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Abstract 

MITF is a transcription factor that is expressed in limited types of cells, including 

osteoclasts, but the expression and role of MITF during osteoclastogenesis has not been 

fully elucidated. The expression of the MITF-E isoform but not that of the MITF-A 

isoform was induced in response to differentiation stimulation toward osteoclasts by 

RANKL in both RAW264.7 cells and primary bone marrow cells. The RANKL-induced 

formation of TRAP-positive multinucleated cells was inhibited in RAW264.7 cells 

expressing siRNA for MITF-E. TGF-β enhanced RANKL-induced MITF-E expression 

and TRAP-positive multinucleated cell formation. In particular, TGF-β potentiated the 

formation of larger osteoclasts. The expression levels of NFATc1, TRAP and CtsK, 

genes related to osteoclast development and activity, were concurrently enhanced by 

TGF-β in the presence of RANKL. Furthermore, the expression of DC-STAMP, Itgav, 

Itga2, Itga5, Itgb1, Itgb3, and Itgb5, genes related to cell adhesion and fusion, was 

up-regulated by co-treatment with TGF-β. In particular, the regulatory expression of 

Itgav and Itgb5 in response to RANKL with or without TGF-β resembled that of 

MITF-E. Because MITF is involved in cell fusion in some cell systems, these results 

imply a role for MITF-E as an enhancer of osteoclastogenesis, and that 

RANKL-induced levels of both MITF-E mRNA and of MITF-dependent gene 

expression are enhanced by treatment with TGF-β. 
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INTRODUCTION 

Osteoclasts, which degrade bone matrix through the secretion of acid and various 

enzymes,1-3 are tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells 

formed by the fusion of precursor cells of monocyte-macrophage lineage.4, 5 Osteoclast 

differentiation is supported by osteoblasts and stromal cells, which produce factors 

affecting the number and activity of osteoclasts. Macrophage-colony-stimulating factor 

(M-CSF) and receptor activator of NF-κB ligand (RANKL) principally regulate 

osteoclastogenesis. M-CSF is required for the survival and proliferation of osteoclast 

precursor cells.4, 5 In contrast, RANKL stimulates osteoclast differentiation through 

regulatory expression of osteoclastogenesis-related transcription factors including 

NFATc1.4, 5 

 

In addition to these molecules, various cytokines, including transforming growth 

factor-β (TGF-β), are involved in osteoclastogenesis.3, 6, 7 TGF-β is a pluripotent growth 

factor that modulates cell differentiation and maturation in diverse types of cells.7, 8 

Although the effects of TGF-β on osteoclast differentiation depend on the cell culture 

system and the stage of osteoclast differentiation,7, 8 TGF-β consistently stimulates 

RANKL-induced osteoclastogenesis in differentiation models using RAW264.7 cells.9-11 

The detailed mechanism underlying the enhanced osteoclastogenesis by TGF-β in 

RAW264.7 cells is not, as of yet, fully characterized. 

 

The regulation of osteoclast differentiation and maturation is not determined only by 

secreted proteins from osteoblasts and stromal cells. Microphthalmia-associated 

transcription factor (MITF) is a transcription factor expressed in a tissue-specific 

manner.12, 13 MITF is also expressed in monocyte-macrophage lineage cells and 

osteoclasts.14 The Mitfmi allele produces an impaired bone phenotype. The bones of 

Mitfmi/Mitfmi mice present signs of osteopetrosis due to a lack of functional osteoclasts.14, 
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15 MITF regulates osteoclastogenesis in at least two steps. First, MITF up-regulates the 

expression of genes related to osteoclast activity such as TRAP,16 chloride channel 7,17 

cathepsin K (CtsK)18 and v-ATPase d2.19 Second, MITF governs osteoclast 

development through the regulation of cell fusion. DC-STAMP is required for efficient 

cell-cell fusion of osteoclasts,20 and transcription of DC-STAMP is positively regulated 

by MITF.21 The activity of MITF in stimulating cell fusion has also been shown in 

different cell types. MITF expression in myoblasts and nascent myotubes is essential for 

the maturation of myotubes via the up-regulation of integrin α9 (Itga9) expression.13 

