cells were 98 found in the non-draining LNs (< 0.1 % of $\gamma\delta$ T cells expressed Kaede-red). 99 We then sought to examine the migratory kinetics of cutaneous $\gamma\delta$ T cells in the 100 inflammatory condition. It is well known that $\gamma\delta$ T cells play an important role in the 101 surveillance of mycobacterial infection (Belmant et al., 1999). We inoculated 102 Mycobacterium bovis BCG to the footpad and exposed to the violet light. The numbers 103 of Kaede-red⁺ γδ T cells and Kaede-red⁺ DCs were significantly increased in the 104 draining LNs after BCG infection (Fig. 1c). These results suggest that cutaneous 105 γδ T cells constantly migrate from the skin to the draining LNs and their migration is 106 enhanced upon BCG infection. 107 To clarify the $\gamma\delta$ T cell migratory ability in other skin inflammation models, we next evaluated the γδ T cell migration in contact hypersensitivity model with 108

109	dinitrofluorobenzene (DNFB) (Honda $et~al.$, 2013). The numbers of Kaede-red ⁺ $\gamma\delta$ T
110	cells were increased after the challenge of DNFB (Supplementary Fig.1). This result
111	suggests that $\gamma\delta$ T cells migration was enhanced not only in the BCG infection but also
112	in other skin inflammation, such as contact hypersensitivity.
113	
114	Cutaneous $\gamma\delta$ T cell migration to the draining LNs is independent of Gi-coupled
115	chemokine receptors
116	Next, we investigated the mechanism of the cutaneous $\gamma\delta$ T cell migration to the
117	draining LNs. Previous studies have shown that cutaneous DCs and $\alpha\beta$ T cells migrated
118	to the draining LNs in a CCR7-dependent manner (Bromley et al., 2013; Randolph et
119	al., 2008). To determine the CCR7-dependency of cutaneous $\gamma\delta$ T cell migration, we
120	mated Kaede-tg mice with CCR7-deficient mice. As previously reported (Bromley et al.,
121	2013), Kaede-red ⁺ CD11c ⁺ DCs were almost absent in the skin-draining LNs of
122	CCR7-deficient mice (Fig. 2a, b). In contrast, the percentage of Kaede-red ⁺ $\gamma\delta$ T cells in
123	the draining LNs was comparable irrespective of CCR7-deficiency (Fig. 2a, b).
124	Consistent with this observation, CCR7 expression was absent in cutaneous $\gamma\delta$ T cells
125	and Kaede-red ⁺ skin-derived $\gamma\delta$ T cells (Fig. 2c).
126	We next examined the involvement of the other Gi-coupled chemokine receptors.
127	With subcutaneous injection of pertussis toxin (PTX), a specific Gi inhibitor,
128	Kaede-red $^+$ DCs in the draining LNs were significantly decreased, whereas the $\gamma\delta$ T cell
129	migration to the draining LNs was not affected (Fig. 2d, e). Taken together, these results
130	suggest that the cutaneous $\gamma\delta$ T cell migration toward the LNs is independent of
131	Gi-coupled chemokine receptors, including CCR7.
132	
133	The migratory subset is exclusively $V\gamma 4^{\scriptscriptstyle +}$ dermal $\gamma\delta$ T cells
134	To further characterize the migratory property of cutaneous $\gamma\delta$ T cells, we examined
135	which $\gamma\delta$ T cell subset participates in the migratory population. In the skin, all DETCs
136	in the epidermis are $V\gamma 5^+$, and dermal $\gamma\delta$ T cells consist of $V\gamma 4^+$, $V\gamma 5^+$ and $V\gamma 4^-V\gamma 5^-$
137	subpopulations (Sumaria et al., 2011). Intriguingly, we found that most of Kaede-red ⁺
138	$\gamma\delta$ T cells in the draining LNs expressed V $\gamma4$, but not V $\gamma5$, in the steady state and after
139	the BCG infection (Fig. 3a). This result suggests that Vv4 ⁺ dermal vδ T cells, but not

140	DETCs possess a capacity to migrate to the draining LNs. Thus, we focused on the $V\gamma 4^{\scriptscriptstyle +}$
141	cells and examined what percentage of $V\gamma 4^+$ cells in the skin-draining LNs were of
142	skin-origin. Twenty-four hours after photoconversion of the footpad, Kaede-red ⁺ cells
143	accounted for $14.5 \pm 5.9\%$ among V $\gamma 4^+$ cells in the popliteal LNs (Fig. 3b).
144	We then compared the surface markers of $V\gamma 4^+$ cells in the dermis and in the
145	skin-draining LNs. As previously reported, dermal $V\gamma 4^+$ cells expressed CCR6 and an
146	E-cadherin ligand CD103 (Gray et al., 2011; Sumaria et al., 2011) (Fig. 3c). In the
147	skin-draining LNs, one third of $V\gamma 4^+$ cells were CCR6 ⁺ CD103 ⁺ (Fig. 3d) and the
148	majority of Kaede-red ⁺ cells (89.6 \pm 3.1 %) belonged to this population (Fig. 3e, f). In
149	turn, Kaede-red ⁺ cells accounted for $33.6 \pm 12.0 \%$ of CCR6 ⁺ CD103 ⁺ V γ 4 ⁺ cells in the
150	popliteal LNs 24 h after photoconversion of the footpad (Supplementary Fig. 2a). To
151	evaluate the turnover kinetics of $V\gamma4^+$ cells in the LNs, we photoconverted the inguinal
152	LNs. Twenty-four hours later, Kaede-red $^+$ cells accounted for 50.7 \pm 9.1% in
153	CCR6 ⁺ CD103 ⁺ Vγ4 ⁺ cells (Supplementary Fig. 2b), suggesting that half of this
154	population was retained in the LNs and the other half was replenished in 24 h. Taken
155	together, these results suggest that the majority of CCR6 $^+$ CD103 $^+$ V γ 4 $^+$ cells in
156	skin-draining LNs were of skin-origin. In line with this observation, CCR6 ⁺ CD103 ⁺
157	$V\gamma 4^+$ cells were a minor population in the spleen (Fig. 3f).
158	
159	Administration of anti-Vy4 TCR depleting antibody suppressed CD8 $^{\scriptscriptstyle +}$ T cell
160	response against BCG infection
161	We next sought to examine the function of $V\gamma 4^+$ cells in the draining LNs. We evaluated
162	IL-17A and TNF- α expression because dermal $\gamma\delta$ T cells produced these inflammatory
163	cytokines upon activation (Supplementary Fig. 3)(Conti et al., 2005; Gray et al., 2013).
164	We found that IL-17A and TNF- α were predominantly expressed by intranodal
165	$CCR6^+CD103^+$ $V\gamma4^+$ cells in the steady state. (Fig. 4a) These results suggest that
166	skin-derived $V\gamma 4^+$ cells are an important source of IL-17A and TNF- α in the draining
167	LNs as well as in the skin.
168	Next, we examined the role of $V\gamma4^+$ cells in the intranodal proliferation of
169	antigen-specific CD8 ⁺ T cells, because CD8 ⁺ T cells play a pivotal role in the protection

