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An Error Correction Scheme through Time Redundancy for
Enhancing Persistent Soft-Error Tolerance of CGRAs

Takashi IMAGAWA†a), Nonmember, Masayuki HIROMOTO†, Hiroyuki OCHI††, and Takashi SATO†, Members

SUMMARY Time redundancy is sometimes an only option for enhanc-
ing circuit reliability when the circuit area is severely restricted. In this
paper, a time-redundant error-correction scheme, which is particularly suit-
able for coarse-grained reconfigurable arrays (CGRAs), is proposed. It
judges the correctness of the executions by comparing the results of two
identical runs. Once a mismatch is found, the second run is terminated im-
mediately to start the third run, under the assumption that the errors tend
to persist in many applications, for selecting the correct result in the three
runs. The circuit area and reliability of the proposed method is compared
with a straightforward implementation of time-redundancy and a selective
triple modular redundancy (TMR). A case study on a CGRA revealed that
the area of the proposed method is 1% larger than that of the implemen-
tation for the selective TMR. The study also shows the proposed scheme
is up to 2.6x more reliable than the full-TMR when the persistent error is
predominant.
key words: coarse-grained reconfigurable architecture, reliability, triple
modular redundancy, immediate termination, error-critical period

1. Introduction

As CMOS process technologies enter into the range of a
few tens of nanometers, various phenomena that disturb the
normal operation of LSI systems have become prominent.
In particular, soft errors induced by high-energy particles,
such as single-event upset (SEU) and single-event transient
(SET) phenomena, have been receiving increasing attention.
The impact of soft error is expected to become even larger
in further scaled devices. The consideration of soft-error
vulnerability will soon become a common practice even for
consumer-oriented system designs, where the trade-off be-
tween cost (e.g., chip area, power consumption) and quality
(e.g., performance, reliability) are critically important.

Coarse-grained reconfigurable arrays (CGRAs) are
suitable for cost-effective implementation of reliability-
aware LSI systems [1]. The reconfigurability significantly
reduces the non-recurring engineering cost for designing
specific chips, that is, ASICs to meet various reliability re-
quirements. The reconfigurability also extends the lifetime
of LSI systems because the reconfiguration makes it possi-
ble to avoid the use of known or developed faulty units in the
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array [2]. As has been studied, CGRAs are superior to their
fine-grained counterparts, i.e., FPGAs, in terms of perfor-
mance and energy efficiency [3], because of the word-wise
operation and routing. The large configuration granularity
reduces the size of configuration SRAM which is vulnera-
ble to the soft errors. Therefore, the chance of soft errors in
CGRAs is expected to be smaller than that in FPGAs. Our
preliminary experiments show that the amount of configu-
ration information in FPGAs is 10 to 100 times as large as
that in CGRAs to implement application circuits. This re-
sult suggests that the circuits implemented on FPGAs are
10 to 100 times more susceptible to soft error than those on
CGRAs. Therefore, adopting CGRAs instead of FPGAs can
improve the soft-error resilience of the circuits. This advan-
tage becomes more notable when the target applications are
hardware accelerators that mostly execute word-wise opera-
tions.

One of the well-known methods to enhance the relia-
bility is the triple modular redundancy (TMR). The TMR
enhances fault tolerance at the cost of chip area. Recently, a
reliability-aware CGRA was proposed in [4], which adopts
TMR selectively to the part of a circuit. In an actual CGRA
that implements a practical application, sufficient room for
applying TMR may not be available. In order to maximize
the reliability under such situations, a method that gives or-
dering of the circuit blocks in terms of the effectiveness for
triplication was proposed [5].

Another approach to improve the reliability of LSI with
lower area-overhead is to utilize time-redundancy [6], [7].
In previous time-redundancy techniques such as [8], the
output of combinational circuit is latched at three differ-
ent timing points to mask SET pluses. However, apply-
ing this method to datapaths of reconfigurable device does
not ensure sufficient reliability because they use configura-
tion SRAMs which are susceptible to soft errors. In an-
other time-redundancy techniques, the same computation
is repeated using the same computational resources after a
certain period of time [9]. Reliability enhancement can be
achieved even for large applications that occupy most of the
computational resources. There are a lot of previous works
that study time-redundancy technique on FPGAs such as
[10]–[12]. Although these methods can improve the soft-
error resilience drastically, some area overhead is still re-
quired to implement them because each reconfigurable com-
ponent has to include the additional circuits.

