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Abstract

Biomarkers are vital to detect diseases in various clinical stages. A variety of
cancer serum biomarkers are already known, while for more accurate cancer-
type detection, there required more rigorous evaluation manners, especially
computational evaluation measures, for biomarkers. In this review, we first show
three typical pitfalls in finding biomarkers and their examples, after briefly
presenting standard five clinical biomarker screening phases by National Cancer
Institute. We then introduce current computational biomarker evaluation
measures, including current, standard methods with their intrinsic features. We
further show an up-to-date list of existing cancer serum biomarkers, pointing out
several issues, being caused by the limitations of current biomarker evaluation
approaches. Finally we discuss the current attempts to develop new, statistically
robust, computational serum-based biomarker measures in terms of specificity
to each of various cancer types.
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1. Introduction

Biomarkers are believed to increase the accuracy of diagnosis to precisely
characterize the disease in a diagnostic or prognostic level. Biomarkers predict
the response of the patient, helping to guide a more tailored treatment for the
patient. Serum biomarkers are more appealing due to their simplicity of
obtaining the blood samples. There are several serum cancer biomarkers, which
are routinely used in clinical oncology, e.g. prostate specific antigen (PSA) for
prostate cancer and cancer antigen (CA)-125 for ovarian cancer. However, their
applications have significant limitations, because of low specificity, i.e. small
probability of samples with no biomarkers in all non-diseased samples. In fact,
the issue of specificity has become much more acute, since more than 30% or
higher circulatory PSA level patients have to go for extensive testing and
treatment, indicating its lack of specificity of prostate tumor detection [1]. In
summary, lack of specific serum biomarkers has impeded the change in
morbidity and mortality in cancer patients.

The traditional "a priori" approach for biomarker development needs a well-
established biological procedure, being subjected to two-step clinical validation:
1) simple test with a high level of quality control, and 2) planned statistical
prospective evaluations within the validation pilot studies to prove an
established clinical impact [2]. Contrarily, more recently "a posteriori"
approaches evaluate the clinical rationale of a "biological indicator" through a
systematic discovery of various screening tools (e.g. microarray, bioinformatics,
High-throughput DNA sequencing). These biological instruments are "black
boxes", meaning that a clinical usage can be discovered through research pilot
studies. Computational approaches give possible candidates for detecting certain
diseases, by "sensitivity" and "specificity", within a patient population, but the
proper quantification of a single biomarker in serum is limited to the evaluation
technicalities. Therefore this review will focus on the latter approach since the
recent technologies provide a plethora of potential candidates which are in
proper need of evaluation.



Over the past twenty years, biomarkers have shown significant promise in the
mechanism of how it will transform a patient’s treatment. Therefore, biomarker
research has been aimed towards the development of personalized targeted
therapy. Despite the recent technological advancements, there are still relatively
few biomarkers that are in routine clinical use today [3]. With a growing number
of complex genomic tests for biomarker signatures becoming commercially
available, the promise of personalized medicine is fast becoming a reality. Much
attention has to be placed on the reason why the promising biomarkers and the
biomarkers signatures entering the clinic is a long road ahead [4].

2. Biomarker Discovery Validation: Three Pitfalls

In this section, we first briefly show the most widely accepted guideline for
evaluation and validation of biomarkers (Diagram 1): “Early Detection Research
Network (EDRN)” developed by National Cancer Institute [5]. We then explain
typical pitfalls and their examples of clinical biomarker evaluation failures,
mainly caused by poor experimental design and inappropriate choice of the
diagnostic assay.

Phase I of EDRN is the discovery of biomarkers through knowledge-based gene
selection, gene expression profiling or protein profiling by setting the platform to
rank and select the biomarkers via their characteristics. Most biomarker
candidates are obtained from organized and characterized cohort studies, tissue
banks or clinical trials with active follow-ups. Phase II establishes a clear
indication of the biomarker’s intended use in clinic by checking the validity,
portability and reproducibility of these biomarker assays in various samples
amongst various laboratories and clinics. The sensitivity and the specificity
determined during this stage, which assess the quality of the biomarker, in the
designated assay for clinical usage. Phase III evaluates the sensitivity and the
specificity of the biomarker in various other diseases, to see its potential
predictive value to ascertain the disease occurrence. Phase IV assesses the
sensitivity and the specificity on prospective cohorts [6], identifying the false
negative samples by evaluating the extent and characteristics of the disease at
the time of detection. This process estimates the false referral rate and evaluates
the diagnostic features of the biomarker, e.g. the definition, stage, grade of the
tumor types. Phase V evaluates the overall benefits and the risks of performing
the new biomarker diagnostic test in a controlled screened population.

