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Abstract

The expression of uncoupling protein (UCP1) is up-regulated in mammalian brown
adipocytes during cold exposure. However, a previous study revealed that UCP1 was
highly expressed in the liver of common carps, and that the hepatic expression of UCP1
was down-regulated during cold exposure. The present study examined the effects of
temperature on the recovery of UCP1 expression levels and the expression of genes
involved in UCP1 transcription in the livers and kidneys of common carps. The hepatic
and renal expression of UCP1 was decreased by acclimation from 22°C to 8°C, and a
subsequent increase in the water temperature from 8°C to 28°C recovered the renal, but
not hepatic expression of UCPL1l. Changes in the expression of peroxisome
proliferator-activator receptor (PPAR) v, retinoid X receptor (RXR) o and PPARy
co-activator (PGC)-1a., genes that are involved in the expression of UCP1 in mammals,
with ambient temperature indicated that the expressions of PPARy and RXRa., but not
expression of PGC-1la was decreased in response to cold exposure; the hepatic and
renal expressions of PPARy and RXRa. recovered to basal levels with the cessation of
cold exposure, although this was not complete for hepatic expression of PPARy. Cold
exposure increased the expressions of PPARB/6 and NRF1 both in the liver and kidney,
as well as renal PGC-1a expression, and subsequent increases in the water temperature
from 8°C to 28°C decreased these expression levels. The results of the present study
indicate that a unique regulatory mechanism is responsible for the hepatic and renal
expression of carp UCP1 during cold exposure and subsequent reacclimation, and is

distinct from that in murine brown adipocytes.



Introduction

Uncoupling protein (UCP) 1 increases proton leakage from the mitochondrial inner
membrane, resulting in a decreased proton motive force, which leads to increased
oxygen consumption and heat generation without the concomitant generation of ATP.
The restricted expression of UCP1 in mammalian brown adipocytes located in brown
and white fat renders these cells responsible for non-shivering heat production (Cannon

and Nedergaard, 2004).

The expression of UCP1 and its orthologs has been detected not only in placental
mammals, but also in ectothermic vertebrates (Gesta et al., 2007). UCP1 was identified
in the common carp (Cyprinus carpio), an ectothermic vertebrate, based on the
conserved synteny within the mammalian lineage (Jastroch et al., 2005). It was found to
be highly expressed in the liver and to a lesser extent in the kidney. The expression of
UCPL1 could not be detected in carp adipose tissues, which suggested that the role of
UCPL1 in energy expenditure in fish differed from that in placental mammals (Jastroch et

al., 2005).

The expression of UCP1 in murine brown fat was previously shown to be up-regulated
in response to cold exposure (Puigserver et al., 1998; Barbatelli et al., 2010), whereas
hepatic UCP1 transcript levels were lower in the common carp acclimated at 8°C for 4
weeks than in those kept at 20°C (Jastroch et al., 2005). Similar responses were
observed in gilthead sea bream (Sparus aurata); expression levels of hepatic UCP1
were lower in winter than in summer and fall (Bermejo-Nogales et al., 2010). The
mechanism underlying the regulation of fish UCP1 expression currently remains
unknown. In addition, changes in UCP1 expression upon recovery from cold exposure
have not experimentally been examined. Furthermore, studies are needed to elucidate

the relationship between the expression of UCP1 and non-shivering heat production in



ectothermic vertebrates.

In murine brown fat, the transcription of UCP1 is regulated by several key molecules
including the tissue-restricted transcription factors peroxisome proliferator-activator
receptor (PPAR) o, /6 and vy, thyroid hormone receptor (TR) o, and the
transcriptional co-activator PPARy co-activator (PGC)-1a. (Puigserver et al., 1998;
Barbera et al., 2001; Cannon and Nedergaard, 2004; Cao et al., 2004; Komatsu et al.,
2010; Seebacher and Glanville, 2010). In addition, PGC-13, a molecule structurally
related to PGC-1a, is known to be highly expressed in murine brown fat (Lin et al.,
2002; Seale et al., 2007). PPAR and TR heterodimerize with retinoid X receptor (RXR),
and the formed complex regulates transcription of target genes including UCP1 and
PGC-1 (Cannon and Nedergaard, 2004; Evans and Mangelsdorf, 2014). Furthermore, a
transcription factor, cAMP responsive element binding protein (CREB) is
phosphorylated and activated by protein kinase A, which leads to stimulation of UCP1
transcription (Cannon and Nedergaard, 2004). The expression levels of nuclear
respiratory factor 1 (NRF1), which stimulates mitochondrial biogenesis by interacting
with PGC-1a (Scarpulla, 2008), have been closely related to those of UCP1, PPARS
and PGC-1la during cold exposure in murine brown fat (Seebacher and Glanville,

2010).

