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Abstract Electrostatic actuators, actuators actuated by
electrostatic forces, are now widely used as sensors and
switches, especially in Micro-Electro-Mechanical Systems
(MEMS). Among different kinds of electrostatic actuators,
the comb drive type is one of the most popular because it
has a relatively large range of displacement.

In design problems for electrostatic actuators, the driv-
ing force profile is of primary engineering importance. In
this paper, we develop a structural optimization method for
comb drive electrostatic actuators that achieves prescribed
driving force profiles, based on a level set-based shape opti-
mization method that provides optimal configurations with
clear boundaries, solutions that are valid in an engineering
sense.

Accurate calculation of the electrostatic forces that oc-
cur on the structural boundaries during optimization is im-
portant for developing actuators that operate with prescribed
driving forces. In the conventional level set-based shape op-
timization methods, inaccuracies in the calculation of these
electrostatic forces occur because the structural boundaries
are seldom aligned with the finite element method (FEM)
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nodes. To precisely calculate the electrostatic forces, we de-
veloped a mesh adaptation scheme by which the finite el-
ement nodes are brought into alignment with the structural
boundaries at every iteration of the optimization procedure.

In the following, we explain the details of the proposed
level set-based shape optimization method, in which a multi-
objective optimization problem is formulated to achieve a
prescribed driving force profile. The sensitivity is derived
using the adjoint variable method. Four numerical examples
are provided, to examine the suitability of the proposed op-
timization method.

Keywords Shape Optimization · Level Set Method ·
Electrostatic Actuators · Comb Drive

1 Introduction

Electrostatic actuators have been increasingly deployed, es-
pecially in MEMS. The operating principle of electrostatic
actuators is based on the electrostatic forces that occur on
electrode surfaces. This principle has been known for hun-
dreds of years, but widespread use of such devices is a recent
phenomenon because the voltage requirements are unrealis-
tically high for large devices. At the MEMS scale, however,
the voltage requirements are reasonably small and the sim-
plicity of electrostatic actuator structures allows manufac-
turing using well-established micro-processing technologies
developed in semiconductor industries. Thus, electrostatic
actuators are currently one of the most popular type of actu-
ators in the MEMS field.

There are different types of electrostatic actuators, in-
cluding comb drive (Legtenberg et al, 1996; Ye et al, 1998;
Ye and Mukherjee, 1999; Grade et al, 2003), cantilever (Kim
et al, 1996; Ou et al, 2011), and parallel plate (Nemirovsky
and Bochobza-Degani, 2001; Seeger and Boser, 2003), used
in many different micro-devices such as switches, sensors,
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and electronic filters. Among the various kinds of electro-
static actuators, the comb drive type has a relatively large
range of displacement and is near the top in terms of popu-
larity. Here, we focus on the structural optimization of comb
drive electrostatic actuators.

When designing comb drive electrostatic actuators,
much effort is focused on obtaining a structure that achieves
a specific driving force profile. The driving force profile is
the primary determinant of comb drive electrostatic actuator
performance. The driving force profile of typical comb drive
electrostatic actuators is constant during most of the dis-
placement range, except near the limits of the range. A comb
drive actuator is always paired with a spring mechanism that
has a linear response except at large displacements, when the
response becomes nonlinear. Differences between the comb
and spring response curves make it difficult to design ac-
tuators that provide an intended performance. Therefore, it
would be ideal if it were possible to design the driving force
profile of a comb drive actuator, for example, to arbitrarily
obtain a linear or quadratic response for the driving forces.
Being able to design actuators with prescribed driving force
profiles is thus of primary engineering importance.

Driving force profiles are determined by the shapes of
the electrodes. Obtaining appropriate electrode shapes by
trial and error methods is difficult because simultaneous
consideration of multiple governing equations, applied to
the electrodes at different relative positions, is required.
Here, a structural optimization method can play an impor-
tant role in finding optimal electrode shapes for electrostatic
actuators.

There are several previous studies of structural optimiza-
tion methods for electrostatic actuators. Shape optimization
of comb drive electrostatic actuators has been explored by
Ye et al (1998; 1999), who used a polynomial function-
based shape optimization and obtained optimal structures
that successfully minimized the objective function. How-
ever, during the optimization, shapes could only deform
within the range available with the polynomial function, so
significant changes in shape were impossible.

Topology optimization (Bendsøe and Kikuchi, 1988),
on the other hand, allows large structural changes. Topol-
ogy optimization of electrostatic actuators has been stud-
ied by Raulli et al. (2005), Alwan et al. (2006a; 2006b),
and Yoon et al. (2008), who collectively dealt with can-
tilever and inverter electrostatic actuator types．They suc-
cessfully obtained optimal shapes that achieved target dis-
placements. However, these methods, based on the use of the
Solid Isotropic Material with Penalization (SIMP) method
(Bendsøe, 1989; Yang and Chuang, 1994; Bendsøe and Sig-
mund, 1999), were affected by the problem of grayscales
that often occurs in SIMP methods, hence the structural
boundaries were not entirely clear. Some optimal configu-

rations also included hinges, which are inappropriate from a
manufacturing point of view.

To deal with the above problems, Qian et al. (2013) pro-
posed a SIMP optimization method for electrostatic actua-
tors using a robust filter that does provide clear structural
boundaries and controls the minimum width of the obtained
structures. The robust filter in the optimization procedure se-
lects the structure that offers the least displacement from the
so-called blue-print, under-etched, and over-etched struc-
tures, and maximizes the displacement of the chosen struc-
ture in each iteration. They successfully obtained optimal
designs with clear boundaries for inverter type electrostatic
actuators. Their method, however, aimed to maximize the
force applied to the output port, whereas our method, as dis-
cussed below, seeks to obtain a structure that achieves a pre-
scribed driving force profile.