In 2011, there were 7720 publications on biomarkers usage, but only 407 of
these were actually patented [7]. Surprisingly, from these 407 patented
biomarkers, none have obtained FDA approval. This fact reflects how many
studies report the discovery of different potential biomarkers, but most of them
do not meet the criteria of high sensitivity and specificity, necessary to enter into
the clinical setting. Moreover, there is a shortage of quality specimens for the
validation studies. This subsequently pushes the biomarker candidate into
pitfalls preventing it from approval. In conclusion, the standardization of
quantitation for the quality and the validation of the candidate biomarker need
to be urgently improved to decrease the excessive economical resources placed
on weak candidates. We here raise three typical pitfalls in biomarker validation



and their examples:

Pitfall 1: incorrect false positive control

A lack of external validation studies cannot justify the potential biomarker on its
specified performance. For example, the broad sensitivity scale (0.40-0.73) can
be easily obtained under a fixed specificity of 0.95, even though the specimens
were not obtained at the time of diagnosis [8].

Example: Management of prostate cancer has long employed biomarkers, from
the stage of detection to treatment monitoring. In 1987, serum PSA was
suggested as a biomarker since its increased quantity as detected in prostate
cancer can represent abnormalities in the architecture and the vasculature of the
prostate [9]. Thus, it was believed that PSA quantity was directly correlated with
the advancing clinical stage of the cancer and is useful for monitoring of disease
curative therapy. However, PSA-based screening for prostate cancer is plagued
by false positives [9], resulting in an only 25-40% positive predictive value (i.e.
high probability of a diseased sample in all samples with a biomarker present).
The major reason for such high false positive rates was derived from the fact that
several non-cancerous events may elevate the level of PSA. For instance,
inflammation, infection, and trauma are more common causes of elevated serum
PSA than cancer.

Pitfall 2: sample population size

Inappropriate statistical results may result from the small number of patients
and control subjects in published studies [8]. The outcomes from the small
sample size would reflect logical fallacies in candidate markers due to the
deficiencies in the inadequate study design. Biomarker development is a team
process [8]. Since most tests and assays are outsourced, conceptual blind spots
may arise which eventually result in unjustified conclusions. For serum
biomarker studies, bodily fluids (blood, urine, semen, etc) and tissues are
collected from a group of patients of different disease stages, and are compared
with a group of healthy persons. Since sensitivity improves with increased
disease stage, hence the lack of consistency through observational studies results
in ‘contradicting published reports likely [resulted] from studies testing different
patient populations, using different methodologies, and applying different [cut-
offs] for a positive test’ [10].

Example: Xu et al. reported that lysophosphatidic acid is a potential effective
biomarker for ovarian carcinoma [11, 12]. In the Xu study, elevated levels of
plasma lysophosphatidic acid were detected in 90% of phase I patients and
subsequently in 100% of phases II, III, or IV patients. It was also detected in
100% of recurrent ovarian cancer patients. Hence, it was demonstrated that
Lysophosphatidic acid was a far more superior potential biomarker than CA-125,
which only had a reported sensitivity of 22% and 60% in their stage I and
advanced patients, respectively. However, Baker independently validated the
lysophosphatidic acid test for ovarian cancer and concluded that
lysophosphatidic acid levels are indistinguishable from ovarian case patients
from controls subjects [13]. Hence, the Xu study was plagued by deficiencies that
existed in the studied population. In other words, the small sample size of 149



patients demonstrated the "strawman argument" [8]. In conclusion,
lysophosphatidic acid was found to be a nonspecific marker that is highly
affected by small changes in sample collection practices, as well as processing
practices.

Pitfall 3: inadequate experimental results

Choosing the optimal analysis method is critical in biomarker search by
proteomics and metabolomics [14]. Preparations of the sample for proteomic
and metabolic analyses are very important and can prevent errors that always
will affect the final results. Unfortunately, most published studies only analyze
the sample once, which does not validate the reproducibility of the results.
Studies should permit the deviation from the mean (i.e. the error in the
measurement) to avoid the pitfall of sample biases [8, 14-16].