We hypothesized that regulation of carp UCP1 expression is similar to that established
in murine UCP1 expression, although response to cold exposure is different between
common carps and mice. As the first step to clarify regulation of fish UCP1 expression,
we isolated not only 5’ flanking region of carp UCP1 gene but also coding region of
carp mRNA for several molecules involved in regulation of murine UCP1 expression
partially, because the information has not yet been available yet. By use of the

information, we examined the effects of ambient temperature on expression levels of



UCP1 and the candidates to regulate UCP1 expression in common carps.

Materials and methods

Animals

A total of 30 common carps aged 7 months were used. These carps were fed commercial
pellets ad libitum with a 12-h light/12-h dark cycle. They were kept in a
temperature-controlled recirculating water system maintained at 22°C for at least 2
weeks (day 0). The water temperature was gradually lowered to 8°C over 3 days. After
14 days at 8°C (days 3-17), the water temperature was gradually returned to 28°C over
3-5 days and kept at 28°C for 14 days (days 21-35). Carps were sacrificed on days 0, 17,

and 35, and the livers and kidneys were removed.

RNA isolation and RT-quantitative real-time PCR

RNA isolation and reverse transcription (RT)-quantitative real-time PCR (gqPCR)
analyses were performed as described previously (Murakami et al., 2008; Asai et al.,
2014). Total RNA was isolated from the livers and kidneys of carps using QuickGene
RNA tissue kit S (Wako, Osaka, Japan) in QuickGene-810 (Wako, Osaka, Japan), an
automatic nucleic acid extraction system, according to the manufacturer’ s protocol. The
concentration of RNA was determined from absorbance at 260 nm. In RT-gPCR
analyses, cDNA was synthesized using the high capacity cDNA reverse transcription kit
with an RNase inhibitor (Life Technologies, Carlsbad, CA, USA), according to the
manufacturer’s protocol. The cDNA corresponding to 5 ng of total RNA was used as a
template of gPCR; the qPCR was performed using KAPA SYBR FAST Universal gPCR
Master Mix (Kapa Biosystems, Boston, MA, USA) in Thermal Cycler Dice Real Time
System TP800 (Takara, Otsu, Japan), according to the manufacturer’s protocol. The

gPCR profile was as follows: after denaturing for 30 s at 95 °C, 40 cycles consisted of 5



s at 95 °C and 30 s at 60 °C. The oligonucleotide primers for qPCR are shown in Table
1. After 40 cycles of RT-qPCR, the dissociation (melting) curve of the products was
examined by changes in the ramp temperature from 60°C to 95°C. Each sample showed
a single peak, suggesting the expected PCR products. The mRNA levels were expressed
relative to EF1la. mRNA levels, and the expression level in the liver of control carps was

set at 100.

Isolation of 5’ flanking region of UCP1 gene from carps

The 5’ flanking region of carp UCP1 gene was isolated by two rounds of PCR; we
designed 4 PCR primers. Because of lack of information on 5’ flanking region of carp
UCP1 gene, forward primers were designed on the basis of information of zebrafish
UCP1 gene; 5’-gttgtagttttggtttattacacaagg-3’ named as primer A that corresponds to nt
-4500 to nt -4474 of zebrafish UCP1 gene (GenBank accession number NC_007112)
and 5’-taaagtcctgctgcagtggaaacag-3’ as primer B that is nt -3000 to nt -2976 of
zebrafish UCP1 gene. The reverse primers were designed based on the carp UCP1 gene
(AY461434), i.e., 5’-gatggagtgacaggatgatgcctcgtg-3° (nt +45 to nt +19) and
5’-ctgacagctgtgattgagttcctctg-3” (nt +74 to nt +49) as primer C and primer D,
respectively. The first round PCR was performed using genomic DNA, which was
isolated from carp muscle cells, as a template DNA as well as primers A and D; PCR
was conducted in a total volume of 50 uL by use of PrimeSTAR GXL DNA Polymerase
that is a high fidelity polymerase (TaKaRa). The PCR profile consisted of 35 cycles of
denature for 10 sec at 98°C, annealing for 15 sec at 55°C and extension for 4 min at
68°C. The second round of PCR re-amplified using one-fiftieth of the PCR products as
the template, and primers B and C with the same PCR profile. The products of the
nested-PCR were electrophoresed in agarose gels, followed by ethidium bromide
staining and visualization under ultraviolet light. A significant band was detected at

~2800 bp, which was within the range of expected size. The band was excised from the



gels, and the nucleotide sequence was determined by direct sequencing and deposited in
GenBank (LC003596). To examine the validity of sequence, PCR was performed by use
of genomic DNA as a template DNA and PCR primers spanning nt -434 to nt -412
(5’-tttctgagcetectttaatgcatc-3’) and nt +930 to nt +908 (5’-gcggtgtccagagggaaggtgac-3’),
and the nucleotide sequence of PCR product was confirmed by direct sequencing. The 5’
flanking region of carp, human, mouse, rat and zebrafish UCP gene was compared by

use of Pairwaise Sequence Alignment of EMBOSS (http://emboss.open-bio.org/).