170	against mycobacterium infection (Winau et al., 2006). Neutralizing anti-V γ 4 antibody-
171	or control antibody-treated mice (Supplementary Fig. 4) (Hahn et al., 2004) were
172	transferred with OT-I tg CD8 ⁺ T cells, which specifically recognizes processed peptide
173	of the ovalbumin protein (OVA). These cells were labeled with Cell Trace Violet (CTV)
174	and their proliferation was evaluated via CTV dilution. OVA-expressing BCG
175	(BCG-OVA) was then inoculated. Depletion of $V\gamma4^+$ cells significantly reduced the
176	proliferation of OT-I tg CD8 ⁺ T cells in the draining LNs (Fig. 4b). These results
177	suggest that $V\gamma 4^+$ cells are important for the intranodal activation and expansion of
178	antigen-specific CD8 ⁺ T cells.
179	
180	$V\gamma 4^+$ cells stimulate antigen-specific CD8+ T cell differentiation via modulating DC
181	functions
182	Immunohistochemical analysis of the draining LNs revealed that $\gamma\delta$ T cells, including
183	Kaede-red $^+$ $\gamma\delta$ T cells, were distributed in the interfollicular T cell zone (Fig. 5a and
184	Supplementary Fig. 5a), wherein DCs interact with naïve T cells. This observation
185	raised the possibility that skin-derived V $\gamma4^+$ cells influence $~\alpha\beta$ T cells activation via
186	modulating DC functions in the LNs. In fact, such an immunomodulation between $\gamma\deltaT$
187	cells and DCs was reported in a human in vitro study (Conti et al., 2005). We therefore
188	compared the properties of intranodal DCs in BCG-infected mice with neutralizing
189	anti- $V\gamma4$ antibody- or control antibody-treatment. No significant difference was
190	observed in the number and co-stimulatory molecule expressions, such as CD80 and
191	CD86, on DCs under a deficiency of Vγ4 ⁺ cells (Supplementary Fig. 5b, c), suggesting
192	that $V\gamma 4^+$ cells contribute little, if any, to the migration and activation of skin-derived
193	DCs.
194	We next compared the T cell stimulatory properties of intranodal DCs. DCs produce
195	IL-12 that drives CD8 ⁺ T cell IFN-γ production and differentiation during pathogen
196	infection (Wilson et al., 2008). DCs were isolated from the skin-draining LNs of
197	anti-V γ 4- or control antibody-treated mice 3 days after BCG-OVA infection. These cells
198	were co-cultured with CTV-labeled OT-I tg cells. We observed significant attenuation of
199	OT-I tg cell proliferation (Fig. 5b) and impaired production of IFN-γ and IL-12p40 (Fig.
200	5c, d) with depletion of $V\gamma 4^+$ cells. These results indicate that $V\gamma 4^+ \gamma \delta$ T cells play an

201	essential role during the antigen-specific CD8+ T cell response against BCG infection
202	possibly via modulating DC functions.
203	
204	$V\gamma 4^+$ cells stimulate bone marrow-derived DCs to produce IL-12
205	To further characterize the immune modulation between $V\gamma 4^+$ cells and DCs, we
206	isolated CD4 $^{\scriptscriptstyle +}$ and V $\gamma4^{\scriptscriptstyle +}$ cells from naïve mice and co-cultured them with bone
207	marrow-derived DCs (BMDCs). In the presence of $V\gamma 4^+ T$ cells, BMDCs produced a
208	higher amount of IL-12 p40 than with the same number CD4 ⁺ cells (Fig. 6a, b and
209	Supplementary Fig. 6), suggesting that $V\gamma 4^+\gamma \delta$ T cells have the potential to activate
210	DCs.
211	As mentioned in Fig. 4a, skin derived CCR6 ⁺ CD103 ⁺ Vγ4 ⁺ cells produced a
212	substantial amount of IL-17A and TNF- α . IL-17A and TNF- α are important for DC
213	activation (Papadakis and Targan, 2000; Sutton et al., 2009). Thus, we examined
214	whether IL-17A and/or TNF- α from V γ 4+ cells activated DCs. We co-cultured BMDCs
215	with $V\gamma 4^+$ cells in the presence or absence of neutralizing antibody against IL-17A or
216	TNF-α. We found that IL-12 p40 production by BMDCs was not attenuated by the
217	blockade of IL-17A, but was significantly inhibited by the neutralization of TNF- α (Fig
218	6c). Next, we checked the <i>in vivo</i> TNF-α production in the skin draining LNs after BCG
219	infection. We also found that the number of $V\gamma 4^+$ cells producing TNF- α was much
220	higher than that of DCs producing TNF- α in the draining LNs upon BCG infection (Fig
221	6d). These results suggest that $V\gamma 4^+$ cells stimulate intranodal DCs to produce IL-12p40
222	via producing TNF-α.
223	
224	
225	Discussion
226	In this study, we identify a unique function of dermal $\gamma\delta$ T cells that migrate to the
227	draining LNs. $V\gamma4^+$ dermal $\gamma\delta$ T cells egressed from the skin to the draining LNs in a
228	Gi-coupled receptor independent manner, and produced IL-17A and TNF- α therein.
229	Following BCG infection, Vγ4 ⁺ γδ T cells enhanced CD8 ⁺ T cell activation in the
230	draining LNs. In addition, $V\gamma4^+$ cells led to a significant up-regulation of IL-12
231	production by DCs through a TNF-α-dependent mechanism.

232	Our previous study showed that cutaneous $\alpha\beta$ T cell migration to the LNs was
233	enhanced upon contact hypersensitivity (Tomura et al., 2010). Herein we have
234	demonstrated that $V\gamma 4^+$ dermal $\gamma\delta$ T cell migration to the LNs is enhanced upon BCG
235	infection. Therefore, cutaneous T cells, as well as DCs, have the potential to accumulate
236	in the LNs, particularly after cutaneous inflammations. The skin-derived regulatory T
237	cells represent a stronger immune regulatory potential than LN-resident populations and
238	play an important role in the resolution of cutaneous inflammation (Tomura et al., 2010).
239	Taken together, our findings suggest that skin-derived T cell is highly-activated in
240	nature and the skin might be an important organ as a site for T cells activation.
241	The distribution of immune cells is directly affected by the signaling from Gi-coupled
242	chemokine receptors. In cutaneous DCs and $\alpha\beta$ T cells, their migration toward the
243	draining LNs is largely dependent on CCR7 (Bromley et al., 2013). Analysis of
244	skin-draining lymph has demonstrated that bovine $\gamma\delta$ T cells migrated from the skin to
245	the draining lymph nodes in a CCR7 independent manner (Vrieling et al., 2012).
246	Consistently, in this report, we demonstrated that murine $V\gamma 4^+$ dermal $\gamma\delta$ T cell
247	migration to the LNs is independent of Gi-coupled receptors.
248	Chemokine-independent migration was previously reported in plasma cells in
249	lymphoid follicles (Fooksman et al., 2010). Plasma cells undergo a persistent random
250	walk until they find the medullary cords, where plasma cells are retained by local
251	chemokines for their differentiation. Further studies are required to reveal how dermal
252	$\gamma\delta$ T cells egress from the skin.
253	Another finding in this study is that skin-derived $V\gamma 4^+ \gamma \delta$ T cells participate in
254	intranodal TNF- α production and DC activation. Leslie et al. demonstrated that human
255	peripheral blood $\gamma\delta$ T cells interact with human monocyte-derived DCs and induce DC
256	maturation in vitro (Leslie et al., 2002). In addition, Conti et al. showed that peripheral
257	blood $\gamma\delta$ T cells secrete TNF- α and IFN- γ and activate DC functions (Conti <i>et al.</i> , 2005).
258	We and others have shown that $V\gamma 4^+ \gamma \delta T$ cells produce TNF- α , but not
259	IFN- γ (Narayan <i>et al.</i> , 2012), which suggests that both blood $\gamma\delta$ T cells and skin-derived
260	$\gamma\delta$ T cells activate DCs in a TNF- α -dependent manner. TNF- α is a potent
261	proinflammatory and immunomodulatory cytokine implicated in inflammatory
262	conditions. Treatment with neutralizing anti-TNF- α antibody is effective for several

263	diseases, including psoriasis, Crohn's disease, and rheumatoid arthritis. However,
264	anti-TNF- α therapy, but not anti-IL-17A therapy, has been linked to an increased risk of
265	granulomatous infections such as tuberculosis (Hueber et al., 2010; Keane et al., 2001).
266	Our study, in line with these clinical observations, suggests that TNF- α is essential for
267	the host response against mycobacterium.
268	In our examination, the anti-V γ 4 mAb treatment suppressed OT-I proliferation
269	modestly, but significantly reduced the production of IL-12 by DCs, which promotes
270	IFN- γ production by T cells (Okamura <i>et al.</i> , 1998). These results suggest that V γ 4 ⁺
271	cells modulate the cytokine expression by DCs rather than directly regulate CD8 ⁺ T cell
272	proliferation.
273	In conclusion, our study has shown that dermal $V\gamma 4^+\gamma\delta$ T cells play an important role
274	in the draining LNs. $V\gamma 4^+\gamma\delta$ T cells distribute in other epithelial tissues, such as the
275	lung and vagina, and produce IL-17 and TNF-α against infections (Okamoto Yoshida et
276	al., 2010; Rakasz et al., 1998). Thus $V\gamma 4^+ \gamma \delta$ T cells might have the capacity to migrate
277	to the draining LNs and augment adaptive immunity via enhancing DC functions in the
278	several epithelial tissues. Clarification of these issues might enable the modulation of
279	systemic immune responses through regulating local immunity.