Example: Leman et al. reported that early prostate cancer antigen-2 (EPCA-2)
was a novel putative prostate cancer biomarker that performed better than PSA
for diagnosis, prognosis, and disease maintenance [17]. The study comprised of
385 men, reported a 92% specificity, for overall prostate cancer, in contrast to
65% for PSA [6, 8, 12, 17, 18]. After a thorough examination of the methods was
performed, the assays show technical inadequacies and discrepancies.
Diamandis reported that the Leman assay design would not be a "sensitive or
specific measure” to measure EPCA-2 in serum [1, 19]. More specifically, the
investigation shows flaws included reporting values that were beyond the
detection limit of the assay and improper reagents used to “capture” EPCA-2.
Since the assay was technically inadequate, the study resulted in misleadingly
"highly promising” from unreproducible data. This study typically addresses a
failure phenomenon, where the inhibition of the assay verses direct changes in
the analysis [8].

Current biomarkers have been plagued by many pitfalls including the above
three typical cases. In particular, the example in the first pitfall can be rephrased
such that many protein biomarkers are not cancer specific; that is, conditions
other than the disease itself, may cause a protein biomarker to be present or be
at an elevated level. In addition, the levels of some protein biomarkers are not
elevated in all patients with a particular cancer [18]. Therefore, the
computational assessment is an important tool to validate the quality of the
biomarker.

3. Computational Measures for Evaluating Biomarkers

Diagram 2 is a 2 x 2 contingency table, showing cross-correlate disease status
with biomarker presence. This table is obtained, under a pre-determined
threshold for the biomarker test, to examine the usefulness of the candidate
biomarker in the diagnostic, prognostic, predictive appraisal of the disease. This
table has four cells with samples labeled by True Positive (TP), False Negative
(FN), False Positive (FP) and True Negative (TN), which are mainly used to
compute the measures introduced below. Hereafter we use each of these four
labels as the number of the corresponding samples.



3.1 Sensitivity and specificity

Sensitivity or True Positive Rate (TPR) is the probability that the biomarker will
be detected positive in the disease samples. In Diagram 2,
sensitivity=Probability(Biomarker present/Disease present), which can be
estimated by (TP/(TP+FN)). Whereas, specificity, known as True Negative Rate
(TNR), is the probability that the biomarker will be absent in a non-diseased case
and can be estimated by (TN/(FP+TN)) [20]. Both are scaled such that values
close to 1 to indicate high accurate diagnostic value and a value of zero is
equivalent undefined diagnostic value. The relationship between sensitivity and
specificity can be complemented via 1-specificity, which is False Positive Rate
(FPR).

A highly sensitive test will be positive in nearly all patients with the disease, but
there may also be positive for many patients without the disease. Ideally, most
patients without the disease should present negative test results. So specificity is
defined to check the sensitivity over patients without the disease. The ideal
biomarker to be used as a diagnostic, prognostic, predictive or pharmacogenic
tool should be both sensitive and specific. Therefore, sensitivity and specificity
combined assess the quality performance of the biomarker. One measure for this
purpose is Youden index, defined as (sensitivity + specificity -1) [20].

3.2 Predictive values

Predictive values are conditional proportional measures of the total cohort with
positive and negative index (Diagram 2). In other words, a positive predictive
value is probability that a case with a biomarker present is diseased and vise-
versa for the negative predictive value. The positive predictive value decreases
proportionally with the prevalence of the disease, indicating the biomarker
assessment being not reliable for rare conditions, which will result in many FP
results, compared to the TP results.

3.3 Likelihood ratios

The likelihood ratio is a diagnostic test to assess of the biomarker’s sensitivity
and specificity of detecting the disease. If the test is perfect, all patients tested
positive would have the disease. Since this is not the case and there are patients
that test positive without the disease, the discrepancy must be corrected for the
TPR by the FPR, resulting in the positive likelihood ratio, being defined as
(sensitivity)/(1-specificity) or by TPR/FPR [6]. Similarly, the validity of a
negative result is still in question due to the presence of FN patients that exhibit
false results with the disease present. The negative likelihood ratio is then
defined as (1-sensitivity)/(specificity) or FNR/TNR. The likelihood ratios have
two advantages: 1) it is the ratio of sensitivity and specificity alone, by which it is
independent of population settings and can be used at the individual patient
level, and 2) it allows a quantification of the probability of disease for a
particular patient [21].



3.4 Receiver Operating Characteristic (ROC) Curve and Area under the ROC curve
(AUC)

ROC is a graphical representation, which uses the values of sensitivity and
specificity in varying amount of possible thresholds (Note: Diagram 2 is obtained
under some certain threshold). The dependence between sensitivity and
specificity induces a trade-off between the two quantities: one value increasing
while the other decreases as the threshold for positivity is moved. The ROC curve
is obtained by plotting sensitivity (TPR) against 1-specificity (FPR). Sensitivity
and specificity calculated at various cut-off points generate the ROC curve, which
is the main model used to assess the candidate biomarker correlation the disease
phenotype [6].