Level set-based structural optimization methods, pio-
neered in 2000 (Sethian and Wiegmann, 2000), provide op-
timal configurations that are free from grayscales. Level set-
based methods express structural boundaries by taking the
iso-surface of the level set function. During the optimiza-
tion procedure, the changes in the structural boundaries are
expressed by the changes in the iso-surface of level set func-
tion.

Wang et al. (Wang et al, 2003) and Allaire et al. (Allaire
et al, 2004) independently proposed structural optimization
methods in which the Hamilton-Jacobi equation is used for
updating the level set function, to move the structural bound-
aries. On the other hand, Yamada et al. (Yamada et al,
2010, 2011) proposed a different type of method in which a
reaction-diffusion equation is used for updating the level set
function, a scheme that can allow topological changes in the
target structures. Comparing these methods, the former can
be categorized as shape optimization, whereas the latter can
be categorized as topology optimization, and in this paper,
we construct a structural optimization method for the de-
sign of electrostatic actuators using a level set-based shape
optimization method. Our level set-based shape optimiza-
tion method allows for the disappearance and integration of
holes, and the cleaving of a material domain into two sep-
arate material domains, but does not allow the creation of
holes. This will not affect the optimization of comb drive
electrostatic actuators here because the electrostatic forces
only occur on the structural surfaces, and performances are
not improved by the creation of holes inside the structure.

When optimizing electrostatic actuators, accurate calcu-
lation of electrostatic forces is important so that actuators
achieve prescribed driving force profiles. In level set-based
shape optimization methods, a new approach is required in
the calculation of the electrostatic forces because the struc-
tural boundaries, on which the electrostatic forces occur,
move during the calculation and seldom match to the nodes



Driving force profile design in comb drive electrostatic actuators using a level set-based shape optimization method 3

of the finite element mesh. This impedes accurate calcula-
tion of the electrostatic forces on the boundaries.

Several methods have been proposed to match the FEM
nodes with the moving structural boundaries. One of the
most popular methods is the Arbitrary Lagrangian Eule-
rian (ALE) method (Huerta and Liu, 1988; Hirt et al,
1997) which is frequently used in fluid dynamics. The ALE
method precisely describes the moving boundaries and in-
terfaces, using an arbitrary movement of a reference frame.
The computation, however, is not very robust with this
method when the boundary movement is complex. Another
major method which tracks the changing boundaries is the
Extended Finite Element Method (X-FEM) (Belytschko and
Black, 1999; Dolbow and Belytschko, 1999; Sukumar et al,
2001), widely used for tracking cracks in structures. The X-
FEM does not require that new or moving internal bound-
aries be meshed, but an additional function, called the en-
richment function, is required to model new or moving inter-
nal boundaries during calculation, and complex calculation
algorithms are needed.

To track level set boundaries in a simple manner in our
research, for electrostatic actuator optimization problems,
we developed a mesh adaptation scheme originally proposed
by Yamasaki et al. (2011). In this scheme, the FEM nodes
close to the level set boundaries are moved to positions on
the level set boundaries. This method does not require any
changes in the optimization algorithm or additional func-
tions, and can accurately track level set boundaries that un-
dergo large changes. To avoid extreme distortion of element
shapes during the mesh adaptation, Laplacian smoothing is
employed to reposition FEM nodes other than those moved
to the structural boundaries.

Based on the mesh adaptation scheme mentioned above,
we developed a level set-based shape optimization method
for comb drive electrostatic actuators. Our method allows
large structural changes and maintains clear boundaries dur-
ing the optimization. A multi-objective functional is for-
mulated in order to obtain an optimal configuration that
achieves a prescribed driving force profile. The sensitivity
is obtained by the adjoint variable method, and the deriva-
tion is described in Section 3.2. The electrostatic forces
that occur on the structural boundaries are calculated using
Maxwell’s stress tensor. In the numerical examples, we opti-
mize four comb drive electrostatic actuator design examples
and present optimal configurations that achieve prescribed
driving force profiles.

The level set-based shape optimization method and the
details of the electrostatic actuator optimization problem
formulation are explained in Section 2. We describe the
numerical implementation in Section 3 and the numerical
examples are provided in Section 4. The suitability of the
method is also discussed in Section 4, and Section 5 pro-
vides a summary.

2 Formulations

2.1 Level set-based shape optimization method

In this subsection, the level set-based shape optimization
method is briefly explained. In this method, the optimiza-
tion problem is solved using a time evolutional equation that
provides optimal solution candidates.

We consider the shape optimization of a material domain
Ω in the fixed design domain D and we introduce the level
set function φ (xxx), a scalar function. The function φ (xxx) is
a signed distance function (Osher and Fedkiw, 2003) repre-
senting distances from the structural boundaries. The mate-
rial domain Ω and the material boundary, i.e., ∂Ω , are ex-
pressed by this level set function. As shown in (1), values
of φ greater than zero indicate elements in the material do-
main, while values of φ less than zero indicate elements in
the void domain. The zero iso-surface of the level set func-
tion expresses the structural boundaries.

φ (xxx) > 0 for ∀xxx ∈ Ω \∂Ω
φ (xxx) = 0 for ∀xxx ∈ ∂Ω
φ (xxx) < 0 for ∀xxx ∈ D\Ω

, (1)

where xxx represents a point in the design domain.
Changes in the structural shape occur during optimiza-

tion as the level set function is updated. We now introduce a
fictitious time t, and the time derivative of the level set func-
tion yields the Hamilton-Jacobi equation (Wang et al, 2003;
Allaire et al, 2004), as follows.