In this paper, a novel error correction scheme that uti-
lizes time-redundancy is proposed. It is particularly suit-
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able to enhance the reliability of the hardware accelerators,
such as stream processing circuit, which are the main ap-
plication domain of CGRAs. Upon the observation that the
soft errors tend to be persistent in the reconfigurable arrays,
the proposed scheme immediately restarts execution as soon
as an error is detected. The immediate termination of the
running process lowers the probability of a subsequent fault
which makes the error correction impossible, resulting in
improved reliability of the circuit and the small area over-
head. In this paper, a CGRA example, which is our main
target architecture for implementing the proposed scheme,
is used to explain the operations and evaluations, although
the proposed scheme can be applied for other architectures
such as FPGAs.

Circuit area and reliability comparisons are made with
a straightforward implementation of time-redundancy, and
a space-redundancy techniques. The area evaluation re-
sults show that the additional circuit that realizes the pro-
posed scheme can be much smaller than other components
of the CGRA circuits, and thus the proposed scheme is us-
able when there is a severe area limitation. The reliability
evaluation shows that which redundancy strategy should be
selected under given throughput and area constraints and tar-
get application circuits. Even in case triplicating all the cir-
cuits (full-TMR) is acceptable, the proposed scheme can be
the best solution to enhance soft-error reliability when the
persistent error is predominant.

The remainder of this paper is organized as follows. In
Sect. 2, soft errors are classified based on error-continuity.
Section 3 explains the implementations of the conventional
and the proposed time-redundancy schemes. Sections 4
and 5 present area and reliability evaluations, respectively,
using a CGRA example. Section 6 concludes this paper.

2. Soft Error

In this paper, soft errors are classified into either transient
or persistent errors.

Transient error is an error that appears in the circuit only
within the clock cycle when the fault occurs. The tran-
sient error does not produce error in the subsequent
clock cycles, and the outputs of the circuit for those
cycles contain no error.

Persistent error is an error that remains in the circuit or
that produces other errors over multiple clock cycles.
Once the persistent error occurs, the output of the cir-
cuit remains erroneous until the states of the circuit are
reset or reloaded.

The SEU and SET can cause either transient or persis-
tent error depending on where they occur. When an SEU oc-
curs in a configuration memory of CGRA, its effect remains
like a hard-error. Once the correct information is reloaded,
such as by scrubbing [13], the error will be eliminated. An
SET in a cyclic datapath of an application circuit also trig-
gers persistent errors over several clock cycles [14]. The
SEU and SET in these cases are persistent. On the other

hand, transient error can be observed only in limited situ-
ations. The SET in an acyclic datapath is a representative
example of transient errors.

The incidence ratio of transient and persistent errors
in a circuit are determined by two factors. One is the in-
cidence rates of SEU and SET themselves, and the other is
the area ratio of circuit elements which induce transient and
persistent errors. The former is analyzed and measured in
previous works [15], [16], so that the soft-error rates in flip-
flops and combinational circuits can be regarded to have the
equivalent order of magnitude in the advanced process tech-
nologies. Therefore, in reconfigurable arrays, such as FPGA
and CGRA, the area of the configuration memory and that
of the acyclic data path defines the ratio between persistent
and transient errors, respectively. The occupation area of
configuration memory in CGRAs is still large, although it is
smaller than that in FPGAs. When loops are formed in the
data path, the area where persistent errors occur becomes
even larger. Therefore, the soft errors in CGRAs tends to be
persistent. Later in the evaluation section, we will quantita-
tively evaluate the area ratios using an example CGRA and
its applications.

3. Error Correction Scheme Utilizing
Time-Redundancy

Conventionally, reliability enhancement through time-
redundancy is realized by repeating the same operations
multiple times using the same hardware resource. An ex-
ample implementation for a processor can be found in [9].
In general, time-redundancy requires almost no extra hard-
ware resource, but throughput will be severely degraded.

3.1 Time-Redundancy Methods in CGRAs

In a general purpose processor with a time-redundancy
method, a series of instructions between two checkpoints
is executed for multiple times [17]. That concept can be ap-
plied to a CGRA that processes stream data by repeating a
series of computational process multiple times. In this pa-
per, a set of processes that is a unit for the time-redundancy
repetition is called as exec. This repetition granularity in the
proposed method is larger than those in the previous works
that apply time redundancy to small portions of an entire
process one by one.