 

MITF is expressed as a series of isoforms differing in their first exons and 

promoters.22-24 For most isoforms, the initial exon, which is isoform-specific exon, is 

spliced onto the later part of exon 1B and then to the common exons 2-9;22-24 at present 

nine MITF isoforms have been identified in mice, i.e., MITF-A, -B, -C, -D, -E, -H, -J, 

-M and -mc. MITF isoforms are expressed in a cell type-specific manner.25-28 

Transcriptional activities of MITF are overlapped but distinct among MITF isoforms 

depending on the target gene.29-33 

 

Here, we explored the role of MITF during osteoclastogenesis and the relationship 

between MITF-E isoform and the TGF-β pathway. Our results indicate that the MITF-E 

isoform is induced in differentiating osteoclasts, and the expression is required for 

efficient osteoclast formation. In addition, TGF-β enhances the expression level of 

MITF-E induced by RANKL and potentiates the formation of larger osteoclasts, 

possibly through the up-regulation of integrins. 

 

 

MATERIALS AND METHODS 

Materials 
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The following reagents were purchased: recombinant murine M-CSF and recombinant 

murine soluble RANKL from Peprotech (Rocky Hill, NJ, USA) and recombinant human 

TGF-β1 from R&D Systems (Minneapolis, MN, USA). 

 

Cell culture 

RAW264.7 cells were cultured in α-MEM with 6% heat-inactivated FBS, 100 U/ml 

penicillin and 100 µg/ml streptomycin at 37°C under a humidified 5% CO2 atmosphere. 

Primary osteoclasts were basically differentiated as described by Sankar et al.34 Bone 

marrow cells were obtained from the femurs of adult C57BL/6 mice and cultured for 3 

days in basal medium, i.e., DMEM with 10% heat-inactivated FBS, 100 U/ml penicillin 

and 100 µg/ml streptomycin, supplemented with M-CSF (50 ng/ml). Subsequently, the 

cells were cultured in the basal medium supplemented with M-CSF (25 ng/ml) in the 

presence or absence of recombinant soluble RANKL (50 ng/ml). The animal 

experiments were approved by the Animal Care and Use Committees of Azabu 

University. 

 

Histochemical detection of TRAP 

TRAP was detected by staining of fixed cells by use of an Acid Phosphatase, Leukocyte 

kit (Sigma, St. Louis, MO, USA) according to the manufacturer’s protocol. The cells 

were counter-stained with hematoxylin, and the number of cells with more than 3 nuclei 

was counted. In addition, the area of TRAP-positive cells was measured by the use of 

Image J software, and the number of TRAP-positive cells was counted for every cell 

size. 

 

Osteoclast function assay 

Osteoclast functionality was examined via a pit formation assay using 96-well Corning 

Osteo Assay plates (Corning Inc., Corning, NY, USA) according to the manufacturer's 
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protocol. The pits were observed via light microscopy. The pit area was measured using 

Image J software, and the total pit area per well was calculated. 

 

siRNA transfection 

The siRNA for MITF-E were prepared (Bonac Inc., Kurume, Japan). The nucleotide 

sequences used were 5’-GGUUACGUAUCUUGUCCACAG-3’ and 5’- 

GUGGACAAGAUACGUAACCUC-3’. As a control, siRNA for GFP was used.35 For 

RT-qPCR analyses, 20 pmol of siRNA was transfected into RAW264.7 cells seeded at a 

density of 2.5 × 104 cells in 24-well plates at 24 hours before transfection. For 

morphological evaluation, 4 pmol of siRNA was transfected in cells seeded at a density 

of 4 × 103 cells in 96-well plates. The transfection of siRNA was conducted by use of 

Lipofectamine RNAiMAX (Life Technologies, Carlsbad, CA, USA) according to the 

manufacturer’s protocol. At 8 hours after transfection, the cells were treated with 

RANKL (50 ng/ml) for 24 hours.  