∂φ (xxx, t)
∂ t

+
dxxx
dt

·∇φ (xxx, t) = 0 (2)

With the velocities of structural boundary movement in the
normal direction denoted by VN (xxx, t) and the normal direc-
tion vector denoted by nnnφ , the following relation is obtained.

dxxx
dt

= VN (xxx, t)nnnφ (3)

nnnφ is now defined as follows.

nnnφ = ∇φ/ | ∇φ | (4)

From (3) and (4)，the Hamilton-Jacobi Equation (2) is now
rewritten as

∂φ (xxx, t)
∂ t

+VN (xxx, t)nnnφ ·∇φ (xxx, t)

=
∂φ (xxx, t)

∂ t
+VN (xxx, t) | ∇φ (xxx, t) |= 0. (5)

In our level set-based shape optimization method, the sen-
sitivity, which is the design variable derivative of the objec-
tive functional, is applied to the velocities of the structural
boundary VN (xxx, t).
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The level set function is initially set to have the prop-
erty of a signed distance function, but it looses this property
when it is updated using (5). Therefore, the level set func-
tions need to be re-initialized (Sussman et al, 1994; Sethian,
1999) after several iterations of the optimization procedure.
We employ the geometry-based re-initialization scheme pro-
posed by Yamasaki et al. (2010; 2011). In this scheme, the
signed distance function property is strictly maintained by
re-initializing the level set function after each update of
the level set function, so that | ∇φ (xxx, t) |= 1 is maintained.
Equation (5) can therefore be simplified as follows, which
facilitates the updating of the level set function.

∂φ (xxx, t)
∂ t

+VN (xxx, t) = 0 (6)

Solutions to the Hamilton-Jacobi equation are not al-
ways smooth, so a regularization method is required during
the optimization process. The details of the regularization
method are discussed in Section 3.2.

Note that the level set function φ (xxx)is discretized using
the FEM. The details are explained in Section 3.

2.2 Governing equations

A comb drive electrostatic actuator consists of two comb-
shaped electrodes, as shown in Fig. 1. One electrode is
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Fig. 1 Comb drive electrostatic actuator model

grounded and the other electrode has an electrical voltage
imposed. The grounded electrode moves toward the other
electrode when a voltage is applied and the distance between
the two electrodes is reduced. This movement is the basis for
the use of comb drive electrostatic devices as actuators.

One advantage of comb drive electrostatic actuators is
that their displacement range can be relatively large, given

an appropriate design and length of the teeth of the two elec-
trodes. The primary concern of engineers designing comb
drive actuators is to define the driving force as a function
of displacement, for example, to obtain a device that has
a linear driving force profile. Here, we formulate the opti-
mization problem for comb drive electrostatic actuators to
achieve pre-defined driving force profiles.

Electrostatic actuators operate when electrostatic forces
are imposed on electrode surfaces by an electrostatic field,
so the equations that describe the electrostatic field must be
solved in order to optimize the design of an electrostatic ac-
tuator.

We set a design domain D as shown in Fig. 2. The fixed
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Fig. 2 Design domain and boundary conditions

electrode, a material domain, is denoted ΩD, and the mov-
able electrode, also a material domain, is denoted ΩM . We
used subscript D when denoting the fixed electrode ΩD be-
cause the shape of the fixed electrode is the design target
in the optimization problem that is discussed below. Both
electrodes are made from a conductive material. The void
domain, which is air, is denoted D\ (ΩD ∪ΩM).

Comb drive electrostatic actuators used in real-world
applications have multiple pairs of teeth in order to create
larger driving forces, as depicted in Fig. 1. In our study, to
simplify the optimization model, we confine our design to
one set of teeth, as shown in Fig. 2. The driving force of a
design consisting of numerous sets of teeth can be obtained
simply by multiplying the driving force of a single set by the
number of sets.

We assume that there is no external electric charge
or magnetic field. Extracting the relevant terms from
Maxwell’s equations, the governing equation is defined in
the void domain as follows, using the vacuum permittivity
ε0 and the electric potential V .

∇∇∇ · (ε0 ∇∇∇V ) = 0 in D\ (ΩD ∪ΩM) (7)

In our method, this governing equation is extended to the
entire design domain D by introducing a sufficiently large
fictitious permittivity to the material domain. That is, the
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governing equation is approximately solved in domain D,
which is analogous to the ersatz material approach (Allaire
et al, 2004; Yamada et al, 2011). Hence, the governing equa-
tion is redefined as below.

∇∇∇ · (ε(φ)∇∇∇V ) = 0 in D, (8)

where ε(φ) is the extended permittivity, defined in the entire
design domain D.

The boundary Γ1, which has contact with the fixed elec-
trode, is charged at electric potential Vin and the boundary Γ2,
which has contact with the movable electrode, is connected
to ground as shown in Fig. 2. The boundary conditions are
follows.{

V = V on ΓV

q = −(ε(φ)∇V ) ·nnnD = 0 on Γq
(9)

where V is the prescribed electric potential V on boundary
ΓV = Γ1 ∪Γ2 , Γq = ∂D \ΓV has a Neumann boundary con-
dition imposed, and nnnD is the normal unit vector on bound-
ary ∂D. The governing equation (8) is now rewritten in the
weak form using the principle of virtual work.∫

D
∇∇∇V̂ · (ε(φ)∇∇∇V )dΩ = 0, (10)

where V̂ is the test function. Equation (10) is rewritten using
the electric field vector EEE = −∇∇∇V , as follows.∫

D
ÊEE · (ε(φ)EEE)dΩ = 0 (11)

2.3 Formulations for shape optimization

We aim to develop an optimization method for comb drive
electrostatic actuators so that the optimal structure realizes
a prescribed driving force profile. We optimize the shape of
the fixed electrode in the optimization problem in this paper.