As the positivity threshold is varied, the upper left hand corner of the ROC curve
where sensitivity is 1 and specificity is 1. Similarly, the test would be
uninformative if the ROC curve would be the upward diagonal line. If the
distribution of the diseased and non-diseased groups are not similar, an
asymmetrical curve will result indicating the limitation of this quantification
assessment [22]. Therefore, the ROC curve is an indicator of the candidate’s
performance, since it shows a range of specificity of the candidate. Moreover, the
sensitivity value of highly specific candidate is more important than that of low
specific candidate.

The area under the curve of an ROC curve (AUC) is a way to reduce ROC
performance to a single value representing expected performance. AUC can be
interpreted as an average of sensitivity over all FPRs or as the average FPR over
all sensitivities [23]. An AUC value of 0.5 (50%) indicates no association between
true and false positives, and a value of 1.0 (100%) indicates perfect association
[24] between the true and predicted outcome. AUC is a systematic summary over
sensitivity over all possible cases (cutoff value), indicating a very sophisticated
standard to measure the significance of binary classification. AUC considers all
values of specificities without any weights on high specificity, which is a
disadvantage of AUC.

3.5 Time-dependent ROC Curves and Time-dependent AUC

AUC has become the "gold standard" for assessing performance of models for
binary outcomes. Kern highlights the "time" factor [25, 26]. The dimensionality
of time incorporates the time-varying nature of the clinical onset time of the
disease. Hence, the predictive accuracy for the marker can be pronounced since
disease-occurrence can be precisely measured via calculations of time-specific
ROC curves and further time-specific AUC. In fact time-specific ROC curves
achieve optimal accuracy in predicting the future disease status, due to the
advantage of capturing the time-varying nature of markers [25, 27].

3.6 Diagnostic Odds Ratio (DOR)

The Diagnostic Odds Ratio (DOR) is diagnostically defined as the positive odds of
subjects with disease relative to the odds of subjects without disease. DOR can



range from zero to infinity. The higher values of DOR indicate better test
performance [15]. A DOR of less than one indicates that the test can be improved
simply by inverting the outcome of the test. A DOR value of exactly one means
that the test is highly likely to predict a positive outcome, whatever the true
condition. The definition of DOR can be written in a variety of ways, mainly by
the following three:

1) (TP/FN)/(FP/TN),

2) a ratio of the positive likelihood ratio over the negative likelihood ratio, i.e.
(TPR/FPR)/(FNR/TNR),

3) ((sensitivity)/(1-specificity))/((1-sensitivity)/(specificity)).

DOR depends significantly on the sensitivity and specificity of a test. A test with
both high specificity and sensitivity with low rate of false positives and false
negatives has high DOR. Maintaining same sensitivity of the test, DOR increases
with the increase of the test specificity. For example, a test with sensitivity >
90% and specificity of 99% has a DOR greater than 500, with an approximate
95% confidence interval for the population. The p-value of DOR is <0.05,
indicating studies exhibited great heterogeneity [20, 22, 28].

The contingency table of DOR is generated at some cutoff value, not over the
average of specificity value like in AUC, while as DOR can be shown by sensitivity
and specificity, so it can be connected to AUC by averaging it over all specificities
by changing cutoff values. DOR summarizes study accuracy in a single number,
focusing on some cutoff value. This point makes DOR a relatively easy
measurement even for meta-analysis (which combines independent studies for a
single biomarker to get effect in the general population). This is possible because
DOR can be combined in terms of ratios of odds [28].

3.7 Issues with DOR

DOR is recently increasingly used, while the cut-off value needs to be chosen
optimally. This is often by Youden index, while indexing a cut-off value to
maximize some function such as specificity has become a common practice. For
example, Lotrakul et al. recommended the cut-off value at 9, demonstrating that
this cut-off value can be a powerful screening tool for patients with depression
[29]. Bohning et al. proposed a solution to this issue by plotting a non-parametric
estimate of the log-DOR against the cut-off value [20]. Another procedure
provides a prospective statistical test for the hypotheses, to determine if the test
treatment is beneficial for the entire patient population or only for that subgroup
defined by the biomarker [30]. In other words, it provides an estimate of the
optimal biomarker cut-off point. Glas et al. suggested the DOR as a single
indicator of test performance to facilitate the formal meta-analysis of studies on
diagnostic test performance [31], while still the precision of DOR has to be
optimized by choosing the cut-off value [32]. We can thus say that it is still
unclear on how to determine the cutoff value for DOR. Fischer and colleagues
developed a recommended guide to enhance the appraisal of diagnostic tests to
combine several measures of test accuracy, such as sensitivity, specificity, ROC,
LR and DOR [33]. Also Pepe et al. showed the relation between DOR and AUC,
and show that an OR as large as 3.0 may have little impact on AUC [5, 34, 35]. In
conclusion, despite the increased use of DOR in the medical literature, it has



many flaws in its measurements and might still remain poorly understood by
clinicians [28].