Isolation of PGC-1a, PGC-18, PPARB/5, TRa, RXRa, CREB and NRF1 mRNA
from carp livers

To isolate PGC-1a, PGC-1p, PPARB/5, TRa, RXRa, CREB and NRF1 cDNA from
carp livers, 1 ug of the recovered RNA was treated with RNase-free DNase |
(Invitrogen) to remove residual DNA. RNA was subsequently reverse-transcribed in a
21 ul volume reaction using the oligo(dT) primer and Superscriptlll First-Strand
Synthesis System for RT-PCR (Invitrogen) to generate first-strand cDNA (Murakami et
al., 2008).

Based on the nucleotide sequence of the PGC-la mRNAs of goldfish (Carassius
auratus, FJ710611 and EU426842), zebrafish (Danio rerio, FJ710604), grass carp
(Ctenopharyngodon idella, JN195739), and golden shiner (Notemigonus crysoleucas,
FJ710606), the following PCR primers were designed to isolate PGC-la. cDNA:
5’-atggcgtgggacaggtgtaatc-3’ and 5’-tcaaaggaagtggcaagatggt-3’. To isolate PGC-13
MRNA, the following PCR primers were designed based on the nucleotide sequence of
zebrafish PGC-13 (XM_003199895): 5’-atggcggactgcgcttcactgttagatg-3’  and
5’-agacccccgactcegtectcaacaat-3’. To isolate PPARB/6 mRNA, the PCR primers,
5’-cagtgcaccacagtggaaactg-3’ and 5’-gaatgccatcctgaatctgcetc-3’, were designed based on

the nucleotide sequence of zebrafish PPARSb (NM_131468 and XM_683192). The



MRNA of TRa was isolated on the bases of nucleotide sequences of goldfish TRal
(AY973629) and TRa2 (DQ172902) and zebrafish TRaa (NM_131396) by use of
5’-gcatcacatgtgagggctgcaa-3’ and 5’-tctccatacagcagcctttcag-3’ as PCR primers. The
MRNA of RXRa was isolated on the bases of nucleotide sequences of goldfish RXRa
(AY197562) and zebrafish RXRaa (NM_001161551 and XM_001923838) by use of
5’-cagaagtgtttggccatggge-3° and 5’-gcaaaccttccaggttgttcag-3° as PCR primers. The
MRNA of CREB was isolated on the bases of nucleotide sequences of goldfish CREB1
(AMB886438) and zebrafish CREB1 (NM_001161551 and XM_001923838) by use of
5’-caggagcagatgtccagcagg-3’ and 5’-gcatactgcaggatggtggtg-3’ as PCR primers. As for
NRF1 mRNA, the following PCR primers were designed based on the nucleotide
sequence of zebrafish NRF1 (XM_005164709) and Japanese pufferfish (Takifugu
rubripes) NRF1-like isoform 1 (XM_003972802): 5’-caggcccagctccgagegttcat-3” and
5’-ggccacagcctgegtggectct-3’. Using these primers, cDNA was isolated from common
carp livers, and agarose gel electrophoresis of the PCR products indicated bands with an
expected size of ~920 bp for PGC-1a, ~350 bp for PGC-18, ~270 bp for PPARB/S,
~440 bp for TRa,, ~450 bp for RXRa, ~440 bp for CREB and ~560 bp for NRF1. The

nucleotide sequence of the PCR product was determined by direct sequencing.

Statistical analyses

Data are expressed as the mean + SE. Data were log-transformed to provide an
approximation of a normal distribution before analysis. Differences between groups in
each tissue were analyzed by Tukey’s multiple comparison test. P < 0.05 was

considered significant.

Results

The expression of UCP1 was evaluated in the livers and kidneys of common carps



acclimatized at various temperatures (Fig. 1). A decrease in the water temperature from
22°C to 8°C significantly reduced the expression of UCP1 in the liver and kidney within
14 days. Although increasing the water temperature from 8°C to 28°C did not change
the hepatic expression of UCP1, the renal expression of UCP1 returned to basal levels.
Consistent with previous findings (Jastroch et al., 2005), the expression level of UCP1

was higher in the liver than in the kidney.

Expression of mammalian UCP1 gene is transcriptionally regulated (Cannon and
Nedergaard, 2004). We determined nucleotide sequence of 5’ flanking region of carp
UCP1 gene, because it has not yet been available. Whole genome sequence of common
carps is not known, and, therefore, we isolated 2634 bases upstream sequence of the
putative transcriptional initiation site of carp UCP1 through the nested-PCR strategy in
reference to the nucleotide sequence of 5’ flanking region of zebrafish UCP1 gene (Fig.
2A). When genomic DNA from three carps was individually used as the template DNA,
comparable results were obtained (data not shown). The validity of the isolated
nucleotide sequence was also determined by the expected amplification of genomic
DNA using PCR primers designed within the region of determined nucleotide (data not

shown).