We define the target driving force TTT j∗ at discrete posi-
tions of the movable electrode, defined as j = 1, · · · ,m, as
shown in Fig. 3, with m arbitrarily defined. The actual driv-
ing force at position j is calculated by taking the boundary
integral of electrostatic force ttt j on the boundary of the fixed
electrode, denoted s. The electrostatic force is calculated us-
ing Maxwell’s stress tensor defined as follows:

ttt(∇∇∇V ) = ttt(EEE)

= −ε0

{
EEE ⊗EEE − 1

2
(EEE ·EEE)III

}
. (12)

We note that only the terms pertaining to the electrostatic
field are extracted for our calculation. To achieve the tar-
get driving force at position j, the objective functional F j is
defined as the square of the differences between the target
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driving force TTT j∗ and the actual driving force TTT j, as shown
below, and this objective functional is to be minimized.

inf
φ

F j = {TTT (∇∇∇V j,φ)−TTT j∗}2 (13)

=
(∫

s
ttt(∇∇∇V j) ·nnns(φ) dΓ −TTT j∗

)2

, (14)

where s is the boundary of an electrode in a comb drive elec-
trostatic actuator and nnns is a unit normal vector on boundary
s. We note that the definition of the objective functional that
satisfies the design requirement is not unique.

To obtain a configuration that achieves the prescribed
driving force profile, we formulate the optimization problem
as a multi-objective optimization problem. We formulate a
multi-objective functional F consisting of F j and simultane-
ously minimize the differences between target driving forces
and actual driving forces at multiple positions j. To obtain a
good convergence performance during the optimization pro-
cess, we use the logarithm of the summation of the exponen-
tial of F j for the objective functional F . The optimization
problem is formulated as follows.

inf
φ(xxx)

F [∇∇∇V,φ ] = log

{
m

∑
j=1

exp
(

w j F j
)}

(15)

subject to ∇∇∇ · (ε(φ)∇∇∇V j) = 0 in D (16)

V j = V on ΓV (17)

q j = −(ε(φ)∇∇∇V j) ·nnnD = 0 on Γq (18)

where w j is a weighting function. This objective functional
increases the impact of the sensitivity of the j-th position
that has the largest difference between the target driving
force and the actual driving force. The range of w j must be
appropriately defined, since values of w j that are too large
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may cause memory overflow. The derivation of the sensitiv-
ity is explained in Section 3.2.

Note that in electrostatic actuator optimization prob-
lems, a volume constraint is relatively unimportant since
these devices are MEMS-scale and there is generally lit-
tle need to reduce their volume. We therefore do not em-
ploy a volume constraint. Additionally, to avoid situations
where the two electrodes may stick together, we define a
thin non-design domain that surrounds the fixed electrode.
By appropriately defining design and non-design domains,
boundary limits are provided implicitly. This is one advan-
tage of our method, which uses an Eulerian coordinate sys-
tem, compared to general shape optimization methods that
use a Lagrangian coordinate system and cannot define non-
design domains.

3 Numerical implementations

The flow of the optimization is shown in Fig. 4. First, the
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initial value of the level set function is set. The mesh adap-
tation is then carried out. The nodes that are close to but not
on the level set boundaries are moved so that they lie on the
boundaries. The details of this mesh adaptation scheme are
discussed in Section 3.1. In the third step, the electrostatic
field is solved by the FEM. In the fourth step, the electro-
static forces acting on the nodes on the structural bound-
aries are determined by calculating Maxwell’s stress tensor.

Then, the objective functional is calculated and if it has con-
verged, the optimization ends. If the optimization has not
converged, the sensitivities are calculated and the level set
function is updated according to the sensitivities. The level
set function is discretized using the FEM and its value is
given at each node. Hence, the level set function is updated
using the following spatially-discretized equation.

ΦΦΦ t+∆ t = ΦΦΦ t −∆ t VVV t
N (19)

ΦΦΦ t represents the vector of the level set function value at
each node at time t, and VVV t

N represents the vector of veloc-
ity in the normal direction at each node at time t. ∆ t is the
time increment．At the end of the optimization procedure,
the level set function is re-initialized using the geometry-
based re-initialization scheme discussed in Section 2.1, and
the procedure returns to the second step. The objective func-
tional is thereby minimized and an optimal configuration is
derived.

3.1 Mesh adaptation scheme

The forces driving an electrostatic actuator are the electro-
static forces that occur on the structural boundaries. To ob-
tain an appropriate design, these electrostatic forces must be
precisely calculated during the optimization process. Such
calculations, however, are not straightforward in level set-
based shape optimization methods because the FEM nodes
seldom lie on the structural boundaries. To accurately calcu-
late the forces on the structural boundaries, the position of
the finite elements nodes and the structural boundaries need
to be congruent.

In this study, we further develop the mesh adaptation
scheme originally proposed by Yamasaki et al. (2011), ex-
tending it to electrostatic actuator optimization problems.
The nodes in the void domain that are close to the structural
boundaries are moved so that they lie precisely on the level
set boundaries. When only the nodes close to the boundaries
are moved, certain element shapes become distorted, which
lowers mesh quality and therefore degrades the accuracy of
the analysis. To mitigate this problem, we use a Laplacian
smoothing method.