To apply a time-redundancy method to a CGRA for
stream processing, the CGRA should have a feature to
reload configuration data to implement scrubbing [13] to
prevent a persistent error in an exec from disturbing suc-
ceeding execs. When the configuration data is reloaded, the
internal state of the application circuit is also initialized to
prevent a persistent error. In other words, an internal state
after an exec is not stored to eliminate memory overheads.
Then, the time-redundancy method can not be applied for
control circuits and glue logics, because their primary out-
puts are decided not only by primary inputs but also by in-
ternal states of previous execs. On the other hand, in some
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Fig. 1 Proposed TR/TRIT time-redundancy technique on CGRA.

Fig. 2 Conventional time redundancy scheme. Buf[1] and Buf[2] corre-
spond to buffer #1/#2 in Fig. 1, respectively. Exec(i) is the execution whose
result will be stored in address i of the output memory.

hardware accelerators, the primary outputs are not affected
by internal states of previous execs. An example is an appli-
cation in which divided image blocks are processed individ-
ually. Therefore, the following time-redundancy methods
suit for CGRAs whose main targets are hardware accelera-
tors rather than other architectures.

3.2 Conventional Time-Redundancy

Conventional time-redundancy (TR) technique works as in
Fig. 1 (a), (b) and Fig. 2. The overall flowchart of the
conventional time-redundancy (TR) technique is shown in

Fig. 1 (a), and its formal description is given in Fig. 2. Fig-
ure 1 (b) illustrates how the error is detected and corrected
in TR. In TR, the third run is conducted only when at least
one mismatch is found between the first and the second
runs. In TR, each run is executed entirely so that all er-
rors are corrected by the voting unless the errors occur at
the same address in two or more execs out of three. Let the
throughput of a non-redundant circuit and a selective TMR
be 1.0, then that of TR method is 0.5 when all the data of pri-
mary exec and comparing exec matches, or 0.33 when there
is a mismatch. When the error rate is very small, the average
throughput becomes close to 0.5. As illustrated in Fig. 1 (b),
as compared to non-redundant implementation, twice the
amount of buffer is required in this method to store the all
processing results of primary exec and comparing exec.

3.3 Time-Redundancy with Immediate Termination

If it is assumed that the errors in a circuit are mainly the per-
sistent ones, we may be able to reduce the required buffer, to
shorten the execution time for comparing/voting exec, and to
enhance reliability for the persistent error. Let a mismatch
due to error is found during the comparing exec at a certain
address, say X, most of the outputs from primary exec and
comparing exec do not match beyond address X. We cannot
determine which output is correct unless the third run (ver-
ifying exec) is conducted. Hence, we propose to stop the
comparing exec as soon as we find a mismatch, and imme-
diately start the third run.

Here, we have an additional assumption that the error
rate is sufficiently small such that we do not observe two er-
ror incidents during the three execs. With this, it is possible
to determine either the primary exec or the comparing exec



744
IEICE TRANS. ELECTRON., VOL.E98–C, NO.7 JULY 2015

Fig. 3 Execution control for time-redundancy with immediate termina-
tion.

is correct by a single comparison on the data of the first mis-
match. Figure 1 (c) illustrates how the proposed method,
time-redundancy with immediate termination (TRIT), de-
tects and corrects the error. At the point of error in the third
exec, when it is found that the primary exec is correct, we
stop the verifying exec and use the result of primary exec
stored in the buffer. When the comparing exec is correct,
then the results of the third run has to replace the contents
of the buffer beyond address X. As could be understood in
the figure, only one set of buffer is required in the proposed
method as opposed to the conventional one that requires two
sets of buffer. The procedure of the proposed method is sum-
marized in Fig. 3.

The average throughput of this method becomes ap-
proximately 0.5 because both primary exec and comparing
exec are fully performed in most execs. In case an error is
found, its throughput varies from 0.33 to 1.0, depending on
where the mismatch occurs.

One may think the outputs of the proposed scheme is
not reliable because the outputs beyond the error address is
not be validated. However, opposed to this intuition, the
proposed method is more reliable than to the simple time-
redundancy when persistent error is dominant. This will be
understood by considering the ‘critical’ period.