The nucleotide sequence indicated the lack of the first 18 bases
(5’-tggatccaaagaattcgg-3’) within 5 untranslated region of carp UCP1 mRNA in
GenBank accession number AY461434, and three nucleotide substitutions, T, C and T
instead of A, G and G of the 20th, 22nd and 25th nucleotide, respectively. We performed
RT-PCR using liver cDNA as the template DNA and the first 22 bases of AY461434
(primer E: 5’-tggatccaaagaattcggcacg-3’) as the forward primer and primer for the
RT-gPCR as the reverse primer, and found no band (Fig. 2B, lanes 1-3). In contrast,

when the first 22 bases overlapping to AY461434 determined in this study (primer F:



5’-ctccagtcatcatcctgtcact-3’), i.e., corresponding region spanning the 19th nucleotide to
the 40th nucleotide of AY461434, were used as the forward primer, we detected the
PCR product with the expected size (Fig. 2B, lanes 5-7). Therefore, we conclude that
the 19th nucleotide of AY461434 is the putative transcriptional initiation site in
common carps used in this study, and designated as nt +1; the difference of strain may
be related to the difference of nucleotide sequence near 5’ untranslated region of carp
UCP mRNA. The nucleotide sequence has limited homology with that of 5° flanking
region of human, mouse and rat UCP1 gene (Fig. 2C). The less homology of the

nucleotide sequence was also detected between carps and zebrafish.

Previous studies identified and characterized the brown adipose tissue (BAT)-specific
enhancer region (~ 220 bp) around nt -2500 upstream of murine UCP1 transcriptional
initiation site (Kozak et al., 1994; Sim and Kozak, 2002). The region plays a critical role
in the regulation of UCP1 that includes responsive element to PPAR, TR and CREB
(Cannon and Nedergaard, 2004). Homology search indicated no similarity between the
murine BAT-specific enhancer and the carp UCP1 promoter (data not shown). In
addition, there was no consensus responsive element to PPAR, TR and CREB within the
carp UCP1 promoter, i.e., direct repeats (DR) 1 and 2 (core sequence 5’-agg(a/t)ca-3’
separated by one and two base-pairs, respectively) for PPAR (Evans and Mangelsdolf,
2014), DR-4 for TR (Evans and Mangelsdolf, 2014) and cAMP response element
(5’-tgacgtca-3’) for CREB (Montminy, 1997). We also searched specific sequence
motifs present in the murine BAT-specific enhancer region, and found two half-site
consensus sequence of CRE (5’-cgtca-3” and its complementary sequence 5’-tgacg-3’,
Fig. 2A, underline), two contiguous TTCC motifs within brown adipocyte-regulatory
element 1 (BRE-1, Fig. 2A, box), and two possible NF-E2 sites (Fig. 2A, double

underline).
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The expression of genes involved in the expression of UCP1 in mammals (Puigserver et
al., 1998; Barbera et al., 2001; Cannon and Nedergaard, 2004; Cao et al., 2004;
Komatsu et al., 2010; Seebacher and Glanville, 2010) was examined next. Sequence
information for common carp PGC-1a, PGC-1B, PPARB/3, TRa, RXRa, CREB and
NRF1 cDNAs was unavailable; thus, we isolated gene transcripts from the liver of the
common carp. The partial amino acid sequences deduced from the nucleotide sequences
exhibited sequence similarity to fish PGC-1a, PGC-18, PPARB/3, TRa, RXRa, CREB
and NRF1, respectively (Fig. 3), which suggested that these are orthologs of respective
genes in common carps. Since fish PGC-1a, PGC-13, PPARB/5, TRa, RXRa, CREB
and NRF1 consist of ~878, ~495, ~517, ~421, ~343, ~318 and ~514 amino acids,
respectively, the gene transcripts clarified in the present study are expected to
correspond to approximately one-fifth of PGC-1f and PPARB/3, one-third of PGC-1a,
TRa and NRF1, and half of RXRa and CREB of the coding regions.

Unlike the hepatic and renal expression of UCP1, the expression level of PGC-1a did
not decrease with a reduction in the water temperature from 22°C to 8°C; the renal
expression of PGC-la was increased by cold exposure (Fig. 4A). The hepatic
expression of PGC-1a remained unchanged by increases in the water temperature from
8°C to 28°C, whereas the cold-induced expression of renal PGC-1a returned to basal
levels with increases in the water temperature from 8°C to 28°C. Decreasing the water
temperature from 22°C to 8°C decreased the expression of PGC-1p in the kidney, but
not significantly in the liver (Fig. 4B). The renal expression of PGC-1p tended to return

to basal levels with increases in the water temperature from 8°C to 28°C.

The hepatic expression of PPARa was unaffected by cold exposure, but decreased with
increases in the water temperature from 8°C to 28°C (Fig. 5A). In contrast, changes in

the water temperature did not affect the renal expression of PPARa. Expression of
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hepatic and renal PPARB/5 was increased by cold exposure, and the increase in water
temperature from 8°C to 28°C decreased the expressions; hepatic expression levels at
28°C were lower than those at 22°C (Fig. 5B). Both the hepatic and renal expression of
PPARy was markedly reduced with decreasing water temperature from 22°C to 8°C, and
the cessation of cold exposure returned to these expression levels back to basal levels;
however, hepatic expression was not completely recovered (Fig. 5C). Expression of
renal TRa was decreased during the cold exposure, and the cessation of cold exposure
further decreased the expression; hepatic expression of TRa was also decreased by the
increase in water temperature from 8°C to 28°C (Fig. 5D). Similar to the regulatory
expression of PPARy, RXRa expressions in the liver and kidney were significantly
decreased during cold exposure, and the re-warming resulted in return to the basal

expression levels (Fig. 5E).