281	Materials and Methods
282	Mice
283	Seven to ten-week-old C57BL/6N and OT-I tg mice were purchased from SLC
284	(Shizuoka, Japan) and Jackson Laboratory (Bar Harbor, ME), respectively. Kaede-tg,
285	CCR7-deficient, and TCR δ -H2B-eGFP mice were described previously (Forster <i>et al.</i> ,
286	1999; Prinz et al., 2006; Tomura et al., 2008). All experimental procedures were
287	approved by the Institutional Animal Care and Use Committee of Kyoto University
288	Graduate School of Medicine.
289	
290	Antibodies and flow cytometry
291	Antibodied used in this study were described in Supplementary Table. 1. For
292	intracellular staining, cells were stimulated for 3 h with 50 ng/ml PMA (phorbol
293	myristate acetate; Sigma-Aldrich, St Louis, MO) and 1 $\mu\text{g/ml}$ ionomycin (Wako, Osaka,
294	Japan) in GolgiStop (BD Biosciences, San Diego, CA), then fixed and permeabilized
295	with Cytofix/Cytoperm buffer (BD Biosciences). Flow cytometry was performed using
296	LSRFortessa (BD Biosciences) and analyzed with FlowJo (TreeStar, San Carlos, CA).
297	
298	Single cell preparation from ear skin
299	The ear splits were incubated with 0.25% trypsin/EDTA (Life Technologies,
300	Gaithersburg, MD) for 30 min at 37°C. Then, the epidermis and dermis were separated.
301	Dermis was minced and digested with 1000 U/ml collagenase type II (Worthington
302	Biochemical, Lakewood, NJ) containing 0.1% DNase I (Sigma-Aldrich) for 60 min at
303	37°C. The cell suspensions were filtered with a 40 μm cell strainer.
304	
305	In vivo Vγ4+ T cell depletion
306	Hamster anti-Vγ4 antibody UC3 hybridoma was obtained from American Type Culture
307	Collection (Rockville, MD). $V\gamma4^+$ cell depletion was achieved by intraperitoneal
308	injection of 200 μg of anti-V $\gamma 4$ antibody 3 days before the BCG infection. Depletion
309	was monitored as previously described (Sumaria et al., 2011).
310	
311	OT-I tg CD8 ⁺ T cell isolation, labeling, and adoptive transfer

312	CD8 ⁺ T cells were isolated from OT-I tg mice by positive selection using auto MACS
313	(Miltenyi Biotec, Bergisch Gladbach, Germany). CD8 ⁺ T cell purity was routinely
314	>95% as assessed by flow cytometry. For proliferation assays, purified T cells were
315	labeled with CTV (Life Technologies) according to the manufacturer's protocol. Control
316	or anti-V γ 4 antibody-treated mice received 2 \times 10 6 CTV-labeled OT-I tg CD8 $^+$ T cells
317	intravenously via the tail vein.
318	
319	BCG generation and infection
320	BCG-OVA was generated as described previously (Saito et al., 2006). Mice were
321	anesthetized by isoflurane and 10^6 CFU of BCG suspended in $60\mu l$ phosphate buffered
322	saline was injected into the footpad. Mice that received CTV-labeled OT-I tg CD8 ⁺ T
323	cells were infected 24 h after the adoptive transfer of cells. Six days after infection,
324	popliteal LNs were harvested and analyzed by flow cytometry.
325	
326	Photoconversion and PTX treatment
327	Photoconversion of the skin was performed (Tomura et al., 2008). Briefly, mice were
328	anesthetized and exposed to violet light at 95 mW/cm² with a 436-nm bandpass filter
329	using Spot UV curing equipment (SP500; USHIO, Tokyo, Japan). For photoconversion
330	of inguinal LNs, Kaede tg mice were anesthetized and the abdominal skin was cut at the
331	midline to visualize the inguinal LNs. The surrounding tissue was covered with
332	aluminum foil, and then the LNs was exposed to violet light through a hole in the foil
333	with continuous instillation of warmed phosphate buffered saline at 37°C. Pertussis
334	toxin (PTX) (1 μ g/mouse; Kaketsuken, Kumamoto, Japan), or phosphate buffered saline
335	was subcutaneously injected into the abdominal skin.
336	
337	Cell proliferation, beads array and ELISA
338	For antigen specific CD8 T cell proliferation, OT-I tg CD8 ⁺ T cells were sorted from the
339	spleen and LNs using auto MACS (Miltenyi Biotec) (purity >95% respectively), and
340	labeled with the CTV. CD11c ⁺ DCs were sorted from popliteal LNs 3 days after
341	infection with BCG-OVA using auto MACS (purity >95%) and co-cultured with OT-I tg
342	CD8+ T cells. A total of 2×10^5 DCs and 2×10^5 T cells per well were incubated in a 96

343	well plate for 4 days, and the supernatants were collected for ELISA and beads array
344	assays. The amounts of IFN- γ in the culture medium were measured by enzyme-linked
345	immunosorbent assay (ELISA) (BD Biosciences). The amounts of IL-12 p40 were
346	measured using a cytometric beads array system (BD Biosciences). T cell proliferation
347	was measured by flow cytometric analysis of CTV-labeled cells.
348	
349	In-vitro culture of BMDCs with Vγ4 ⁺ cells
350	Mouse BMDCs were generated as previously described (Otsuka et al., 2011). CD4+ and
351	$V\gamma4^+T$ cells were sorted from na \ddot{i} ve murine LNs and the spleen using auto MACS
352	(Miltenyi Biotec). BMDCs (2×10^5) were cultured for 24 h with CD4 ⁺ or V γ 4 ⁺ T cells
353	$(5 \times 10^4 each)$ in 96-well round-bottom plates in IL-17RFc (2 $\mu g/ml$; R&D Systems),
354	anti-mouse TNF-α (MP6-XT22) (10 µg/ml; eBioscience), or control Rat IgG (eBRG1)
355	$(10~\mu\text{g/ml}; \text{eBioscience})$ antibodies. Golgistop was added for the last 4 h of culture (BD
356	Biosciences).
357	
358	Statistic analysis
359	All data were statistically analyzed using Student's <i>t</i> -test. <i>P</i> value of less than 0.05 was
360	considered to be significant. Bar graphs are presented as mean ±standard deviation
361	(SD).
362	
363	Immunohistochemical staining, Quantitative polymerase chain reaction analysis
364	and Contact hypersensitivity protocol
365	These methods were described in the Supplementary Material and Method.
366	
367	
368	
369	

370	Acknowledgments
371	We thank Dr. Takaharu Okada for critical reading of our manuscript. This work was
372	supported in part by Grants-in-Aid for Japan Society for the Promotion of Science of
373	Japan and Precursory Research for Embryonic Science and Technology.
374	