Figure 4 illustrates the reason why the TRIT is expected
to be more reliable than the TR for the persistent error. The
error-critical period illustrated in Fig. 4 is the interval when
a soft error makes it impossible to correct the erroneous val-

Fig. 4 Error-critical period in the time-redundancy techniques.

ues by the time-redundancy techniques. When an initial per-
sistent error occurs in the 1st exec, the 2nd and the 3rd execs
of both TR and TRIT cannot allow another persistent error.
The total processing time of the TRIT for the 2nd and the 3rd
execs, i.e., the error-critical period, is shorter in the proposed
scheme than that of the TR because the 2nd exec in the TRIT
is immediately terminated upon a mismatch. In the case an
initial error occurs in the 2nd exec, the 3rd exec in TRIT is
also terminated, so that the error-critical period of the TRIT
is shorter than that of TR.

4. Circuit Area Evaluation

In the following two sections, the area overhead and reliabil-
ity enhancement of the proposed scheme will be evaluated.
The CGRA prototypes that use either TR or TRIT methods
are implemented and synthesized using Verilog HDL for this
purpose. A commercial tool and a 65-nm commercial li-
brary is used for the CGRA design. In addition, a CGRA
that utilizes selective TMR is also synthesized. In these im-
plementations, the configuration memory and the buffer in
Fig. 1 are realized by a register file and an SRAM, respec-
tively. The circuit area is evaluated by the number of equiv-
alent 2-input NAND gates. It is assumed that the area of
1-bit SRAM cell is equal to that of a 2-input NAND gate in
calculating SRAM area.

4.1 CGRA Architecture

The basic structure of the CGRA used for the evaluations is
illustrated in Fig. 5. It consists of a two-dimensional cell ar-
ray, data memory, and an array controller. Each cell is com-
posed of a processing element (PE), a wiring resource, and a
configuration memory that programs the functionality of the
PE and the wiring connections. The PE executes arithmetic
and logical operations. Data memories store the primary in-
put and output of the application circuit implemented on the
CGRA. The memory controller mainly defines a scheme for
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Fig. 5 Architecture overview of time-redundancy CGRA. This architec-
ture is similar to many other CGRAs, but the array controller and memory
controller include some operators for the time-redundancy methods.

Fig. 6 PE architecture of the ALU cell.

Fig. 7 Wiring resource architecture. This figure illustrates only wires
and multiplexers for i data {a,b} in Fig. 6.

time-redundancy. The array controller serves as an interface
to an external system and a manager of the process repeti-
tion in the time-redundancy.

Figure 6 illustrates the PE architecture of the ALU cell
to help understand the area-impact introduced by the re-
dundancy enhancement. There are two kinds of PE cells:
ALU and MULT. The ALU executes arithmetic and log-
ical operations with two data (i data {a,b}) and one flag
(i flag a) inputs. In the MULT cell, a multiplier replaces
the ALU. These PE cells include registers to store their in-
put (r data {a,b}, r flag a) and output (r {data,flag} y). The
ALU and multiplier can use a constant value (i const) as an
operand stored in a configuration memory.

As illustrated in Fig. 7, the wiring resource is composed
of six word-width and five flag-width multiplexers (mux).
The routing resource of the CGRA is defined by two param-
eters: hop and track (Fig. 8). The hop refers to the length

Fig. 8 The parameters of routing resources: hop and track.

Table 1 NAND2-equivalent area of ALU and MULT cells. The flag
width is fixed to 1.

Condition Cell area
data width track hop ALU MULT

8 1 (1, 2) 2047.75 1488.75
8 2 (1, 2, 3) 4916.00 4341.75
16 1 (1, 2) 3483.75 2303.50
16 2 (1, 2, 3) 8195.00 6985.25

Table 2 NAND2-equivalent area of “array ctrl” in Fig. 5.

Condition Area
data width array ctrl.

selective TMR
8 584.00

16 1130.25

TR
8 620.75

16 1164.75

TRIT
8 621.75

16 1165.25

of wires in the unit of the cell dimensions. The track is the
number of wires for each hop. When track = 2 and hop =
(1, 2), a cell is directly connected to eight nearby cells illus-
trated in the right of Fig. 8. These parameters have impacts
on not just the routability but the reliability because large
hop and track increase the number of inputs for the wiring
resource and make its configuration memory large, and thus
error susceptible area will become large.