Cold exposure did not affect expression levels of hepatic and renal expression of CREB,
but the increase in water temperature from 8°C to 28°C significantly decreased renal
CREB expression (Fig. 6A). The cold exposure increased the hepatic and renal
expression levels of NRF1, and an increase in the water temperature from 8°C to 28°C
decreased expression levels; expression levels at 28°C were lower than those at 22°C

(Fig. 6B).

Discussion

This study revealed six aspects of the regulation of the hepatic and renal expression of
UCPL1 in carps in response to changes in ambient temperature 1) both the hepatic and
renal expression of UCP1 was down-regulated by cold exposure, 2) expression levels in
the kidney, but not in the liver recovered with the cessation of cold exposure, 3) water

temperature-related changes in the renal expression of UCP1 paralleled those in the
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renal expression of PPARy and RXRa, 4) the cold-induced down-regulation of hepatic
PPARYy partially recovered with the cessation of cold exposure, 5) contrary to hepatic
PPARy and RXRa. expressions, expressions of hepatic and renal PPARB/6 and NRF1
were up-regulated during cold exposure, and the cessation of cold exposure returned the
expression, and 6) the expression of hepatic and renal PGC-1a. was not decreased by
cold exposure. Of these, the down-regulation observed in the hepatic expression of
UCP1 during cold exposure was consistent with previous findings (Jastroch et al.,
2005); considering that the common carp is an ectothermic animal, down-regulation of
UCP1, a drive engine of non-shivering thermogenesis, during cold exposure is
reasonable. The other 5 points were not evaluated in the study by Jastroch et al. (2005).
Our results confirm that regulatory expression of carp UCP1 during cold exposure and
subsequent recovery from cold exposure is distinct from that of mammalian UCP1
expression, but suggest that expression level of carp UCP1 is partly but not completely
related to that of molecules involved in regulation of mammalian UCP1 expression. The

present study has provided a novel insight into the regulatory expression of carp UCP1.

Although expression levels of UCP1 were closely related to those of molecules
regulating UCP1 expression in murine brown adipocytes during the changes in ambient
temperature in common carps, the detailed regulation was distinct between murine
brown adipocytes and carp tissues such as liver and kidney. In murine brown adipocytes,
the cold-induced stimulation of the sympathetic nervous system and accompanying 33
adrenergic receptor activation induce the transcription of PGC-la, which in turn
stimulates UCP1 transcription through complex formation with PPARy (Oberkofler et
al., 2002; Cao et al., 2004). The expression level of PGC-1a, but not PPARy was shown
to increase during cold exposure in murine brown fat (Seale et al., 2007; Karamitri et al.,
2009; Komatsu et al., 2010). The present study indicates that renal expression of UCP1

is closely related to that of PPARy rather than PGC-1la; water temperature-related
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changes in the renal expression of UCP1 paralleled those in the expression of PPARY,
but not PGC-1a.. Cold exposure also decreased hepatic expressions of UCP1 and PPARYy,

but the expression level of hepatic PGC-1a was unaffected.

Consistent with previous findings on the effects of cold on the expression of PPARa. in
murine brown fat (Komatsu et al., 2010), the hepatic and renal expression levels of
PPARa in common carps were unaffected by cold exposure. In addition, hepatic and
renal expressions of PPARB/5 were rather increased during cold exposure. Taking the
expression level of PPARs and PGC-la together, the down-regulation of PPARYy
expression during cold exposure may be responsible for the down-regulation of UCP1
expression in common carps. Changes in expression levels of RXRa, a PPARYy partner
(Evans and Mangelsdolf, 2014), basically paralleled to those of PPARy. Therefore,
expression levels of RXRa may be also involved in regulation of UCP1 expression by

PPARY during cold exposure.

However, the regulatory expressions of PPARy/RXRa. do not explain UCP1 expression
in liver of common carps during the water temperature from 8°C to 28°C; the cessation
of cold exposure increased hepatic expressions of PPARy and RXRa but not UCPL. It is
possible that inhibitory factor(s) on UCP1 expression is induced in carp livers during

the recovery period from cold exposure.

We isolated 2634 bases upstream to putative transcription initiation site of UCP1 gene.
The nucleotide sequence has low homology to corresponding region of humans, mice,
rats and even zebrafish, although some sequence motifs in the murine BAT-specific
enhancer are present scattered widely. The enhancer region of human UCP1 gene,
which includes responsive elements to PPAR, TR and CREB, is located around nt -3800
(Rim and Kozak, 2002; Shore et al., 2013). It is possible that the transcriptional

14



enhancer is located more distal region of UCP1 promoter. In addition, the sequence
motifs in fish may not match to those suggested in mammals. These should be evaluated

in future studies.