 

RNA isolation and RT-quantitative PCR (RT-qPCR) 

Total RNA was isolated by use of QuickGene RNA cultured cell kit S (Wako, Osaka, 

Japan) in QuickGene-810 (Wako, Osaka, Japan), an automatic nucleic acid extraction 

system, according to the manufacturer's protocol. The concentration of RNA was 

determined from the absorbance at 260 nm. The cDNA was synthesized by use of High 

Capacity cDNA Reverse Transcription Kit with RNase Inhibitor (Life Technologies, 

Carlsbad, CA, USA), according to the manufacturer's protocol. The cDNA 

corresponding to 5 ng of total RNA was used as a template of real-time qPCR; qPCR 

was performed by use of SYBR Premix Ex-taq II (Takara, Otsu, Japan) in Thermal 

Cycler Dice Real Time System TP800 (Takara, Otsu, Japan), according to the 

manufacturer's protocol. The profile of qPCR is as follows: after denature for 30 sec at 

95°C, 40 cycles consisting of 5 sec at 95°C and 30 sec at 60°C. Subsequently, melting 
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curve analyses were performed by increasing temperature from 60°C to 95°C to verify 

that the PCR products are not primer dimers but single products. Gene transcript level in 

each sample was determined by standard curve method; the standard DNA was prepared 

as described below. The PCR primers used are presented in Table 1. The 5’-primers for 

MITF-A and -E were selected from the respective isoform-specific region; the 

specificity of the PCR primers was also verified by agarose gel electrophoresis of the 

PCR product and subsequent staining with ethidium bromide. The relative mRNA level 

was expressed as a ratio with the G3PDH mRNA level. When the gene expression level 

was below detection limit, it was assumed to express at the detection limit. 

 

Preparation of standard DNA 

To examine time-course changes in the expression of MITF isoforms, the number of 

cDNA molecules was precisely quantified as described previously.35 Briefly, the cDNA 

for MITF-A, MITF-E and G3PDH was individually amplified by PCR. The PCR 

product by use of Wizard SV Gel and PCR Clean-Up System (Promega, Madison, WI, 

USA). The amount of the PCR product was precisely quantified by use of a DNA 1000 

Lab Chip Kit (Agilent Technologies, Santa Clara, CA, USA) in an Agilent2100 

bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). The molecular number of 

the PCR product was calculated from the DNA mass and the molecular weight. Several 

levels of the PCR product were prepared by serial dilution, and used as standard 

solutions of qPCR. 

 

Statistical analysis 

All the experiments were basically performed 2 or more times; each experiment was 

done in triplicate. The data of a representative experiment are presented as the mean ± 

SE (n = 3). Comparisons between the cells treated with RANKL alone and the other 

cells, and comparisons between cells transfected with siRNA for GFP and those with 
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MITF-E siRNA were conducted using Student’s t-test. The results were considered 

statistically significant at P < 0.05. 

 

 

RESULTS AND DISCUSSION 

The changes in gene expression of MITF isoforms during osteoclastogenesis were 

examined (Fig. 1). Because RAW264.7 cells synthesize sufficient M-CSF,36 only 

exogenous RANKL is required for the formation of TRAP-positive multinucleated cells. 

In contrast, both M-CSF and RANKL must be exogenously supplied in primary bone 

marrow cell culture. The MITF-A isoform was expressed in both RAW264.7 cells (Fig. 

1A) and bone marrow cells (Fig. 1B). The expression level was relatively constant 

during osteoclastogenesis in both RAW264.7 cells and bone marrow cells, except for 

the higher expression of MITF-A in bone marrow cells on day 3 without RANKL (Fig. 

1B). In contrast, the gene transcript levels of MITF-E were increased within 1 day in 

response to treatment with RANKL in RAW264.7 cells (9-fold, Fig. 1C) and in bone 

marrow cells (1000-fold, Fig. 1D). RANKL-induced MITF-E expression was gradually 

decreased with incubation days in RAW264.7 cells, and the effect of RANKL treatment 

was not significant on day 3. In contrast, the up-regulation of MITF-E with treatment 

with M-CSF and RANKL was maintained for at least 3 days in bone marrow cells. 