4.2 Area Impact for Control Circuit

When a time-redundancy scheme is applied, execution con-
trol becomes more complex than the selective TMR imple-
mentations. Hence, the area overhead of the “array ctrl” and
“memory ctrl” circuits in the time redundancy techniques
has to be evaluated.

Tables 2 and 3 list the areas of the “array ctrl,” “mem-
ory ctrl,” and buffers in the different reliability enhance-
ment schemes. Table 1 shows the total areas of an ALU
and MULT cells. For the selective TMR, two memory con-
trol circuits are designed: one is to triplicate only the array-
cells, and the other is to triplicate both data memories and
the array-cells which is denoted as “with triplicated mem-
ory.” When multiple buffers are required, such as in the case
of TR implementation, the area values in Table 3 are multi-
plied values of a single buffer.

The area of control circuits of the time-redundancy
techniques are always larger than those of the selective TMR
for both “array ctrl” and “memory ctrl.” However, the in-
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Table 3 NAND2-equivalent area of “memory ctrl” in Fig. 5.

Condition Area
data buffer memory

buffer
width words ctrl.

selective TMR

8 1024 0.0 8192.0
8 65536 0.0 524288.0
16 1024 0.0 16384.0
16 65536 0.0 1048576.0

selective TMR
with
triplicated memory

8 1024 43.03 24576.0
8 65536 43.03 1572864.0
16 1024 83.53 49152.0
16 65536 83.53 3145728.0

TR

8 1024 102.75 16384.0
8 65536 102.75 1048576.0
16 1024 185.50 32768.0
16 65536 185.50 2097152.0

TRIT

8 1024 144.25 8192.0
8 65536 204.50 524288.0
16 1024 166.50 16384.0
16 65536 226.75 1048576.0

creased area is much smaller than the areas of an array-cell
or an SRAM. For example, the circuit area of TRIT is 1%
larger than that of the selective TMR, when the data width
is 16 bit, the memory size is 1024, the track is 1, the hop is
(1, 2) and the cell array is 4x4. The additional circuits to
enhance reliability of the CGRAs with the time-redundancy
techniques are negligibly small.

4.3 Ratio between Persistent and Transient Errors

The ratio between persistent and transient errors is impor-
tant because it determines the effectiveness of the proposed
TRIT scheme. The TRIT is particularly preferable when the
persistent error dominates the transient error.

The circuit regions that cause persistent and transient
errors are defined as persistent error regions and transient
error regions, respectively. Using an example data flow
graph in Fig. 9, we will quickly explain how the persistent
error regions and transient error regions are defined. In the
graph, nodes B and C form a cyclic datapath, so all regions
in the layout that correspond to these nodes are considered
as persistent error region. When an error occurs at node
A, the input of C may contain error with a high probability.
The error in the input of a node results in persistent error
at the output, even if the original error is transient. Hence,
the area that corresponds to node A is classified as persis-
tent error region. The other areas are classified as transient
error region except for the configuration memories which
is a persistent error region as stated in the earlier section.
Figure 9 (c) shows a region assignment for the example data
flow graph.

As described in the last paragraph of Sect. 2, the ratio of
occurrence probability of persistent and transient errors are
determined by the area ratio of persistent error region and
transient error region. Hereafter, the area ratio is denoted as
S pt which are defined by the area of persistent error region
divided by that of transient error region.

The S pt values are calculated for five example appli-

Fig. 9 Example of transient and persistent error region.

Table 4 S pt values for sample application circuits on the CGRA. If the
value is larger than 1, persistent error is dominant in the circuits. “—”
means that a circuit can not be implemented on a target CGRA because of
routing resource shortage.

routing resource parameter (track, hop)
application 1, (1, 2) 2, (1) 2, (1, 2) 2, (1, 2, 3)

color invert filter 2.91 3.09 3.18 2.69
horizontal-differential filter 1.91 1.63 1.83 1.64

edge detection filter — — 1.21 0.90
8-tap FIR 0.96 0.81 0.89 0.90
1024-FFT — — 239.65 158.52

cations based on the results of automated place-and-route
to the CGRA described above. The applications are: a
1024-point FFT, an 8-tap FIR filter, a color invert filter, a
horizontal-differential filter, and an edge detection filter. In
this evaluation, the area of wire is assumed to be negligible
but its composition influences the amount of configuration
memory used in the circuit. The S pt value become very high
for the FFT circuit, in which entire array is repeatedly used.
It is expected that there are many applications for which the
proposed reliability enhancement by TRIT is effective.