The formulation of our mesh adaptation scheme is as
follows. The movement vectors of the nodes, i.e., displace-
ments from original node positions to new positions, are rep-
resented as dddx, dddy, and dddz. The mesh adaptation is executed
by updating the node coordinates according to these move-
ment vectors, as in (20).

XXX = XXX0 +dddx

YYY = YYY 0 +dddy

ZZZ = ZZZ0 +dddz ,

(20)
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where XXX , YYY , and ZZZ are the coordinates of all nodes after the
mesh adaptation, and XXX0, YYY 0, and ZZZ0 are the coordinates of
all nodes before the mesh adaptation. The derivation of the
movement vectors dddx, dddy, and dddz for each node is explained
below.

Figure 5(a) shows the mesh structure before the mesh
adaptation. Two-dimensional triangular elements are used
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Fig. 5 Mesh adaptation scheme

throughout Fig. 5, for the explanation of the mesh adapta-
tion scheme, although the mesh adaptation scheme is a gen-
eral scheme that is also valid for three-dimensional mesh
structures. The gray areas represent the material domain Ω
and the other areas represent the void domain. First, the ele-
ments that consist of both material and void are selected, and
measurement points, denoted by black dots in Fig. 5(b), are
populated at even intervals on the structural boundaries ∂Ω
within each element. The nodes that exist in the void domain
portion of the selected elements are denoted Ni, as shown in
Fig. 5(c). As shown in Fig. 5(d), the Ni nodes are moved to
the closest measurement point on the structural boundary.

The components of the movement vectors dxi , dyi , and dzi

are calculated.
Next, the components of movement vectors for other

nodes are calculated using the Laplacian smoothing method
(Buell and Bush, 1973; Field, 1988)．The movement vec-
tors dddx, dddy, and dddz are obtained by solving the following
equations, using the FEM.

KKK dddx = 0 with dxi = dxi (21)

KKK dddy = 0 with dyi = dyi (22)

KKK dddz = 0 with dzi = dzi (23)

KKK :=
ne∪

e=1

∫
Ae

∇TNNN ∇NNN dΩ , (24)

where dxi , dyi , and dzi are the components of the movement
vectors of the nodes that have been moved to the structural
boundaries, calculated according to the procedure explained
above. The total number of elements in design domain D is
represented as ne,

∫
Ae
∗ dΩ is the domain integral of the e-

th element, and NNN is the shape function．Using the above
procedure, the movement vectors dddx, dddy, and dddz for all the
nodes are calculated, and mesh adaptation is completed as
shown in Fig. 5(e).

When the curvature of the structural boundary is very
large, the boundary arcs circularly with a central focus on a
node, and this node then has multiple closest points at differ-
ent locations on the boundary. In our method, to avoid this
kind of situation, the structural boundaries are smoothed us-
ing a sensitivity filter, as discussed in Section 3.2. On the
other hand, there are cases when multiple nodes share the
same closest point on the boundary. In such cases, these
nodes are excluded from the set of nodes that are forcibly
displaced.

The mesh quality is examined using the following for-
mula.

q =
4
√

3g
h2

1 +h2
2 +h2

3
, (25)

where q is the mesh quality index, g is the area, and h1, h2
and h3 are the side lengths of the triangular elements (Bank
and Xu, 1996; Bank and Smith, 1997). The value of q ranges
between 0 and 1 and an equilateral triangle has a q value of
1. The quality of solutions is unaffected when q is larger than
0.3. The value of q is computed for all elements at every it-
eration. In this manner, the mesh adaptation scheme enables
accurate calculation of the electrostatic forces.

We note that the calculation cost of this scheme in-
creases for three-dimensional problems, although it is not
very high in two-dimension problems.

To calculate the electrostatic forces at the nodes on the
structural boundaries, we need to select just the nodes that
are on the boundaries. Any element with a side that contacts
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a structural boundary has two nodes for which the values of
the level set functions are zero. These φ = 0 nodes are se-
lected, and Maxwell’s stress tensors at these selected nodes
are calculated. Maxwell’s stress tensors for nodes not on the
structural boundaries are set equal to zero.

3.2 Sensitivity analysis

In this section, we derive the design sensitivities that will be
used as VN in (6) when updating the level set function, and
we use the adjoint variable method to derive these sensi-
tivities. First, the boundary integral representing the driving
force is replaced by the following domain integral by using
level set function φ :

TTT (∇∇∇V j,φ) =
∫

D
ttt(∇∇∇V j)δ̄δδ (φ) dD, (26)

where δ̄δδ (φ) is defined using an approximated Heaviside
function Ha(φ), as follows:

δ̄δδ (φ) :=
∇∇∇φ
|∇∇∇φ |

dHa(φ)
d φ

. (27)

In our study, the Heaviside function is approximated as fol-
lows, since H (φ) is a step function.

Ha (φ)=



0 (φ < −h)
1
2

+
15
16

(
φ
h

)
− 5

8

(
φ
h

)3

+
3
16

(
φ
h

)5

(−h ≤ φ ≤ h)
1 (h < φ) ,

(28)

where h is the transition width between the material and void
domains.