375 References 376 377 Belmant C, Espinosa E, Poupot R, et al. (1999) 3-Formyl-1-butyl pyrophosphate A 378 novel mycobacterial metabolite-activating human gammadelta T cells. J Biol Chem 379 274:32079-84. 380 381 Bromley SK, Yan S, Tomura M, et al. (2013) Recirculating memory T cells are a unique 382 subset of CD4+ T cells with a distinct phenotype and migratory pattern. J Immunol 383 190:970-6. 384 385 Cai Y, Shen X, Ding C, et al. (2011) Pivotal role of dermal IL-17-producing 386 gammadelta T cells in skin inflammation. Immunity 35:596-610. 387 388 Conti L, Casetti R, Cardone M, et al. (2005) Reciprocal activating interaction between 389 dendritic cells and pamidronate-stimulated gammadelta T cells: role of CD86 and 390 inflammatory cytokines. J Immunol 174:252-60. 391 392 Fooksman DR, Schwickert TA, Victora GD, et al. (2010) Development and migration of 393 plasma cells in the mouse lymph node. *Immunity* 33:118-27. 394 395 Forster R, Schubel A, Breitfeld D, et al. (1999) CCR7 coordinates the primary immune 396 response by establishing functional microenvironments in secondary lymphoid organs. 397 Cell 99:23-33.

- 399 Girardi M, Lewis J, Glusac E, et al. (2002) Resident skin-specific gammadelta T cells
- 400 provide local, nonredundant regulation of cutaneous inflammation. J Exp Med
- 401 195:855-67.

- 403 Gray EE, Ramirez-Valle F, Xu Y, et al. (2013) Deficiency in IL-17-committed
- Vgamma4(+) gammadelta T cells in a spontaneous Sox13-mutant CD45.1(+) congenic
- 405 mouse substrain provides protection from dermatitis. *Nat Immunol* 14:584-92.

406

- 407 Gray EE, Suzuki K, Cyster JG (2011) Cutting edge: Identification of a motile
- 408 IL-17-producing gammadelta T cell population in the dermis. *J Immunol* 186:6091-5.

409

- 410 Hahn YS, Taube C, Jin N, et al. (2004) Different potentials of gamma delta T cell
- subsets in regulating airway responsiveness: V gamma 1+ cells, but not V gamma 4+
- 412 cells, promote airway hyperreactivity, Th2 cytokines, and airway inflammation. J
- 413 *Immunol* 172:2894-902.

414

- Hayday AC (2000) [gamma][delta] cells: a right time and a right place for a conserved
- 416 third way of protection. *Annu Rev Immunol* 18:975-1026.

417

- 418 Honda T, Egawa G, Grabbe S, et al. (2013) Update of immune events in the murine
- 419 contact hypersensitivity model: toward the understanding of allergic contact dermatitis.
- 420 J Invest Dermatol 133:303-15.

421

Hueber W, Patel DD, Dryja T, et al. (2010) Effects of AIN457, a fully human antibody

423	to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci Transl Med
424	2:52ra72.
425	
426	Keane J, Gershon S, Wise RP, et al. (2001) Tuberculosis associated with infliximab, a
427	tumor necrosis factor alpha-neutralizing agent. N Engl J Med 345:1098-104.
428	
429	Leslie DS, Vincent MS, Spada FM, et al. (2002) CD1-mediated gamma/delta T cell
430	maturation of dendritic cells. J Exp Med 196:1575-84.
431	
432	Mabuchi T, Takekoshi T, Hwang ST (2011) Epidermal CCR6+ gammadelta T cells are
433	major producers of IL-22 and IL-17 in a murine model of psoriasiform dermatitis. J
434	Immunol 187:5026-31.
435	
436	Macleod AS, Havran WL (2011) Functions of skin-resident gammadelta T cells. Cell
437	Mol Life Sci 68:2399-408.
438	
439	Narayan K, Sylvia KE, Malhotra N, et al. (2012) Intrathymic programming of effector
440	fates in three molecularly distinct gammadelta T cell subtypes. <i>Nat Immunol</i> 13:511-8.
441	
442	Okamoto Yoshida Y, Umemura M, Yahagi A, et al. (2010) Essential role of IL-17A in
443	the formation of a mycobacterial infection-induced granuloma in the lung. J Immunol
444	184:4414-22.
445	
446	Okamura H, Kashiwamura S, Tsutsui H, et al. (1998) Regulation of interferon-gamma

447 production by IL-12 and IL-18. Curr Opin Immunol 10:259-64. 448 449 Otsuka A, Kubo M, Honda T, et al. (2011) Requirement of interaction between mast 450 cells and skin dendritic cells to establish contact hypersensitivity. *PLoS One* 6:e25538. 451 452 Papadakis KA, Targan SR (2000) Tumor necrosis factor: biology and therapeutic 453 inhibitors. Gastroenterology 119:1148-57. 454 455 Prinz I, Sansoni A, Kissenpfennig A, et al. (2006) Visualization of the earliest steps of 456 gammadelta T cell development in the adult thymus. Nat Immunol 7:995-1003. 457 458 Rakasz E, Rigby S, de Andres B, et al. (1998) Homing of transgenic gammadelta T cells 459 into murine vaginal epithelium. Int Immunol 10:1509-17. 460 461 Randolph GJ, Ochando J, Partida-Sanchez S (2008) Migration of dendritic cell subsets 462 and their precursors. Annu Rev Immunol 26:293-316. 463 464 Strid J, Sobolev O, Zafirova B, et al. (2011) The intraepithelial T cell response to 465 NKG2D-ligands links lymphoid stress surveillance to atopy. *Science* 334:1293-7. 466 Sumaria N, Roediger B, Ng LG, et al. (2011) Cutaneous immunosurveillance by 467 self-renewing dermal gammadelta T cells. J Exp Med 208:505-18. 468 469 470 Sutton CE, Lalor SJ, Sweeney CM, et al. (2009) Interleukin-1 and IL-23 induce innate

- 471 IL-17 production from gammadelta T cells, amplifying Th17 responses and
- autoimmunity. *Immunity* 31:331-41.

- 474 Takagaki Y, DeCloux A, Bonneville M, et al. (1989) Diversity of gamma delta T-cell
- 475 receptors on murine intestinal intra-epithelial lymphocytes. *Nature* 339:712-4.

476

- Tomura M, Honda T, Tanizaki H, et al. (2010) Activated regulatory T cells are the major
- 478 T cell type emigrating from the skin during a cutaneous immune response in mice. J
- 479 *Clin Invest* 120:883-93.

480

- 481 Tomura M, Yoshida N, Tanaka J, et al. (2008) Monitoring cellular movement in vivo
- with photoconvertible fluorescence protein "Kaede" transgenic mice. Proc Natl Acad
- 483 *Sci U S A* 105:10871-6.

484

- 485 Vrieling M, Santema W, Van Rhijn I, et al. (2012) gammadelta T cell homing to skin
- 486 and migration to skin-draining lymph nodes is CCR7 independent. J Immunol
- 487 188:578-84.

488

- 489 Wilson DC, Matthews S, Yap GS (2008) IL-12 signaling drives CD8+ T cell
- 490 IFN-gamma production and differentiation of KLRG1+ effector subpopulations during
- 491 Toxoplasma gondii Infection. *J Immunol* 180:5935-45.

- Winau F, Weber S, Sad S, et al. (2006) Apoptotic vesicles crossprime CD8 T cells and
- 494 protect against tuberculosis. *Immunity* 24:105-17.