3.8 Latest Measures

Along with the recent trend on computational methods for evaluating
biomarkers, we here raise new and rather under-developing measures on two
cases: 1) two or more studies for a single biomarker, and 2) one study for
multiple biomarkers.

Now various studies for a single biomarker can be generated [8, 15]. For
example, even by the same research group, studies can be repeated at a certain
time interval. We can analyze them to get its widened effect in the general
population. Two (or more) studies can be summarized into so-called
reclassification tables, from which sensitivity and specificity of each study can be
derived. The reclassification table-based approaches have recently been gaining
popularity, where a typical measure is "net reclassification improvement (NRI)"
(which is slightly modified into IDI (integrated discrimination improvement)
later) [26, 35]. NRI or IDI is a function, which sums sensitivity and specificity of
one study. For example, for two diagnostic tests, NRI is defined as the difference
between two tests, each being the sum of specificity and sensitivity:

NRI = (Sensitivity + Specificity)second test — (Sensitivity + Specificity)first test

NRI sums two rates (sensitivity and specificity) rather than a weighted average
of the two rates based on the ratio of patients with disease to without disease.
The sum of sensitivity and specificity is equivalent to Youden index, meaning
that NRI compares the performance of two tests. Two performance results might
be similar even if the performance is low. This implies that NRI checks the
stability of two studies rather than examining the significance of the biomarker
itself. Thus NRI would be more appropriate for evaluating the similarity of two
different models rather than evaluating a single biomarker by two studies, where
one model means a certain variable set or a particular condition such as a time
point. So one possible case is that one model has a set of biomarkers and one
different biomarker is added to this set to generate the other model.

The combination of multiple biomarkers would be one direction to achieve
higher discriminative performance. For example, OVA1, a FDA approved test for
pre-surgical evaluation of a woman's ovarian mass for cancer, examines five
biomarkers: transthyretin, apolipoprotein, A-1, 2-microglobulin, transferrin, and
CA-125 [36]. OVA1 demonstrated 90% sensitivity for ovarian cancers stages I
compared with 61% for CA-125 [37]. Surprisingly, however, the specificity and
positive predictive value of OVA1 with physician assessment was worse than CA-
125 alone [38, 39]. One possible explanation for this result is the menopausal
status that skews the results for this multivariate index assay. After OVA1,
researchers have developed computational tools for diagnosis procedures with
multiple biomarkers. ROMA (Risk of Ovarian Malignancy Algorithm) focuses on
two biomarkers for ovarian cancer: HE4 and CA-125 [38, 39]. ROMA calculates
“predictive index” (the final score given by the logit of the predictive index) by
linear regression over the serum concentration of two biomarkers. An important
point of ROMA is that those linear equations are changed by the patient's



menopausal status at the time of testing, to solve the low specificity problem of
OVA1 [38]. ROMA is currently promoted for two major reasons, compared to
OVAL. First, ROMA reports a higher specificity [38, 39]. Second, ROMA is more
cost-effective, because it has less markers.

4. Current Biomarkers

Table 1 provides a comprehensive comparison of current potential and approved
biomarkers, including 26 biomolecules, 2 metabolic biomarkers and 4 cell
biomarkers. A unique feature of this table is positive and negative predictive
values and DOR, which are extracted from corresponding references and
attached to all biomarkers. Furthermore, one marker can be used for evaluating
more than one cancer type. For example, heat shock proteins (HSPs) are used for
five types: gastric, prostate, osteosarcoma, uterine and bladder, meaning five
DOR values for all five types in HSPs. The DOR in this table takes a very wide
range of values, while all values are reasonably larger than 1.0, except only seven
cases. The largest DOR value is 218.5 for breast cancer by cfDNA, and the next
largest is 104.816 for colorectal cancer by DR-70. Again we stress that this table
is a thorough summary on current all possible cancer biomarkers.