Treatment with M-CSF alone had no effects on MITF-E expression in bone marrow 

cells (data not shown). Significant expression of the other MITF isoforms was not 

detected (data not shown). Lu et al. showed up-regulation of MITF-E expression in 

response to RANKL treatment by semi-quantitative RT-PCR analyses.37 In the present 

study, we quantitatively reveal specific induction of MITF-E mRNA during 

osteoclastogenesis. 

 

The role of induced MITF-E in the formation of osteoclastic cells was evaluated next. 
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RAW264.7 cells were transfected with MITF-E siRNA prior to RANKL treatment. 

MITF-E siRNA potentiated a decrease in the number of TRAP-positive multinucleated 

cells (Fig. 2A and B), suggesting a positive role for the induced MITF-E in 

osteoclastogenesis. The MITF-E gene transcript level was reproducibly decreased by 

transfection with the siRNA (Fig. 2C, data not shown). MITF-E isoform-specific region 

is only 139 bp. We designed possible 2 siRNAs for MITF-E; the knockdown efficiency 

and reproducibility of the knockdown is better for the siRNA used in this study (data not 

shown), although nevertheless the inhibition of MITF-E expression is limited. The 

knockdown of MITF-E gene did not affect the expression level of MITF-A (Fig. 2D). 

Transfection of siRNA for MITF-E inhibited RANKL-induced expression of TRAP and 

CtsK, genes related to osteoclast activity,16, 18 on day 3 (Fig. 2E and F). Lu et al. also 

showed the blockage of MITF-E gene induction results in the impaired formation of 

osteoclasts;37 we also observed the similar results. All these results suggest that transient 

induction of MITF-E by RANKL is essential for efficient osteoclastogenesis.37 

 

Next, the effects of TGF-β on osteoclastogenesis were examined in RAW264.7 cells. 

Treatment with TGF-β alone did not induce formation of TRAP-positive multinucleated 

cells, but TGF-β increased the number of TRAP-positive multinucleated cells induced 

by RANKL (Fig. 3A and B), which was consistent with previous results.9-11 We also 

noticed that larger TRAP-positive multinucleated cells were formed by co-treatment 

with TGF-β compared with the treatment with RANKL alone. Chin et al.11 described the 

TGF-β-induced formation of giant osteoclasts but did not quantitatively analyze them. 

To characterize the cell size in detail, the number of TRAP-positive multinucleated cells 

was counted for every cell size (Fig. 3C). The proportion of cells with areas > 1 × 104 

and < 2 × 104 µm2 was significantly increased by TGF-β treatment, whereas the 

proportion of cells with areas < 5 × 103 µm2 tended to be decreased, indicating that 

TGF-β accelerates the formation of larger TRAP-positive multinucleated cells. TGF-β 
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also increased bone resorption activity, and RANKL-induced pit formation was 

enhanced by the co-treatment with TGF-β (Fig. 3D and E). The present results suggest 

that TGF-β acts not only as an enhancer of osteoclast formation induced by RANKL but 

also as an accelerator of mature osteoclast formation through cell fusion of nascent 

osteoclasts. 

 

The molecular basis of enhanced osteoclastogenesis by TGF-β was then explored. The 

expression of NFATc1, which is involved in the onset of osteoclastogenesis,38, 39 was 

increased within 1 day after treatment with RANKL, and TGF-β enhanced 

RANKL-induced NFATc1 expression (Fig. 4A). Similarly, RANKL-induced MITF-E 

expression was further up-regulated by TGF-β (Fig. 4B). The TGF-β treatment also 

significantly increased gene transcript level of MITF-A, but the extent of increase in the 

expression was relatively small (~2-fold, Fig. 4C). In accordance with the enhancement 

of expression related to the triggering of osteoclastogenesis, TGF-β further increased 

the expression of TRAP and CtsK on day 3 (Fig. 4D and E). 