Yoshiki R, Kabashima K, Honda T, et al. (2014) IL-23 from Langerhans cells is required for the development of imiquimod-induced psoriasis-like dermatitis by induction of IL-17A-producing gammadelta T cells. J Invest Dermatol 134:1912-21. 499 500 501	495	
 498 induction of IL-17A-producing gammadelta T cells. <i>J Invest Dermatol</i> 134:1912-21. 499 500 	496	Yoshiki R, Kabashima K, Honda T, et al. (2014) IL-23 from Langerhans cells is
499 500	497	required for the development of imiquimod-induced psoriasis-like dermatitis by
500	498	induction of IL-17A-producing gammadelta T cells. J Invest Dermatol 134:1912-21.
	499	
501	500	
	501	

502	Figure legends		
503	Figure 1. Migration of $\gamma\delta$ T cells from the skin to the draining LN.		
504	(a) Flow cytometry of the skin of Kaede-tg mice before (left) and immediately after		
505	(right) the violet light exposure. (b) Flow cytometry of Kaede-red+ cells in the draining		
506	popliteal LNs 24 h after the photoconversion of the footpad. Cells were gated on		
507	$CD11c^{\scriptscriptstyle +} \ (left) \ or \ \gamma\delta \ TCR^{\scriptscriptstyle +} \ (right) \ cells. \ (\textbf{c}) \ The \ number \ of \ Kaede-red^{\scriptscriptstyle +} \ CD11c^{\scriptscriptstyle +} \ (left) \ or$		
508	$\gamma\delta$ TCR ⁺ cells (right) in the draining LNs 3 days after the intra-dermal injection of BCG.		
509	The cells in the footpad were photoconverted 24 h before the analysis. Data are		
510	representative of three experiments (n=3) and are presented as means \pm SD. * P < 0.05.		
511			
512	Figure 2. $\gamma\delta$ T cells migrate from the skin to the draining LNs in a Gi-independent		
513	manner.		
514	(a, b) Flow cytometry of CD11c ⁺ (left) and $\gamma\delta$ TCR ⁺ (right) cells in the skin-draining		
515	LNs of WT (upper panel) and CCR7-deficient (lower panel) Kaede-tg mice 24 h after		
516	the photoconversion of the skin. The % frequencies of Kaede-red ⁺ cells are shown (b).		
517	(c) Flow cytometry of CCR7 expression on $V\gamma4^+$ T cells in the skin (left panel) and in		
518	the skin-draining LN 24 hours after the photoconversion (right panel). (d, e) Flow		
519	cytometry of CD11c ⁺ (left) and $\gamma\delta$ TCR ⁺ (right) cells in the draining LNs of Kaede-tg		
520	mice 24 hours after the photoconversion of the skin with PTX- or phosphate buffered		
521	saline-treatment. The % frequencies of Kaede-red+ cells were shown (e). Data are		
522	representative of three experiments (n=3) and are presented as means \pm SD. * P < 0.05.		
523			
524	Figure 3. Skin derived $\gamma\delta$ T cells are $V\gamma4^+$ dermal $\gamma\delta$ T cells.		
525	(a) Flow cytometric analysis of Kaede-red $^+$ $\gamma\delta$ T cells in the draining LNs 24 h after the		
526	photoconversion of the skin. The % frequencies of $V\gamma 4^+$ cells are shown in the right		
527	panel. (b) Flow cytometric analysis of $V\gamma 4^+$ cells in the skin-draining LNs of Kaede-tg		
528	mice 24 h after photoconversion of the skin cells. (c) Flow cytometric analysis of		
529	Kaede-red ⁺ $V\gamma 4^+$ cells in the dermis. (d) Flow cytometric analysis of $V\gamma 4^+$ cells in the		
530	skin-draining LNs. (e) Flow cytometric analysis of Kaede-red ⁺ Vγ4 ⁺ cells in the		
531	skin-draining LNs 24 hours after the photoconversion of the skin. (f) The % frequency		
532	of CCR6 ⁺ CD103 ⁺ cells among Vγ4 ⁺ cells in the dermis, LN, and spleen. Data are		

533	representative of three experiments (n=3), and are presented as means \pm SD.		
534			
535	Figure 4. $V\gamma4^+$ cells enhance the intranodal expansion of CD8+ T cells against BCG		
536	(a) Relative amount of <i>Il17a</i> and <i>Tnfa</i> mRNA expression in each subset of intranodal		
537	$V\gamma4^+$ cells. For each subset of $V\gamma4^+$ cells, equal amounts of total RNA were pooled fro		
538	five mice. ND, not detected. (b) Flow cytometric analysis of CTV-labeled OT-I tg T		
539	cells from control (Ctrl)- or neutralizing anti-V γ 4 antibody- treated mice 6 days after		
540	injection of BCG-OVA. Number of CTV ^{low} cells is shown in lower panel. Data are		
541	representative of three experiments (n=4) and are presented as means \pm SD. * P < 0.05.		
542			
543	Figure 5. $V\gamma 4^+ \gamma \delta$ T cells stimulate antigen-specific CD8+ T cell differentiation by		
544	enhancement of DC functions.		
545	(a) Immunohistochemical staining of the skin-draining LNs 24 h after the		
546	photoconversion of the skin. $B220^{\scriptscriptstyle +}$ (white) and $\gamma\delta$ TCR $^{\scriptscriptstyle +}$ (green) cells are shown. Right		
547	panel shows the higher magnification view of the boxed area in the left panel. Red		
548	signals represent Kaede-red. T, T cell zone; B, B cell zone. Arrowheads in the right		
549	panel indicate Kaede-red+ $\gamma\delta$ T cells (right). Scale bars = 100 μ m (left) and 50 μ m		
550	(right). (\mathbf{b} - \mathbf{c}) The number of CTV $^{\mathrm{low}}$ (as an indication of cell proliferation) OT-I tg T		
551	cells (b) and IFN- γ producing cells (c). CTV-labeled OT-I tg T cells were cocultured		
552	with CD11c ⁺ DCs from BCG-OVA-sensitized mice treated with control (Ctrl) or		
553	neutralizing anti-V γ 4 antibody. (d) The protein levels of IFN- γ and IL-12p40 in the		
554	coculture supernatant. Data are representative of three experiments (n=3~4) and are		
555	presented as means \pm SD. * $P < 0.05$.		
556			
557	Figure 6. Vy4+ y δ T cells stimulate BMDCs to produce IL-12p40.		
558	(a) The % frequency of IL-12p40 ⁺ BMDCs cultured with or without CD4 ⁺ T cells or		
559	$V\gamma4^+$ cells. (b) The mean fluorescence intensity (MFI) of IL-12p40 expression in		
560	BMDCs cultured with or without V γ 4 ⁺ cells. (c) The % frequency of IL-12p40 ⁺ BMDCs		
561	cultured with or without $V\gamma 4^+ \gamma \delta$ T cells in the presence of isotype control (Ctrl),		
562	IL-17RFc and anti-TNF- α antibodies. (d) The number of TNF- α ⁺ CD11c ⁺ DCs (open		
563	column) and TNF- α^+ V γ 4 ⁺ cells (filled column) in the skin-draining LNs 3 days after		

treatment without (day0) or with BCG (day3) Data are representative of three experiments (n = 3) and are presented as means \pm SD. *P <0.05.