Next, the Lagrangian F is defined as follows:

F = log

[
m

∑
j=1

exp

{
w j
(∫

D
ttt(∇∇∇V j)δ̄δδ (φ) dD−TTT j∗

)2
}]

+
m

∑
j=1

[∫
D

V̂ j ∇∇∇ · (ε(φ)∇∇∇V j) dD
]
, (29)

where V̂ j represents the Lagrange multipliers. Furthermore,
the adjoint system is defined as follows:

∇∇∇V̂ j = −2
ε0

ε(φ)

[{
(∇∇∇V j)⊗ δ̄δδ (φ)

}T
aaa j

T

]
+

ε0

ε(φ)

[
aaa j

T ·
{

IIIδ̄δδ (φ)
}

(∇∇∇V j)
]

in D

V̂ j = 0 on ΓV

where coefficient vector aaa j
T is defined in the following equa-

tion.

aaa j
T :=

2w j(TTT j −TTT j∗)exp
{

w j
(
TTT j −TTT j∗)2

}
m

∑
j=1

exp
{

w j (TTT j −TTT j∗)2
} (30)

Thus, we obtain the following design sensitivity:

δF =
m

∑
j=1

∫
D

{(
2w jW j(TTT j −TTT j∗)

∑W j

)
·

(
ttt(∇∇∇V j)

∂ δ̄δδ (φ)
∂φ

)

− (∇∇∇V̂ j) ·
(

∂ε(φ)
∂φ

∇∇∇V j
)}

δφ dD. (31)

Details concerning the derivation of the sensitivity are pro-
vided in the Appendix. We note that the first and sec-
ond terms respectively represent the effects of geometrical
changes and the effects of changes in Maxwell’s stress ten-
sor. Therefore, the first term can be neglected when changes
in the shape are insignificant. We also note that the adjoint
problem does not have to be solved, although the optimiza-
tion problem is not a self-adjoint problem. That is, the de-
sign sensitivity is represented by the gradient of the La-
grange multiplier ∇∇∇V̂ , and the adjoint system is constructed
using the gradient of the Lagrange multiplier ∇∇∇V̂ , since the
objective functional is defined by using the domain integral
of a function of a gradient of the state variable V .

As discussed in Section 2.1, the sensitivity δF
δφ is not nec-

essarily smooth and thus needs to be regularized. We use a
convenient Helmholtz type of filter for this regularization,
chosen because it is a PDE filter that directly uses the FEM

structure. The regularized sensitivity is denoted
(

δF
δφ

)∗
. The

regularization is carried out using the following equation.(
δF
δφ

)∗
+R2 ∇∇∇2

(
δF
δφ

)∗
=
(

δF
δφ

)
, (32)

where R is a parameter that affects the smoothness of the so-

lutions.
(

δF
δφ

)∗
=
(

δF
δφ

)
when R = 0, and (32) is equivalent

to Poisson’s equation as R → ∞.

This regularized sensitivity
(

δF
δφ

)∗
is used for the value

of VN in (6) to update the level set function. The values of
VN at nodes that are not on the structural boundaries are re-
placed with the VN values of the closest nodes that lie on the
structural boundaries.

4 Numerical Examples

We first verify the reasonability of the mesh adaptation
scheme using a parallel plate type of electrode, and then ex-
amine the suitability of our proposed optimization method
using a comb drive electrostatic actuator model.
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4.1 Verification of mesh adaptation scheme reasonability

In this section, we verify the reasonability of the mesh adap-
tation scheme proposed in Section 3.1. The electrostatic
force of an infinite parallel plate type of electrode can be
solved analytically, but an infinite parallel plate cannot be
solved by the FEM. Therefore, we use a sufficiently large
parallel plate type of electrode, using electrodes that are
1µm thick, 42µm wide, and spaced 8µm apart. A voltage
of 25V is applied between the two electrodes. An evalua-
tion region 20µm wide and 8µm high is set at the center
of electrodes (Fig. 6). The region has a depth of 1m. The

2013/10/15

1

20µm

42µm

25V

1
µ

m
1
µ

m
8
µ

m

Electrodes

Evaluation
region

Analysis 
domain

100µm

Fig. 6 Parallel plate model

material properties used in this problem are the permittivity
of the void and material domains. The vacuum permittiv-
ity of the void domains is 8.85× 10−12Fm−1, and that of
material domain is defined as being 103 times larger, which
is sufficiently larger than that of the void domain. The ma-
terial property is approximated in the same manner as in
the ersatz material approach, but we note that our method
provides clear boundaries whereas the ersatz material ap-
proach does not. We solve the absolute value of the electro-
static forces occurring on the electrode surfaces within the
evaluation region using an adapted mesh structure realized
by our proposed method. For comparison, these forces are
also solved analytically and by using a non-adapted mesh
structure obtained by an ersatz material approach, a conven-
tional approach that avoids re-meshing when using a level
set method.

The electrostatic forces in Cases 1, 2, and 3 are respec-
tively solved analytically, by using the adapted mesh ob-
tained via our proposed mesh adaptation scheme, and by
using the non-adapted mesh obtained via the ersatz mate-
rial approach (Table 1). The analytical (Case 1) and adapted

Table 1 Electrostatic forces [N]

Case1 Case2 Case3
8.65×10−4 8.72×10−4 4.74×10−6

mesh (Case 2) solutions are nearly equal, but electrostatic
force provided by the non-adapted mesh structure (Case 3)

was much less than that of the other solutions. The electro-
static force is undervalued in Case 3 due to underevaluation
of the electric field vector EEE because the material proper-
ties have intermediate values between those of the material
and void domains around the structural boundaries on which
the electrostatic forces occur. From above results, we con-
firm that the electrostatic force is appropriately obtained us-
ing our proposed mesh adaptation scheme. Furthermore, the
ersatz material approach in which the mesh is not adapted
to the boundaries does not provide accurate analysis of the
electrostatic forces, and thus is not ideal for solving electro-
static actuator optimization problems.