 

The expression of the genes involved in cell fusion was further examined. DC-STAMP 

is a master regulator of cell fusion in osteoclast formation.40, 41 The expression of 

DC-STAMP was induced by RANKL treatment, and TGF-β slightly but significantly 

enhanced the RANKL-induced expression (Fig. 5A). 

 

We evaluated the gene transcript levels of integrins and ADAMs. Integrins and ADAMs 

are also involved in the adhesion and fusion of monocyte/macrophage-lineage cells.41, 42 

Several integrin proteins, such as integrin αV (Itgav), α2 (Itga2), α5 (Itga5), β1 (Itgb1) 

and β5 (Itgb5), are expressed in human osteoclasts.43 The forced expression of Itgav 

stimulated the formation of TRAP-negative multinucleated cells in RAW264.7 cells, 

and RANKL changed these cells to TRAP-positive cells.11 Anti-Itga9 antibody partly 
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inhibited M-CSF and RANKL-induced osteoclast formation.44 Bone marrow cells 

prepared from integrin β3 (Itgb3)-null mice are less differentiated into osteoclasts in 

vitro.45 Furthermore, the down-regulation of ADAM8 and ADAM12 expression inhibits 

osteoclast formation as well as cell fusion of macrophages.46, 47 The expression levels of 

Itgav, Itga2, Itga5, Itgb1, Itgb3 and Itgb5 were significantly higher in cells treated with 

RANKL and TGF-β than in cells treated with RANKL alone (Fig. 5B-G). In contrast, 

the expression of ADAM8 and ADAM12 was not increased by TGF-β treatment (Fig. 

5H and I). RANKL treatment significantly increased the expression of Itgav, Itgb5 and 

ADAM12 (Fig. 5B, G and I). The changes in the expression level of Itgav and Itgb5 in 

response to treatment with RANKL with or without TGF-β resembled those of MITF-E 

expression; RANKL increased the expression (Fig. 4B), but the extent of the increased 

gene expression was much smaller than that of the increase following co-treatment with 

TGF-β. 

 

In the present study, DC-STAMP expression was increased by RANKL treatment, 

which coincides with the induction of MITF-E but not MITF-A. Previous studies 

showed that transcriptional activation of DC-STAMP, a master regulator of cell fusion 

during osteoclastogenesis, is regulated by MITF,21, 48 although isoform of MITF 

responsible for the cell fusion has not been identified. It is possible that one of the roles 

of MITF-E induces transcriptional activation of DC-STAMP. However, role of MITF-E 

expression in response to treatment with RANKL and TGF-β is likely to be distinct 

from that with RANKL alone; the extent of further increase in DC-STAMP expression 

in response to TGF-β was relatively smaller than that in MITF-E expression. 

Considering that TGF-β formed larger osteoclasts with more nuclei, the further 

increased MITF-E by TGF-β might regulate the transcription of gene(s) other than 

DC-STAMP, leading to acceleration of cell fusion. 
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Integrins are involved in cell fusion as described above.11, 13 In addition, integrin α4 

(Itga4) expression is induced by MITF in hematopoietic stem/progenitor cells,49 and the 

regulatory expression of Itga4 depends on the isoform of MITF.33 Thus, we speculate 

that TGF-β-mediated up-regulation of MITF-E expression is responsible for the 

formation of larger osteoclasts through increased expression of integrins; especially, the 

regulatory expression of Itgav and Itgb5 may be important, because changes in 

expression of MITF-E paralleled to those of Itgav and Itgb5 in response to treatment 

with RANKL with or without TGF-β. The present results suggest the critical role of 

DC-STAMP and integrins in osteoclastogenesis induced by RANKL and in osteoclast 

maturation by TGF-β, respectively; MITF-E may regulate both processes. 