We also evaluated the expression of NRF1, because NRF1 has been shown to regulate
energy metabolism in concert with PGC-1a. in mammals (Scarpulla, 2008). A previous
study revealed that changes in NRF1 expression paralleled those in UCP1, PGC-1a and
PPARS expression during cold exposure and physical activity in murine brown fat
(Seebacher and Glanville, 2010). Cold exposure increased the renal expression of
PGC-1la, PPARB/6 and NRF1, and the cessation of cold exposure decreased the
expression of these genes; similar changes were also detected in hepatic expressions of
PPARB/6 and NRF1. However, water temperature-related changes in the expression
pattern of PGC-1la, PPARB/5 and NRF1 differed from those in UCP1 expression.
PGC-1a, PPARB/6 and NRF1 may cooperatively function through their up-regulation
during cold exposure, and this is distinct from the regulation of energy metabolism

through the modulation of UCP1 expression.

A previous study showed that the hepatic expressions of PGC-1a, PGC-1f, and PPARpB
and NRF1 were higher in goldfish acclimated at 4°C for 3 weeks than in those
acclimated at 20°C, and PPARa expression was lower during cold exposure (LeMoine
et al., 2008). Bremer et al. (2012) observed that cold exposure significantly increased
expression of PGC-1p and NRF1, decreased expression of PGC-1a, PPARa and TRa,
and did not affect expression of PPARB/5 and RXRa. in white muscle of goldfish. The
temperature-related changes in gene expression were partly but not completely
consistent with the previous results. At present, it is difficult to understand relationships
among expression levels of these genes comprehensively; effects of cold exposure are

also different among tissues in gold fish (LeMoine et al., 2008), and there may be
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species differences on cold-related changes in gene expression.

Although carp UCP1 may be a functional uncoupling protein, similar to its mammalian
counterpart (Jastroch et al., 2007), a correlation between the expression of UCP1 and
non-shivering heat production has yet to be established in fish. Future studies are
needed to determine the role of UCP1 expression, the physiological significance of
regulatory changes in the hepatic and renal expression of UCP1, and the molecular
mechanisms underlying altered expression levels of genes during cold exposure and
subsequent recovery from cold exposure in common carps. Also, aging, diet, feed
restriction and hypoxia are known to affect expression levels of UCP2 and UCPS3,
structurally related molecules to UCP1, in gilthead sea bream (Bermejo-Nogales et al.,
2010, 2014). To understand uncoupling-related regulation of energy metabolism in
ectothermic animals fully, it is needed to explore regulatory expressions of UCP2 and

UCP3 in addition to UCP1.
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Figure legends

Fig. 1. UCP1 expression in the livers and kidneys of common carps acclimated
to various temperatures

Common carps acclimated at 22°C were subjected to cold exposure for 14 days at 8°C.
They were then acclimated at 28°C for 14 days. The gene transcript levels of UCP1
were determined by RT-qPCR and are expressed relative to the expression of EFla,
with the hepatic level determined on day 0 (control) set to 100. Data shown are the

mean + SE (n=10). A, B and a, b: P < 0.05.

Fig. 2. Nucleotide sequence of the 5’ flanking region of the carp UCP1 gene

(A) Nucleotide sequence of the 5’ flanking region of the carp UCP1 gene. The nt +1 is
defined as putative transcriptional-initiation site. Possible CRE, BRE-1 and NF-E2
recognition sequences are shown with underline, box and double underline, respectively.
(B) RT-PCR analyses were performed using cDNA prepared from kidney (K: lanes 1
and 5) and liver (L: lanes 2, 3, 6 and 7) as the template. The cDNA was prepared by
Superscript 1 First-Strand Synthesis System (S) to isolate full-length of carp UCP1
MRNA (lanes 1, 2, 5 and 6) or by high capacity cDNA reverse transcription kit (H: lanes
3 and 7). Lanes 1-3 and 5-7 indicate PCR products using primer E and the reverse
primer for RT-gPCR, and primer F and the reverse primer for RT-gPCR, respectively.
Lanes 4 and 8: negative control and 100-bp DNA ladder, respectively. (C) Homology
between nucleotide sequences spanning nt -2634 to nt -1 of UCP1 gene of various

animal species.