One important issue of cancer biomarkers is to identify cancer-specific
biomarkers, by which the cancer type of a patient would be detected more
accurately. For example, DOR of cfDNA in a breast cancer patient is 218.5. The
odds of having cfDNA due to a metastatic carcinoma is known as 2.29 [40], and
even the odds ratio of having cfDNA in the blood from breast cancer can be
218.5/2.29=95.41. This will give researchers the conclusion that cfDNA will be
95 times more likely to be present in the blood of a breast cancer patient than in
a patient with another type of carcinoma, meaning that cfDNA can be a breast
cancer-specific biomarker. On the other hand, CA19-9 can be detected in three
cancers: pancreatic, ovarian and bladder, where three DOR values are 15.637,
23.7 and 20.16, respectively, all being relatively high and similar. HSPs also has
relatively similar values for five types, particularly two tumors, i.e.
osteocarcinoma and prostate, having the same value, 2.25. In these cases, DOR
would not be an appropriate measure to identify a cancer-type specific
biomarker.

5. Discussion

As explained in Section 3.8, OVA1 (approved in 2009) for ovarian carcinoma
with five biomarkers including CA-125 had to show weaker performance in
terms of specificity and positive predictive value than CA-125 alone (approved in
1997). This implies the need of improved statistical quantification methods to
decrease the lack of specificity in the current instrumentation methods for low
abundance proteins. This point brought a mentality shift focusing on a more
robust statistical predictive tool, resulting in the Risk of Ovarian Malignancy
Algorithm (ROMA), more generally a predictive model, i.e. logistic regression
over two variables [38].

The development of ROMA is, on evaluating biomarkers, solving many important
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problems, which in general could not be overcome by previous methods. These
problems would be summarized into three issues: 1) interpretation issue, 2)
statistical error, and 3) technical (experimental) error.

1) Interpretation issue: previous measures like DOR have rather simple
definitions and can be easily computed, while it might be hard for clinicians to
understand them accurately and use them properly for diagnosis and prognosis
purposes. On the other hand, ROMA, a predictive model, gives a score or a so-
called risk, i.e. the probability that a patient will be with the disease (in the
future). The score can be used for diagnosis directly, meaning that though the
model behind the measure might be still a blackbox for clinicians, the model can
show the score for any disease category like stage [ to V of cancer progress more
clearly. This would be more accepted by researchers/practitioners.

2) Statistical errors: one study has an unavoidable limitation on its sample size,
sometimes causing a significant bias. To overcome this issue, a popular approach
is meta-analysis, where independent studies are gathered and their statistical
features, such as DOR, can be combined. Meta-analysis is a sophisticated manner
to compensate many issues of a single study, particularly bias, while it is
impossible to remove these issues completely, because usually meta-analysis
uses only the statistics derived from the original studies and these statistics
eventually have to keep the original issue. On the other hand, ROMA uses a
predictive model, in which parameters, such as coefficients of the linear
equations, should be estimated from the original instances, where each single
assay can be one instance. This implies that a predictive model is more robust,
being rather released from the bias generated in each original study, by which
the predictive model makes meta-study easier than ever.

3) Technical errors: The current technological innovation has not achieved the
sufficient sensitivity to properly identify the low abundance proteins. Until the
instrumentation is drastically improved, highly predictive statistical
quantification methods are needed to decrease the lack of specificity in the
current instrumentation methods. One possible solution is definitely meta-
analysis, and as explained above, predictive models, such as ROMA, would be a
further solution for this problem.

Overall developing predictive models would be a highly promising direction to
achieve higher diagnostic, prognostic and predictive performance for evaluating
biomarkers. ROMA uses logistic regression, which is a widely used basic and
powerful predictive model. Higher performance models than logistic regression
are already developed in machine learning and are currently well-used in many
applications. For example, regression trees and support vector regression were
utilized for validating biomarkers already [41]. Further high-performance
predictive methods might be used in the future, and might change the quality of
cancer biomarker evaluation. Another possible direction would combine
predictive models with previous measures like DOR. For example, ROMA with
DOR might be a powerful technique that statistics can play to compensate the
lack of precision and accuracy used to validate the candidate biomarker.
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Tables

Table 1
A comprehensive list of currently popular or approved biomarkers.
The following table details the characteristics, applications and a quantitative

measure of its quality as a clinical diagnostic tool in its respective cancer [3, 36,
44-109]

Figure Legends & Figures

Diagram 1

EDRN: Phases of Biomarker Development.

The large number of biomolecules that are initially considered as potential
candidates pass through the other stages (Phase II-V) to validate its specificity
and sensitivity in diagnosis, prognosis, and for treatment prediction. The long,
costly and stringent road through the five-phase process filters the candidates to
the ‘certain few’ that are FDA approved [5, 7].