As Table 4 shows, the relationship between the routing
resource parameters and S pt is not straightforward. Hence,
the place-and-route and the area ratio calculation should be
performed to know which error mode is dominant, to deter-
mine which time-redundancy technique, TR or TRIT, should
be adopted for the target routing parameter and the applica-
tion circuit.



IMAGAWA et al.: AN ERROR CORRECTION SCHEME THROUGH TIME REDUNDANCY FOR ENHANCING PERSISTENT SOFT-ERROR TOLERANCE OF CGRAS
747

5. Reliability Evaluation

5.1 Evaluation Setup

The circuit reliability is quantitatively evaluated by using
Monte Carlo simulations. In order to compare reliability of
the circuits that use different schemes, we use the amount
of successfully processed data until the first failure of the
circuit (hereafter, “ASPD metric” in short) is used as a reli-
ability metric. Mean time to failure (MTTF) is not appro-
priate in this evaluation because the throughput of the time-
redundancy is less than that of the normal implementations,
such as space-redundancy techniques.

Besides the transient and persistent errors defined in
Sect. 2, the unrecoverable mode error which represents
hard-errors such as time dependent dielectric breakdown
(TDDB) is also taken into account to evaluate the reliability
in the field. The unrecoverable error cannot be recovered
even by a configuration reloading. The transient, persistent,
and unrecoverable errors follow Poisson models, and their
incidence probabilities per a unit of time are denoted as λt,
λp and λu, respectively.

The duration of one exec, which is equal to the recon-
figuration interval in this evaluation, is denoted as N. In the
following evaluations, the application circuits are assumed
to output the processing result in every clock cycle, hence
the total number of output is equal to N.

5.2 Reliability Improvements

First, the ASPD metrics of TR, TRIT, and selective TMR
schemes for each error mode are evaluated and compared
for 10−16 ≤ λt,p,u ≤ 10−3 and 102 ≤ N ≤ 105. For the
selective TMR, the range of the circuit triplication is varied
from applying no-redundancy to full-TMR.

Figure 10 shows the ASPD metrics when N = 103 and
10−6 ≤ λt,p,u ≤ 10−4. An average of 100 trials are shown.
The horizontal axis shows the circuit area overhead, where
that of the circuit without redundancy is 1.0, and that of the
fully-triplicated circuit is 3.0. According to the results in
the previous section, the overhead of the time-redundancy
techniques is slightly greater than but very close to 1.0. In
terms of the ASPD metric, a partial triplication is not so ef-
fective unless the circuit is triplicated almost entirely. On
the other hand, the time-redundancy techniques achieve im-
provements with a slight area overhead regardless of λt,p.

When the reliability of these circuits is compared, their
area overhead and throughput should be equivalent. When
the parallelization to make a clone of the target circuit is
acceptable, the area overhead and the throughput of the cir-
cuits with the time-redundancy techniques are equal to those
of the half-triplicated circuits.

The parallelization keeps the reliability of the time-
redundancy techniques because their MTTF are half. There-
fore, the time-redundancy techniques are more reliable for
transient and persistent errors than the selective TMR when

Fig. 10 Reliability as functions of area overhead for each error mode.

their area overhead and throughput are equivalent. This
trend is more prominent when λt,u is small. In contrast, the
reliability of circuits with the time-redundancy techniques
for the unrecoverable error becomes worse than that of no-
redundancy circuits. This is because their throughputs are
less than 1.0 and they can not mask even one unrecover-
able error. Comparing the two time-redundancy techniques,
the TRIT is less reliable than TR for the transient error as
expected. In contrast, the TRIT is 1.4x more reliable than
TR for the persistent error regardless of N and λp. This is
explained by the error-critical period, which is shorter for
TRIT than TR (Fig. 4).