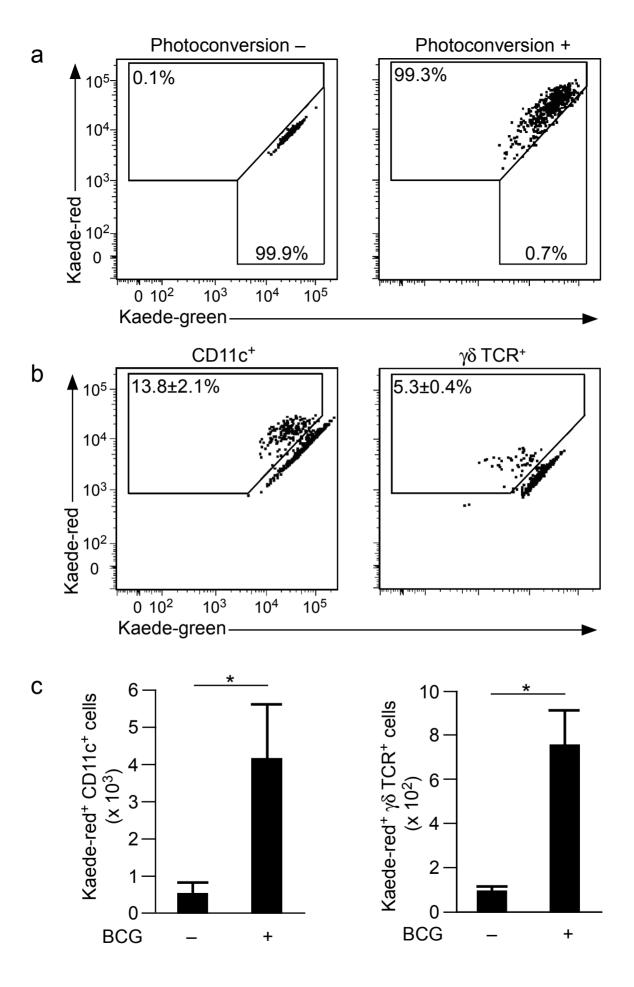


Figure 1

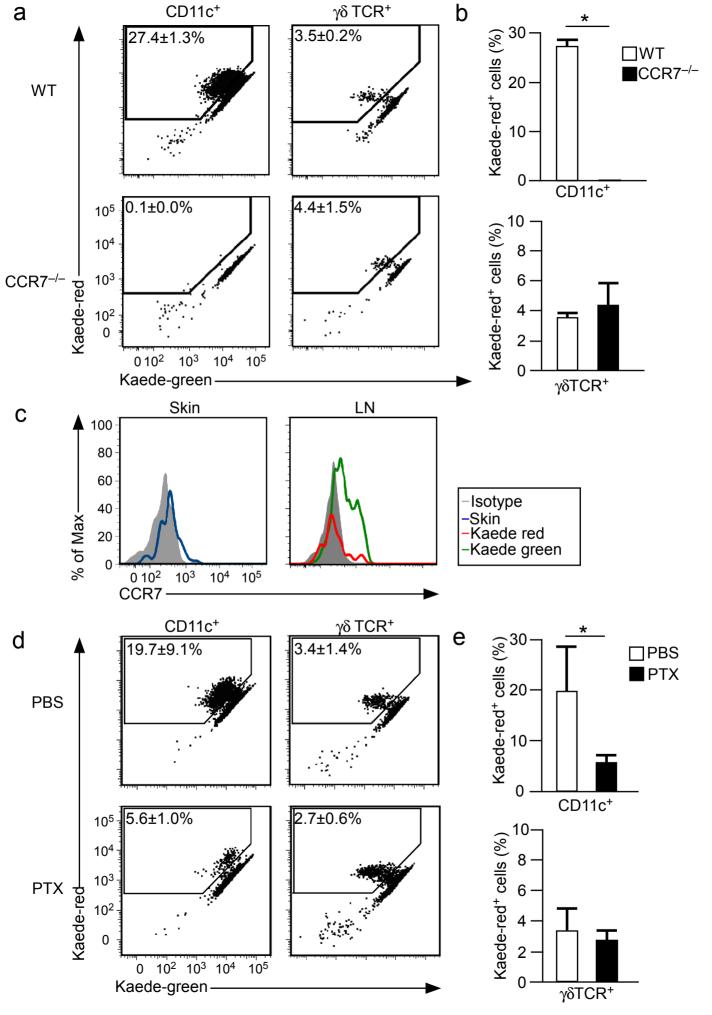
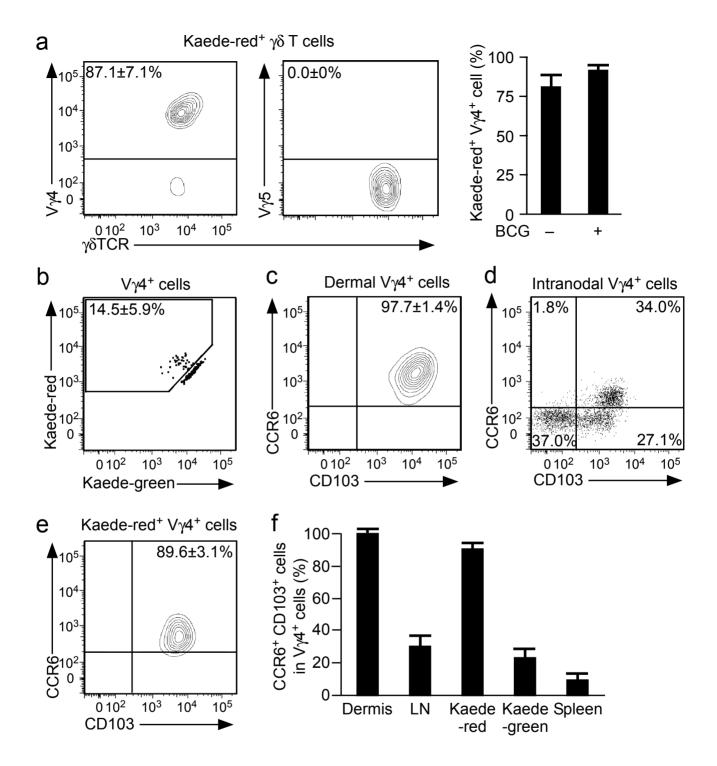