Diagram 2

Biomarker Performance Characteristics: Quantification Assessment of
Biomarker.
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This contingency table distinguishes the population pool into the various
subgroups (TP, FP, FN, TN), depending on the absence and the presence of the
biomarker. This subsequently quantifies the sensitivity and the specificity of the
biomarker correlated to the disease.

References:

[1] Heidenreich A BM, Joniau S, Mason MD, Mottet N, Schmid HP et al. Guidelines
on prostate cancer. Eur Urol 2008;53:68-80.

[2] McGuire WL CG. Prognostic factors and treatment decisions in axillary-node-
negative breast cancer. N Engl ] Med. 1992;25:1756-61.

[3] Fuzery AK L], Chan MM, Chan DW. Translation of proteomic biomarkers into
FDA approved cancer diagnostics: issues and challenges. Clinical Proteomics. Clin
Proteomics. 2013;10:13.

[4] EP D. The failure of protein cancer biomarkers to reach the clinic: why, and
what can be done to address the problem? BMC Med. 2012.

[5] Pepe MS ER, Feng Z, Potter ]D, Thompson ML, Thornquist M, Winget M, Yasui
Y. Phases of Biomarker Development for Early Detection of Cancer. ] Natl Cancer
Inst. 2001;93:1054-61.

[6] Kumar M SS. Biomarkers of diseases in medicine. Current Trends of Science.
2009:403-17.

[7] Drunker E KK. Pitfalls and limitations in translation from biomarker
discovery to clinical utility in predictive and personalised medicine. EPMA ].
2013;4:4-7.

[8] Kern. Why Your New Cancer Biomarker May Never Work: Recurrent Patterns
and Remarkable Diversity in Biomarker Failures. Cancer Res. 2012;72:6097-101.
[9] Schroder FH CH, Wolters T, van den Bergh RC, Gosselaar C, Bangma CH et al.
Early detection of prostate cancer in 2007. Part 1: PSA and PSA kinetics. Eur
Urol. 2008;53:468-77.

[10] HB G. Are biomarkers for bladder cancer beneficial? ] Urol. 2010;183:11-2.
[11] Xu Y SZ, Wiper DW, Wu M, Morton RE, Elson P et al. Lysophosphatidic acid
as a potential biomarker for ovarian and other gynecologic cancers. JAMA.
1998;280:719-23.

[12] EP D. Cancer biomarkers: can we turn recent failures into success? | Natl
Cancer Inst. 2010;102:1462-7.

[13] Baker DL MP, Miller B, et al. Plasma lysophosphatidic acid concentration
and ovarian cancer. JAMA. 2002;287:3081-2.

[14] Drucker E KK. Pitfalls and limitations in translation from biomarker
discovery to clinical utility in predictive

and personalised medicine. EPMA Journal. 2013;4.

[15] Lewington S BF, Clarke R. A review on meta-analysis of biomarkers:
promises and pitfalls. Clin Chem. 2012;58:1192-204.

[16] Buckler A] PD, Ouelette M, Danagoulian ], Wernsing G, Suzek BE A novel
knowledge representation Framework for the statistical validation of
quantitiative imaging biomarkers. | Digit Imaging 2013;26:614-29.

[17] Leman ES CG, Trock BJ, Sokoll L], Chan DW, Mangold L et al. . EPCA-2: a
highly specific serum marker for prostate cancer. ] Urol. 2007;69:714-20.

13



[18] Li Y SZ, Wu Y, Babovic-Vuksanovic D, Li Y, Cunningham JM, Pankratz VS,
Yang P. Cystic fibrosis transmembrane conductance regulator gene mutation and
lung cancer risk. Lung Cancer. Lung Cancer. 2010;70:14-21.

[19] EP D. Early prostate cancer antigen-2 (EPCA-2): a controversial prostate
cancer biomarker? Clin Chem. 2010;56:542-4.

[20] Bohning D HH, Patilea V. A limitation of the diagnostic-odds ratio in
determining an optimal cut-off value for a continuous diagnostic test. Stat Meth
Med Res. 2011;20:541-50.

[21] ] A. Moving Beyond sensitivity and specificity: using likelihood ratios to help
interpret diagnostic tests. Aust Prescr. 2003;26:111-3.

[22] Grund B SS. Analysis of biomarker data: logs, odds ratios and ROC curves.
Curr Opin HIV AIDS. 2010;5:473-9.

[23] P S. ROC analysis: applications to the classification of biological sequences
and 3D structures. Brief Bioinform. 2008;9:198-2009.