 

The present study extends the knowledge of the expression and role of MITF-E 

expression in developing osteoclasts. We previously demonstrated the functional 

interaction between MITF and the TGF-β pathway. TGF-β enhances MITF-E-mediated 

transcription,30, 31 whereas the MITF-M isoform negatively regulates TGF-β-mediated 

signaling.50 In the present study, additional regulation of MITF activity by the TGF-β 

pathway, i.e., enhancement of MITF expression by TGF-β, was clarified. Recently, it 

was shown that TGF-β represses the transcription of MITF-M in melanoma cells.51 

Taken the present results with the results of a previous study51 together, MITF 

expression may be regulated by TGF-β in an isoform- or cell type-dependent manner or 

both. 

 

Balancing bone resorption and bone formation is important for bone and mineral 

homeostasis. Differentiation into multinucleated TRAP-positive cells resulting from the 

fusion of monocyte/macrophage lineage cells is a critical step in determining osteoclast 

activity. Therefore, fine-tuning of osteoclastogenesis through the regulation of TGF-β 

activity is likely to maintain preferable bone mass. Further studies are needed to clarify 
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the molecular mechanisms underlying the regulation of MITF-E expression by TGF-β, 

osteoclast formation and maturation by MITF-E and the regulatory expression of 

integrins by MITF-E and TGF-β. 
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Figure legends 

Figure 1. MITF-E is induced during osteoclastogenesis 

Gene transcript levels of the MITF-A isoform (A and B) and MITF-E isoform (C and D) 

were quantified by RT-qPCR during osteoclastogenesis in RAW264.7 macrophage cells 

(A and C) and primary cultures of bone marrow cells (B and D). (A and C) RAW264.7 

cells were treated with or without RANKL (100 ng/ml) for 3 days. (B and D) Bone 

marrow cells were treated with M-CSF (50 ng/ml) for 3 days. Non-adherent cells were 

subsequently treated with M-CSF (50 ng/ml) with or without RANKL (100 ng/ml) for 

an additional 3 days. The expression of the MITF isoforms was normalized to G3PDH 

expression (n = 3). **: P < 0.01. 

 

Figure 2. MITF-E expression is required for osteoclastogenesis 

RAW264.7 cells were transfected with MITF-E siRNA or GFP, or treated with RNA 

transfection reagent only (mock). At 8 hours after transfection, the cells were treated 

with or without RANKL (100 ng/ml) for 3 days. (A) The cells were stained for TRAP 

and counter-stained with hematoxylin. A representative result is shown. *: 

TRAP-positive multinucleated cell. The bar in each photograph indicates 100 µm. (B) 

The number of TRAP-positive multinucleated cells in a well of 96-well plate was 

counted (n = 3). (C-F) The gene transcript level of MITF-E (C) and MITF-A (D) on day 

1, and that of TRAP (E) and CtsK (F) on day 3 were quantified by RT-qPCR, and the 

expression was normalized to G3PDH expression. The expression in cells treated with 

siRNA for GFP was set to 1 (n = 3). * and **: P < 0.05 and P < 0.01, respectively. 

 

Figure 3. TGF-β enhances RANKL-induced osteoclastogenesis 

RAW264.7 cells were pre-treated with or without TGF-β1 (100 pM) for 12 hours, 

followed by the co-treatment with or without RANKL (100 ng/ml) for 3 days. (A) Cells 

were stained for TRAP and counter-stained with hematoxylin. A representative result is 
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shown. *: TRAP-positive multinucleated cell. The bar in each photograph indicates 100 

µm. (B) The total number of TRAP-positive multinucleated cells in a well of 96-well 

plate was counted (n = 3). (C) The number of TRAP-positive multinucleated cells 

induced by RANKL alone or RANKL plus TGF-β was counted for every cell size. The 

percentage of the respective TRAP-positive multinucleated cell number to the total 

TRAP-positive multinucleated cell number was calculated (n = 3). (D) Osteoclast 

functionality was evaluated by pit formation assays (n = 3). A representative result is 

shown. The bar in each photograph indicates 100 µm. (E) The total area of pit in a well 

of 96-well plate was measured (n = 3). **: P < 0.01. 