Fig. 3. Comparison of the amino acid sequence deduced from the nucleotide
sequence of PGC-1, PPARB/3, TRa, RXRa, CREB and NRF1
The partial gene transcripts of PGC-1a, PGC-1B, PPARB/5, TRa, RXRa, CREB and
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NRF1 were isolated and sequenced. The deduced amino acid sequences of PGC-1a (A),
PGC-1B (B), PPARB/5 (C), TRa (D), RXRa (E) CREB (F) and NRF1 (G) were
compared to that of fish PGC-la, PGC-1B, PPARB/5, TRa, RXRa, CREB and
NRF1, respectively. The dot stands for the same amino acid as that in Cca. Cca:
Cyprinus carpio, Cau: Carassius auratus, Dre: Danio rerio, Cid: Ctenopharyngodon
idella, Spr: Schizothorax prenanti, Ncr: Notemigus crysoleucas, Ssa: Salmo salar, Caca:
Carassius carassius, Omy: Oncorhynchus mykiss, Pma: Pagrus major, Ola: Oryzias
latipes. B/5, B, B2 and db: PPARB/5, PPARB, PPARB2 and PPARGSD, respectively. al,
a2 and aA: TRal, TRa2 and TRaA, respectively.

Fig. 4. PGC-1 expression in the livers and kidneys of common carps acclimated
to various temperatures

Common carps acclimated at 22°C were subjected to cold exposure for 14 days at 8°C.
They were then acclimated at 28°C for 14 days. Transcript levels of PGC-1a (A) and
PGC-1B (B) were determined by RT-gPCR and are expressed relative to the expression
of EFla, with the hepatic level determined on day O (control) set to 100. Data shown

are the mean + SE (n=10). a, b: P < 0.05.

Fig. 5. Expression of PPAR, TRa and RXRa in the livers and kidneys of common
carps acclimated to various temperatures

Common carps acclimated at 22°C were subjected to cold exposure for 14 days at 8°C.
They were then acclimated at 28°C for 14 days. Transcript levels of PPARa (A),
PPARB/5 (B) PPARy (C), TRa (D) and RXRa. (E) were determined by RT-qgPCR and
are expressed relative to the expression of EFla, with the hepatic level determined on
day O (control) set to 100. Data shown are the mean + SE (n=10). A, B, Cand a, b, c: P
<0.05.
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Fig. 6. Expression of CREB and NRF1 in the livers and kidneys of common
carps acclimated to various temperatures

Common carps acclimated at 22°C were subjected to cold exposure for 14 days at 8°C.
They were then acclimated at 28°C for 14 days. Transcript levels of CREB (A) and
NRF1 (B) were determined by RT-gPCR and are expressed relative to the expression of
EFla, with the hepatic level determined on day 0 (control) set to 100. Data shown are

the mean + SE (n=10). A, B, Cand a, b, ¢c: P <0.05.
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TACATAAATA

CCATATTATT

GTTCARCTTT

AATTTTTTTT

GRARCTCCTGC

GAGGCCAARTC

CCARATTTAA

CCATTGGTTG

TTGTGTTCAC

TCCCTGAGAA

TCATCATCCT

GAARAGCCAT GCTTCTGART

GACGGATCCT

TGETAACARC GCCTGGATGT
ATTCAATGTT CTTTAAAGTA
TAGGACAGTC AGCAGATGAC
TTEAGTCGAR ACGTCARCCC
AGAGATCAGA CTATCAGTGA

TRGCTCGGCT GTTTTCAGAC

ATATTCCCCT TCCTCAARTCT

GCTGATTCAT GARGAARTAATC

AGTATTATTT TGGGTTCTTT

ATACATGTTT TTAAARAATAC

AGCTCTGTTT GTTTGAGART

GGAGTGTTCA GGAAACTTGT

ATTTAGAACT ATATCTGTCC

ACTATTATTA TTAATTATTC

CAGTGGCARA GAAATCATAT

FATTAGATGA TTACATTAAT

ATTAATTATT TTAAATTTTT

FATGGTTCTT TGATTATATT

TAGTTTTAAT GAGCAGAACAH

GTGTTTTECT CCATCTGTTA

ATCTTTCAGA CCCTGCAGGA

AACATCTGCA GTCATGTTGC

GTGATTAAGC ATGCATGAGT
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ACACCTCCCT GARGCGGAGGEA

GTCACTCCAT CAGACAGAGS
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TGAAGATAAT

CTTCACATCC
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GAAGAATTAT
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ARCAGAARCT

CTGTCCCTGE
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CATTTGTTGA

TATCTGGATG

GGAAGAACCC
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TTTAGAAGCA

GGRATCATCGA
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TGCTGTGEART
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TGTAGATGGA
TTATTATTAT
TTGGCATATC
CTGCTGGTGT
CTCAGATAAA
ATTGACAARAC
CATGACAARAA
TCTEGETGETT
TTTTACTGCT
GGETTAARGAT
RAACGATATT
TCARCCARTT
TGCAGTTCCA
ATTATTACTA
CATRAGTTTA
GGATTGTGETT
TTGTTCTTTT
RATTTAGCAT
TATCTGTCTA
GTTTGTGTTG
CTTAGAGCTT
GCTGACAGCT
GCATTGGTAC
GTTAATGTGC

TGTACTGGAC

ATGATATATA

CACCATGTTT
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Table 1. Nucleotide sequence of primers used in RT-qPCR analyses