4.2 Numerical examples of proposed optimization method

The model considers a single set of teeth, as shown in Fig. 7,
although the fixed and movable electrodes in actual devices
have numerous sets of teeth deployed in a line.

2013/3/25

1

x

y

Fixed electrode

Movable electrode

Fig. 7 Comb drive model for numerical examples

In our examples, we only optimize the shape of the fixed
electrode because we determined that this approach was
reasonable from the standpoint of calculation cost and the
manufacturability of the comb drive designs, and it led to
structures that achieve prescribed driving forces. The driv-
ing force is calculated by taking the boundary integral of
the electrostatic forces on the surface of the fixed electrode
along the length shown circled by the dotted line in Fig. 7.

We set the size of the design domain as 650× 400µm,
with a thickness of 10µm. The initial configuration of the
electrodes are shown in Fig. 8. An external voltage Vin =
100V is applied to the fixed electrode and the movable elec-
trode is grounded. Concerning the weighting function w j in
(??), we assign a value of 1 to all w j ( j = 1, · · · ,m) so that
identical weighting is applied to F j.
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2013/3/25

1

x4

x3
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y
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Movable 

electrode

100V

Fig. 8 Initial configuration and electrode’s positions

4.2.1 Linear driving force profile

An driving force profile with a linear response rate is one
desirable goal for the performance of electrostatic actua-
tors. In the first and second examples, we obtain actuator
designs that display a linear relationship between driving
force and electrode position. The x positions of the movable
electrode in the first example are x1 = 400µm, x2 = 333µm,
x3 = 267µm, x4 = 200µm, respectively, from the fixed elec-
trode, as shown in Fig. 8.

Plots of the target driving force, initial driving force, and
driving force for the optimal configuration are shown in Fig.
9 (a). We can confirm that the driving force profile of the
optimal configuration is accurately aligned with the target
driving force profile. The optimal configuration is shown in
Fig. 10 (a). As shown in this figure, clear boundaries were
obtained. The dotted lines in Fig. 10 (a) illustrate the four
different x positions of the movable electrode. Figure 11(a)
shows the optimization history.

The second example also targets a linear driving force
profile but uses five different movable-electrode positions in
the model. The electrode positions here are x1 = 400µm,
x2 = 350µm, x3 = 300µm, x4 = 250µm, x5 = 200µm. The
driving force profiles and optimal configuration are shown
in Fig. 9 (b) and Fig. 10 (b), respectively. The driving forces
obtained by the optimal configuration are congruent with the
target driving force profile. Figure 11(b) shows the optimiza-
tion history.

4.2.2 Sharp initial rise driving force profile

Most actuators used in engineering applications have a driv-
ing force profile with a weak initial rise. Since driving force
profiles that include a sharp initial rise are advantageous in
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(a) Example 1

(b) Example 2

(c) Example 3

(d) Example 4

Fig. 10 Optimal configurations

industrial applications, we apply the proposed optimization
method to the design of an actuator with this type of force
profile.

In the third example, we set a target driving force pro-
file that includes a sharp initial rise. As shown in Fig. 9
(c), the rate of increase in driving force is greatest when the
electrodes are furthest apart, and this rate decreases as the
electrodes approach. The model in this example uses three
positions for the movable electrode, namely, x1 = 390µm,
x2 = 300µm, and x3 = 200µm. The driving force profile of
the optimal configuration is shown in Fig. 9 (c). We can con-
firm that the optimal configuration obtains a driving force
profile that matches the target driving force profile. The op-
timal configuration is shown in Fig. 10 (c). Figure 11(c)
shows the optimization history.
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The fourth example also targets a sharp initial rise driv-
ing force profile but uses a model with four different elec-
trode positions. The x positions of the movable electrode in
this example are x1 = 390µm, x2 = 333µm, x3 = 267µm,
and x4 = 200µm, respectively. We can confirm that the driv-
ing force profile provided by the optimal configuration again
matches the target driving force profile, as shown in Fig. 9
(d). The optimal configuration is shown in Fig. 10 (d). Fig-
ure 11(d) shows the optimization history.

5 Conclusion

This paper proposed a level set-based shape optimization
method for comb drive electrostatic actuators. Our method
enables actuator designs that achieve prescribed driving
force profiles, which is highly beneficial in an engineering
sense. We achieved the following:

(1) Design requirements of comb drive electrostatic actua-
tors were clarified and an optimization problem using
a multi-objective functional for an electrostatic comb
drive type of actuator that achieves a prescribed driving
force profile was formulated.

(2) The sensitivities were derived by the adjoint variable
method and the objective functional we employed did
not require solving the adjoint fields during the opti-
mization.

(3) A mesh adaptation scheme for the optimization of the
electrostatic actuators was developed, based on the level
set method and a Laplacian smoothing method. A cal-
culation scheme to accurately calculate the electrostatic
forces on the electrode surfaces during the optimization
was developed.

(4) Based on the formulation of the optimization problem
and the mesh adaptation scheme, an optimization algo-
rithm for solving the electrostatic field and calculating
the sensitivities was constructed.