Figure 2

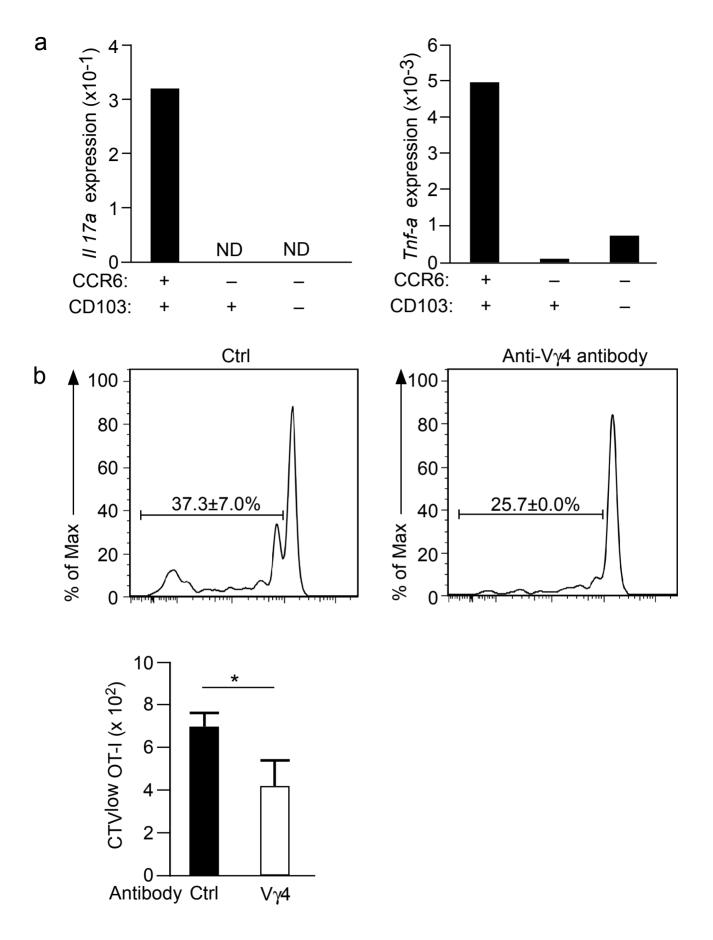


Figure 4

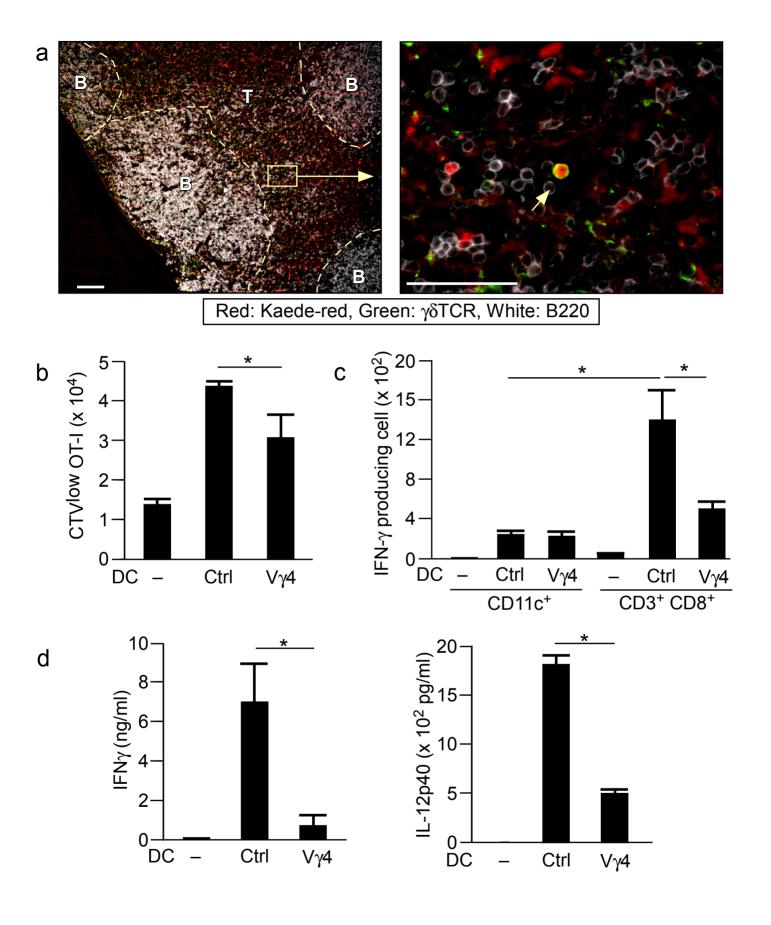


Figure 5

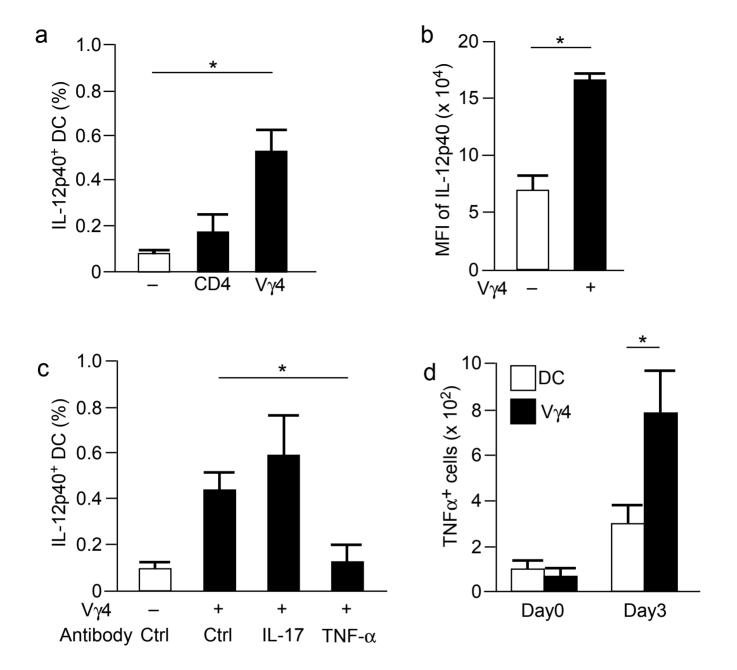


Figure 6

Materials and Methods

Immunohistochemical staining

Immunohistochemical staining of LNs was carried out as described previously (Kabashima *et al.*, 2003). Briefly, LNs samples were immersed in 4% paraformaldehyde (Nacalai Tesque, Kyoto, Japan) for 3 h, embedded in OCT compound (Sakura, Torrance, CA), frozen, and then sectioned. After treatment with Image-iT FX Signal Enhancer (Life Technologies), the sections were incubated with biotin-conjugated anti-mouse γδTCR (eBioGL3) (eBioscience), eFluor 450-conjugated anti-mouse B220 (RA3-6B2) (eBioscience), PE-conjugated anti-mouse TCR-β (H57-597) (eBioscience) and APC-conjugated anti-mouse B220 (RA3-6B2) (eBioscience) antibody for 1 h and then with goat anti-rat IgG-Alexa350 and streptavidin -Alexa647 (Life Technologies) for 30 min. The slides were mounted using ProLong Antifade (Life Technologies) and observed under a fluorescent microscope (BZ-900, Keyence, Osaka, Japan).

Quantitative polymerase chain reaction analysis

Cells were sorted with a FACS Aria II cell sorter (BD Biosciences) and total RNA was extracted using a CellAmp Whole Transcriptome Amplification Kit (Takara Bio, Shiga, Japan). Quantitative reverse transcription polymerase chain reaction analysis was performed with SYBR Green I (Roche, Basel, Switzerland) using a Light Cycler 480 (Roche) according to the manufacturer's instructions. The primer sequences used in this study were as follows: Gapdh, 5'- GGCCTCACCCCATTTGATGT -3' (forward) and 5'- CATGTTCCAGTATGACTCCACTC -3' (reverse); IL-17A, 5'- CTCCAGAAGGCCCTCAGACTAC -3' (forward), 5'- GGGTCTTCATTGCGGTGG

-3' (reverse); and TNF- α , 5'- CAGGCGGTGCCTATGTCTC -3' (forward), 5'- CGATCACCCCGAAGTTCAGTAG -3' (reverse). Fold expression was calculated by the $\Delta\Delta C_{\rm T}$ method and Gapdh was used as a reference gene.

Contact hypersensitivity protocol

The ear of Kaede mice was sensitized with 20 μ l 0.5% (w/v) dinitrofluorobenzene (DNFB; Nacalai Tesque) in acetone/olive oil (4:1) (Nacalai Tesque). Five days after the sensitization, the footpad was challenged with an application of 20 μ l 0.3% DNFB. The number of Kaede-red⁺ $\gamma\delta$ TCR⁺ cells in the draining LNs was measured 3 days after the challenge. The cells in the footpad were photoconverted 24 hours before the analysis.

Supplementary figure legends

Supplementary Figure 1. Skin-derived $\gamma\delta$ T cells into the draining LNs were increased in contact hypersensitivity response.

The number (left) and subset (right) of Kaede-red⁺ $\gamma\delta$ TCR⁺ cells in the draining LNs 3 days after the elicitation. The cells in the footpad were photoconverted 24 h before the analysis. Data are representative of two experiments (n=3) and are presented as means \pm SD.

Supplementary Figure 2. The majority of $CCR6^+$ $CD103^+$ $V\gamma4^+$ cells in the LNs are replaced from the skin.

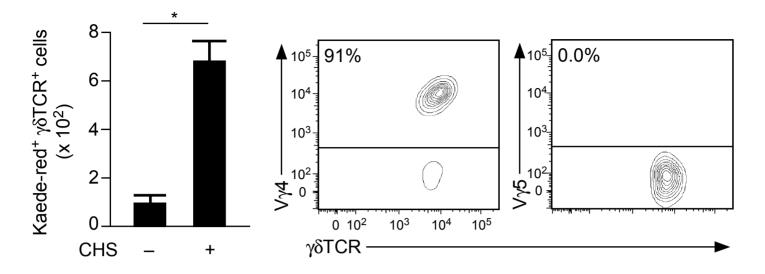
(a) Flow cytometric analysis of CCR6⁺CD103⁺V γ 4⁺ cells in the skin-draining LNs 24 h after the photoconversion of the skin. (b) The % frequency of Kaede-red⁺ V γ 4⁺ cells in the skin-draining LNs of Kaede-tg mice. Data are representative of three experiments (n=3) and are presented as means \pm SD. *P < 0.05.