 

Figure 4. TGF-β enhances expression of MITF-E and genes related to 

osteoclastogenesis 

RAW264.7 cells were pre-treated with or without TGF-β1 (100 pM) for 12 hours, 

followed by the co-treatment with RANKL (100 ng/ml) for 3 days. The gene transcript 

levels of NFATc1 (A), MITF-E (B) and MITF-A (C) on day 1 and TRAP (D) and CtsK 

(E) on day 3 were quantified by RT-qPCR. The expression was normalized to G3PDH 

expression, and the expression in cells treated without RANKL and TGF-β1 was set to 

1 (n = 3). **: P < 0.01. 

 

Figure 5. TGF-β increases expression of genes related to cell adhesion and 

fusion 

RAW264.7 cells were pre-treated with or without TGF-β1 (100 pM) for 12 hours, 

followed by the co-treatment with RANKL (100 ng/ml) for 3 days. The gene transcript 

levels of DC-STAMP (A), ItgaV (B), Itga2 (C), Itga5 (D), Itgb1 (E), Itgb3 (F), Itgb5 

(G), ADAM8 (H) and ADAM12 (I) on day 3 were quantified by RT-qPCR. The 

expression was normalized to G3PDH expression, and the expression in cells treated 

without RANKL and TGF-β1 was set to 1 (n = 3). * and **: P < 0.05 and P < 0.01, 
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respectively. 
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Table 1. Oligonucleotide PCR primers for RT-qPCR 

 Oligonucleotide GenBank 
 5’-primer 3’-primer accession number 
MITF: 
 MITF-A 5’-GAGGAGTTTCACGAAGAACC-3’ 5’-GCTGGCGTAGCAAGATGCGTGA-3’ AB_009397 
 MITF-E 5’-CCAGATACACAGACAGTCACAG-3’ 5’-GCTGGCGTAGCAAGATGCGTGA-3’ AF_465624 
 
Osteoclast-related genes: 
 NFATc1 5’-TCCAAAGTCATTTTCGTGGA-3’ 5’-CTTTGCTTCCATCTCCCAGA-3’ NM_016791 
 TRAP 5’-GCCAAAGAGATCGCCAGAAC-3’ 5’-GAAGTAGAAATTGTCCCCCAGAGA-3’ NM_007388 
 CtsK 5’-TGGACTGTGTGACTGAGAATTATGG-3’ 5’-CCGTTCTGCTGCACGTATTG-3’ NM_007802 
 
Cell fusion-related genes: 

DC-STAMP 5’-CGAAGCTCCTTGAGAAACGA-3’ 5’-GGACTGGAAACCAGAAATGAA-3’ AB_109560 
Itgav 5’-GGTGTGGATCGAGCTGTCTT-3’ 5’-CAAGGCCAGCATTTACAGTG-3’ NM_008402 
Itga2 5’-ACTTCCGGCATACGAAAGAAT-3’ 5’-TCAGCCAGCAGGTGATGTTA-3’ NM_008396 
Itga5 5’-CACCATTCAATTTGACAGCAA-3‘ 5’-TCCTCTCCCTTGGCACTGTA-3’ NM_010577 
Itgb1 5’-ATGCAGGTTGCGGTTTGT-3’ 5’-CATCCGTGGAAAACACCAG-3’ NM_010578 
Itgb3 5’-GTGGGAGGGCAGTCCTCTA-3’ 5’-CAGGATATCAGGACCCTTGG-3’ NM_016780 
Itgb5 5’-TGCCACCTGCCAAGATGGCATA-3’ 5’-CACGGACACTTCAAAGGATG-3’ NM_010580 
ADAM8 5’-AAAGGCTCCGAGACAAATCC-3’ 5’-TTGGAGAGCCCCGAGATAG-3’ NM_007403 
ADAM12 5’-CAGAGCATCCCAGCCAAG-3’ 5’-CAGGCTGAGGATCAGGTCTC-3’ NM_007400 
 

Housekeeping gene: 
  G3PDH           5’-CGTGTTCCTACCCCCAATGT-3’    5’-TGTCATCATACTTGGCAGGTTTCT-3’ NM_008084 
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