(5) The suitability of our proposed method was demon-
strated in four numerical examples. Each optimal config-
uration achieved the target driving force profile, and all
had clear structural boundaries. We confirmed that the
proposed method enables the design of electrostatic ac-
tuators that incorporate desirable driving force profiles
and obtains optimal configurations that are free from
grayscale areas.
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Appendix: Sensitivity Analysis

The details of the derivation of the sensitivity are now pro-
vided. First, the Lagrangian F is rewritten from (29) as fol-
lows:

F = log

[
m

∑
j=1

exp

{
w j
(∫

D
ttt(∇∇∇V j)δ̄δδ (φ) dD−TTT j∗

)2
}]

+
m

∑
j=1

[
−
∫

D
(∇∇∇V̂ j) · {ε(φ)∇∇∇V j} dD+

∫
Γ

V̂ jq j dΓ
]
(33)

The Lagrangian F changes when the design variable φ
slightly changes, so we have

F +δF

= log

[
m

∑
j=1

exp

{
w j

{∫
D

(
ttt(∇∇∇V j)+

∂ ttt(∇∇∇V j)
∂ (∇∇∇V j)

δ (∇∇∇V j)
)

(
δ̄δδ (φ)+

∂ δ̄δδ (φ)
∂φ

δφ

)
dD−TTT j∗

}2}]

+
m

∑
j=1

[
−
∫

D
(∇∇∇V̂ j) ·

{(
ε(φ)+

∂ε(φ)
∂φ

δφ
)

(
∇∇∇V j +δ (∇∇∇V j)

)}
dD

+
∫

Γ
V̂ j(q j +δq j) dΓ

]
(34)

Therefore, we have

δF =

log

[
m

∑
j=1

exp

{
w j

{∫
D

(
ttt +

∂ ttt(∇∇∇V j)
∂ (∇∇∇V j)

δ (∇∇∇V j)
)

δ̄δδ (φ) dD

+
∫

D

(
ttt(∇∇∇V j)

∂ δ̄δδ (φ)
∂φ

δφ

)
dD−TTT j∗

}2}]

− log

[
m

∑
j=1

exp

{
w j
(∫

D
ttt(∇∇∇V j)δ̄δδ (φ) dD−TTT j∗

)2
}]

+
m

∑
j=1

[
−
∫

D
(∇∇∇V̂ j) ·

{
ε(φ)δ (∇∇∇V j)+

∂ε(φ)
∂φ

δφ ∇∇∇V j
}

dD

+
∫

Γ
V̂ jδq j dΓ

]
, (35)
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where a second order variation is neglected. Here, following
notations are introduced.

TTT j :=
∫

D
ttt(∇∇∇V j) · δ̄δδ (φ) dD (36)

δTTT j :=
∫

D

(
∂ ttt(∇∇∇V j)
∂ (∇∇∇V j)

δ (∇∇∇V j)
)

δ̄δδ (φ) dD

+
∫

D

(
ttt(∇∇∇V j)

∂ δ̄δδ (φ)
∂φ

δφ

)
dD (37)

W j := exp
(

w j (TTT j −TTT j∗)2
)

(38)

Using the above notations, the first and second terms of the
variation δF can be evaluated as follows:

δF = log

[
m

∑
j=1

exp
{

w j (TTT j +δTTT j −TTT j∗)2
}]

− log

[
m

∑
j=1

exp
{

w j (TTT j −TTT j∗)2
}]

(39)

= log


m

∑
j=1

exp
{

w j (TTT j +δTTT j −TTT j∗)2
}

m

∑
j=1

exp
{

w j (TTT j −TTT j∗)2
}

 (40)

Here, we recall the Maclaurin expansion with respect to
exp(x):

exp(x) =
∞

∑
n=0

xn

n!
(41)

Therefore, we have

δF = log

1+

2
m

∑
j=1

w jW j(TTT j −TTT j∗) ·δTTT j

m

∑
j=1

W j

 (42)

Furthermore, we recall the following relationship:

e = lim
x→0

(1+ x)
1
x . (43)

Therefore, we have

δF =
(

2
∑W j

) m

∑
j=1

w jW j(TTT j −TTT j∗) ·δTTT j (44)

Given the boundary condition imposed on Γq, we have fol-
lowing relationship:

δq j = 0 on Γq . (45)

Thus, the boundary integral term can be evaluated as fol-
lows:∫

Γ
V̂ jδq j dΓ →

∫
ΓV

V̂ jδq j dΓ . (46)

The variation of F can therefore be evaluated as

δF =
m

∑
j=1

[∫
D

[
−2ε0

{{
(∇∇∇V j)⊗ δ̄δδ (φ)

}T
aaa j

T

}

+ ε0

{
aaa j

T ·
{

IIIδ̄δδ (φ)
}

(∇∇∇V j)
}
− ε(φ)∇∇∇V̂ j

]
·δ (∇∇∇V j) dD

]

+
m

∑
j=1

[∫
D

{(
2w jW j(TTT j −TTT j∗)

∑W j

)
·

(
ttt(∇∇∇V j)

∂ δ̄δδ (φ)
∂φ

)

− (∇∇∇V̂ j) ·
(

∂ε(φ)
∂φ

∇∇∇V j
)}

δφ dD

]

+
m

∑
j=1

[∫
ΓV

V̂ jδq j dΓ
]
. (47)

To make the terms pertaining to δ (∇∇∇V j) and δq j equivalent
to zero, we define the adjoint system as follows:

∇∇∇V̂ j = −2
ε0

ε(φ)

[{
(∇∇∇V j)⊗ δ̄δδ (φ)

}T
aaa j

T

]
+

ε0

ε(φ)

[
aaa j

T ·
{

IIIδ̄δδ (φ)
}

(∇∇∇V j)
]

in D

V̂ j = 0 on ΓV

(48)

Then, δF can be expressed as

δF =
m

∑
j=1

∫
D

{(
2w jW j(TTT j −TTT j∗)

∑W j

)
·

(
ttt(∇∇∇V j)

∂ δ̄δδ (φ)
∂φ

)

− (∇∇∇V̂ j) ·
(

∂ε(φ)
∂φ

∇∇∇V j
)}

δφ dD. (49)
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