The TR can be expanded to repeat an exec more than
three times, and it is expected to be more reliable than the
TRIT when enough number of repetition times are accept-
able. Figure 11 shows the reliability of TRIT and TR whose
upper limits of repetition (deadline) are 3, 4, and 5. The
TR can be more reliable than the TRIT only when five times
and more repetitions and the buffer overhead are acceptable.
When the reliability itself is highly important, for example
in mission-critical applications, the TR is more appropriate
than the TRIT. On the other hand, when the trade-off be-
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Fig. 11 Reliability comparison between TR and TRIT as functions of rep-
etition limit (deadline) (N = 103).

Fig. 12 ASPD metric ratio between TR and full-TMR. If a value of the
vertical axis is larger than 1.0, TR is more reliable than full-TMR. When
the value of horizontal axis λp/λu is larger than 1, persistent error is more
frequent than unrecoverable. Note that this value rarely become less than
1 in practical cases. The upper graph shows the results when the persistent
error dominates the transient.

tween cost and reliability is more important than reliability
itself, the TRIT is an attractive option to enhance reliability
efficiently because its area overhead is negligibly small.

Next, reliability of the redundancy techniques are com-
pared considering all types of errors, i.e., transient, persis-
tent and unrecoverable. The ratio of persistent error to tran-
sient error (λp/λt) has been changed from 10−2 to 103. The
upper bound is determined by the results of example imple-
mentations in Table 4. The lower bound is based on the area
ratio between (configuration memory) and (wiring resource
+ PE) in Fig. 5, at which the target application includes no
cyclic datapath and the persistent error region becomes the
smallest in the assumed CGRA.

Figures 12, 13 and 14 show the ASPD metric ratio be-
tween full-TMR, TR, and TRIT. The reliability of TR and
TRIT tend to be higher as the λu is lower, and they are up
to 2.31x and 2.60x larger than that of the full-TMR, respec-
tively.

Figure 12 shows that the TR is equally or more reliable

Fig. 13 ASPD metric ratio between TRIT and full-TMR. If a value of
the vertical axis is larger than 1.0, TRIT is more reliable than full-TMR.

Fig. 14 ASPD metric ratio between TRIT and TR. A value of vertical
axis is a reliability ratio of the former to the latter. If the value is larger than
1.0, TRIT is more reliable than TR.

than the full-TMR unless the unrecoverable error (hard er-
ror) is more frequent than the other error modes (soft error).
As Figs. 13 and 14 shows, when the persistent error is dom-
inant (λp/λt ≥ 1 and λp/λu ≥ 1), the TRIT achieves higher
reliability than the full-TMR implementation, and is equally
or more reliable than the TR with less amount of the buffer.
Therefore, the TRIT is the best way to enhance soft-error
reliability when the persistent error dominates other error
modes.

5.3 Strategy for Selecting Reliability-Enhancement
Method

Based on the above results and the given design constraints,
it is possible to determine which redundancy techniques
should be utilized for a CGRA circuit.

When the parallelization of the target application is un-
acceptable because of the area constraints, either the time-
redundancy techniques or the selective TMR should be used
to satisfy a throughput constraint. For example, the time-
redundancy techniques, that is, TR and TRIT should be
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adopted if the performance degradation is acceptable. Con-
versely, when the throughput is as important as reliability,
the circuit should be partly triplicated. In contrast, when the
parallelization is permitted, either of the time-redundancy
techniques, TR and TRIT should be used based on S pt, i.e.,
whether transient or persistent is dominant. The area ratio
can be calculated by the result of place-and-route. In both
techniques, an application circuit can be implemented with
the same place-and-route result. Therefore, a designer can
decide which technique is applied after the place-and-route
and calculating the area ratio. For example, in the sample
applications in Sect. 4, TRIT is suitable for the all circuits
except the 8-tap FIR filter and the edge detection filter when
track is 2 and hop is (1, 2, 3).

6. Conclusion

This paper proposes the TRIT method which efficiently cor-
rects persistent soft errors using the framework of a time-
redundancy. In this method, the running process is imme-
diately terminated when a mismatch is found between the
results of two identical runs. The immediate termination im-
proves the reliability of the circuit by shortening the error-
critical period, during which time the circuit becomes vul-
nerable for the persistent soft-error that is a predominant
error in reconfigurable architectures. In an example appli-
cation, the soft-error reliability of the proposed method be-
come 2.6x better than that of full-TMR with negligibly small
area overhead.
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