Gene Forward primer Reverse primer GenBank
accession number

CREB 5’-ctcagcagattgccaccttgg-3’ 5’-gggcagctgaactaaggtcac-3’ LC000680*
EFla 5’-atgcggtggaatcgacaa-3’ 5’-cagagagcaatgtcaatggtg-3’ AF485331
NRF1 5’-aagccctgaggactattgtt-3’ 5’-gctcctgtgecaacctgtat-3’ AB9246411
PGC-laa  5’-tgcctgagcttgacctctct-3’ 5’- cgtcttcatccactgggatac-3’ AB767302!
PGC-1B 5’-tggggaagaggaggtctgc-3’ 5’-ccgtccaggctgtctgtg-3’ AB767303!
PPARa 5’-gggaaagagcagcacgagtcc-3’ 5’-ggtaggcttcatgcatctgtc-3’ FJ849065
PPARB/5  5’-tggctttgtggatctcttce-3° 5’-gatctcgccgaaaggtttge-3’ LC000683!
PPARYy 5’-aggcaactctacgagtcctatct-3’ 5’-agttgatcatctgctcgcecttce-3’ FJ849064
RXRa 5’-cacccaatgatccagtcacaaaca-3’ 5’-agctcattccatcctgctcgtaga-3’ LC0006821
TRa 5’-aatcacccgcaaccagtgccag-3’ 5’-tcgatcagacgcctcttggec-3’ LC0006811
UCP1 5’-cgccttctacaaaggtttcg-3’ 5’-cgaatgacacgaacatcacc-3’ AY 461434

!Nucletotide sequence was determined in this study.
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GCTTTTATGT

TAARTGCTGTG

GCTCTTTTAA

ACGTGAGATT

CTTCAGGAAT

TTAATAARTAA

ATGTAARATAA

CATGGTTCAA

ATATTAATGG

TTAAARTTTTT

AACAACCCTT

CATTTGRAGG

TGTTATTTGG

TTTCTGRGCT

TTTAATGTAT

CTGTTAARTGA

TCTGTGCTGG

AAGAAAGACA

ATCATCTGGT

GGTCCAAGCA

ATTGTGGEACH

TTCCCTTGAT

AARCCTGTACA

GTACTAGACC

TTACAGCATT

CATTTGTTAA

AAGCAGTCTG

AGTAARARATGT

CTGTCACTCT

ATGGCATAGS

GGGGCGGGAC

CACATACTTC

TAARTACCATA

ATATGTATAA

TTTAGAAACA

TTCAATTAAG

TTGGTGATTC

ARGGTTCTTG

CTACAGTGAT

CTCATATTTT

CCTTTRATGC

TGCTTRAAGC

CAGCAGCATC

AAGGTGGACT

GAGCATGCCC

TGEERATGAGH

CTGAGCCCTG

AGGCTTTTGA

AAARGTGTTCC

GTTCAGGCCT

ACTTCACAGT

GAGGATATAC

GCAARATGCAA

TACATGCGGT

TTAGTTACAT

GGCTGAGATC

TTTAGTTTGC

TGTCTTTTTT

RACTTTAACA

ACAACATGTA

TTTATATTAA

TCTGTCTGAA

ARTCATGTCT

ATTGGTGGAG

ACTTGTAATG

TGATGCTTCA

ACCGTTTCCC

ATCTGCACTT

TGAATGTTTT

GTGAAGTGTT

TTGTGTEGGC

TCGTCCCTCC

AGTAGAGTTG

AGGAACCCCA

GATCGGARAA

TGCTGGTTCA

GTTGTAARGTC

CCGGATCCAG

AGTATATTGA

ATGAARACATG

TCATTTCACT

GATATTAATA

ATTGTTTGTG

TACTTTAAAA

TTTGGCCAART

GTTCTTTTAT

ATAACTGTAC

ATTATATATT

GAAGAATTAT

GTCTGARACGET

AAATCACATG

AGTATTATTT

TGATTCAGCT

ACCCTTCCAA

TCATTAGTAG

ACACACAATC

TTCAARARARGCT

CAGTAATCTT

AGAGCTCCAG

AGTGTGATAG

GTAGCTTAGG

ACCAGTTRGA

GGAGCGGCTG

CTCCATGAAC

TCCTTCTGAG

TTTTTGACAG

GCCAGCTGGA

GCACTGATCC

ATCACARTTC

TGCCATAAARA

AAARAARAARTGT

CGCGGATGGG

ATTCAARTTCA

TATTATCATT

TTTGGCGATG

TACATAARATA
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TGGTAACAAC GCCTGGATGT
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TAGGACAGTC AGCAGATGAC
TTCAGTCGAA ACGTCARCCC
AGAGATCAGA CTATCAGTGH

TAGCTCGGCT GTTTTCAGAC

ATATTCCCCT TCOTCAATCT

GCTGATTCAT GRGAATAARTC

AGTATTATTT TGGGTTCTTT

ATACATGTTT TTRHAAAATAC

AGCTCTGTTT GTTTGAGAAT

GGAGTGTTCA GGRAAACTTGT

ATTTAGAACT ATATCTGTCC
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