Supplementary Figure 3. $V\gamma 4^+ \gamma \delta T$ cells produce IL-17 and TNF- α in the skin

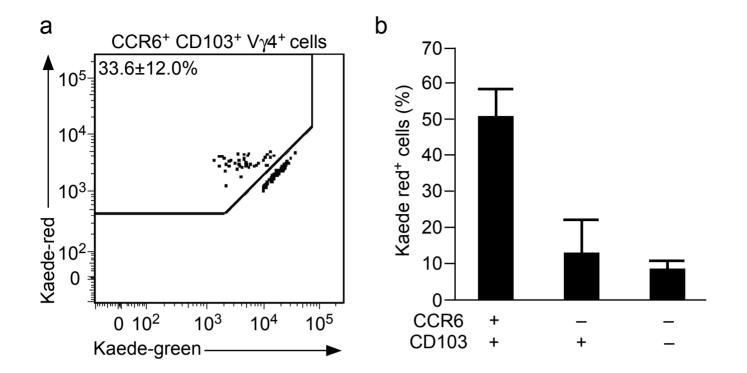
The number of IL-17 (left) and TNF- α (right) producing cells in the skin. Data are representative of three experiments (n=4) and are presented as means \pm SD.

Supplementary Figure 4. Depletion of Vγ4⁺ cells *in vivo*.

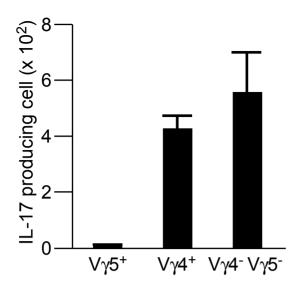
FACS plots of skin and LN cells 9 days after anti-V γ 4 or control antibody treatment. The percentages in $\gamma\delta$ TCR⁺ cells were indicated. Data are representative of three experiments (n=4) and are presented as means \pm SD.

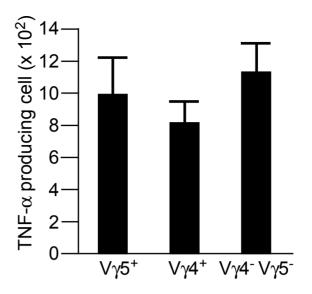

Supplementary Figure 5. Vγ4⁺ cells do not affect migration and activation of DCs.

(a) Immunohistochemical staining of the LNs of TCR δ -H2B-eGFP mice 24 h after the photoconversion of the skin. B220 $^{+}$ cells (white) and TCR- β^{+} cells (red) are shown. Green represents $\gamma\delta$ TCR $^{+}$ cells. T, T cell zone; B, B cell zone. (b, c) The number (b) and MFI of CD80 and CD86 expression (c) of migratory (MHC II^{hi} CD11c^{int}) and resident (MHC II^{int} CD11c^{hi}) DCs isolated from the draining LNs of control- or anti-V γ 4 antibody-treated mice 3 days after the inoculation with BCG. Data are representative of three experiments (n=3 \sim 4) and are presented as means \pm SD. * $^{*}P$ <0.05.

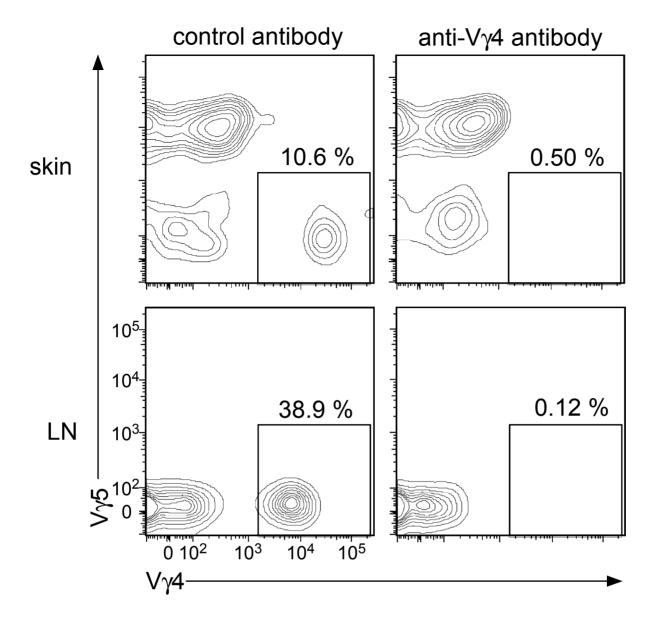

Supplementary Figure 6. Vγ4⁺ γδ T cells stimulate BMDCs to produce IL-12p40.

FACS plots of IL-12p40 $^{+}$ BMDCs cultured with or without CD4 $^{+}$ T cells or V γ 4 $^{+}$ cells. Cells were gated on CD11c $^{+}$ cells. Data are representative of three experiments (n=3).

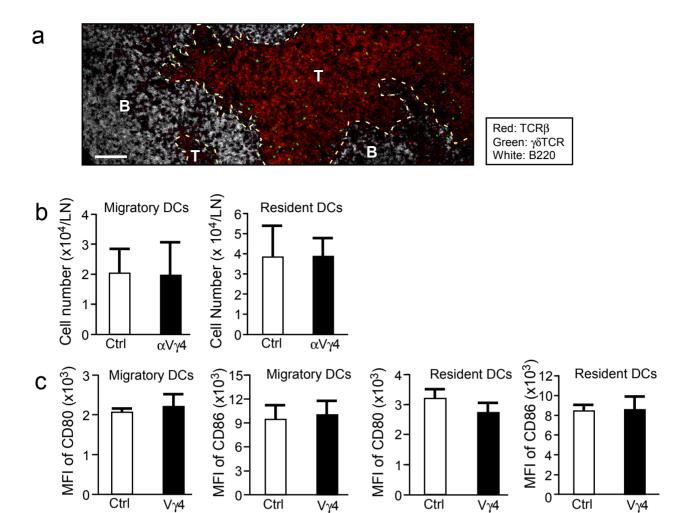

Supplementary Table 1. List of antibodies used in flow cytometry

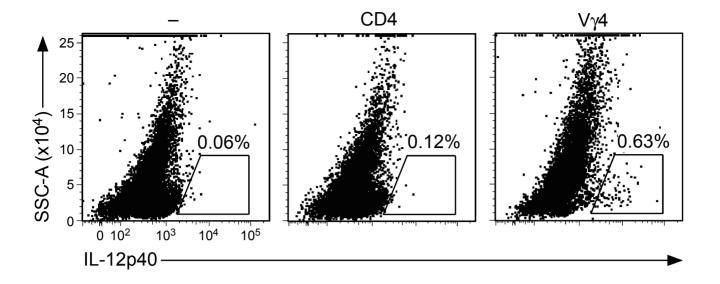


Supplementary Figure 1



Supplementary Figure 2




Supplementary Figure 3

Supplementary Figure 4

Supplementary Figure 5

Supplementary Figure 6

List of antibodies used in flow cytometry

Antibodies	Clone	Source
CCR6	29-2L17	BioLegend
CCR7	4B12	eBioscience
CD103	2E7	eBioscience
CD11c	N418	eBioscience
CD3	17A2	BioLegend
CD4	RM4-5	eBioscience
CD45	30-F11	BD Bioscience
CD8a	53.6.7	eBioscience
γδTCR	eBioGL3	eBioscience
IFN-γ	XMG1.2	eBioscience
IL-12p40	C17.8	eBioscience
MHC classII	M5/114.15.2	eBioscience
TNF- α	MP6-XT22	eBioscience
Vγ4	UC3-10A6	BioLegend
Vγ5	536	BioLegend

Supplementary Table 1