[24] Warnock DG PC. A roadmap for biomarker qualification. Nat Biotech.
2010;28:444-5.

[25] Zheng Y CT, Feng Z. Application of the time-Dependent ROC curves for
prognostic accuracy with multiple biomarkers. Biometrics. 2005;62:279-87.

[26] Pencina M] DARS, D’Agostino RB Jr, Vasan RS. Evaluating the added
predictive ability of a new marker: from area under the ROC curve to
reclassification and beyond. Stat Med. 2008;27:157-72.

[27] Hanley JA MB. The meaning and use of the area under a receiver operating
characteristic (ROC) curve. ] Radiol. 1982;143:29-36.

[28] Grimes DA SK. Making sense of odds and odds ratios. Obstet Gynecol.
2008;111:423-6.

[29] Lotrakul M SS, Saipanish R. Reliability and validity of the Thai version of the
PHQ-9. BMC Psychiatry. 1998;8:46.

[30] Jiang W FB, Simon R. Biomarker adaptive threshold design: A procedure for
evaluating treatment with possible biomarker-defined subset effect. ] Natl
Cancer Inst. 2007;99:1036-43.

[31] Glas AS L], Prins MH, Bonsel GJ, Bossuyt PMM. The diagnostic odds ratio: a
single indicator of test performance. ] Clin Epidemiol. 2003;56:1129-35.

[32] Magder LS FA. Optimal choice of a cut point for a quantitative diagnostic test
performed for research purposes. ] Clin Epidemiol. 2003;56:956-62.

[33] Fischer JE BL, Jaeschke R. A readers’ guide to the interpretation of
diagnostic test properties: clinical example of sepsis. ] Intensive Care Med.
2003;29:1043-51.

[34] Pepe MS FZ, Huang Y, Longton G, Prentice R, Thompson IM, Zheng Y.
Integrative the predictiveness of a marker with its performance as a classifier.
Am ] Epidemiol. 2007;167:362-8.

[35] Pepe MS JH, Longton G, Leisenring W, Newcomb P. Limitations of the odds
ratio in gauging the performance of a diagnostic, prognostic, or screening
marker. Am ] Epidemiol. 2004;159:82-890.

[36] ] A. OVA1 test for preoperative assessment of ovarian cancer. Community
Oncol. 2010;7:249-51.

[37] Ueland FR DC, Seamon LG, et al. Effectiveness of a multivariate index assay
in the preoperative assessment of ovarian tumors. Obstet Gynecol.
2011;117:1289-97.

14



[38] Chudeka-Glaz A C-PA, Menkiszak ], Sompolska-Rzechula A, Strojna A, Byra E
et al. Preoperative diagnostic performance of ROMA (Risk of Ovarian Malignancy
Algorithm) in relation to etiopathogenesis of epithelial ovarian tumors. ] Mol
Biomark Diagn. 2013.

[39] Montagnana M DE, Ruzzenente O, Bresciana V, Nuzzo T, Gelati M et al. The
ROMA (Risk of Ovarian Malignancy Algorithm) for estimating the risk of
epithelial ovarian cancer in women presenting with pelvic mass: is it really
useful? Clin Chem Lab Med. 2011;49:521-5.

[40] Xu E SQ, Gu ], Chow WH, Ajani JA, Wu X. Association of mitochondrial DNA
copy number in peripheral blood leukocytes with risk of esophageal
adenocarcinoma. Carcinogenesis. 2013.

[41] Chen L X], Riggins RB, Clarke R, Wang Y. Identifying cancer biomarkers by
network-constrained support vector machines. BMC Syst Biol. 2011;5:161-81.
[42] NR C. Use and misuse of the receiver operating characteristic curve in risk
prediction. Circulation. 2007;115:928-35.

[43] Janes H PM, Gu W. Assessing the value of risk predictions by using risk
stratification tables. Ann Intern Med. 2008;149:751-60.

[44] T G. The new data on prostate cancer screening: What should we do now?
Clev Clin ] Med 2009;76:446-8.

[45] Gann PH M], Catalona W], Stampfer M]. Strategies combining total and
percent free prostate specific antigen for detecting prostate cancer: a
prospective evaluation. ] Urol. 2002;167:2427-34.

[46] Sterling RK JL, Gordon F, Sherman M, Venook AP, Reddy KR. Clinical utility
of AFP-L3% measurement in North American patients with HCV-related
cirrhosis. Am ] Gastroenterol. 2007;102:2196-205.

[47] Yuen MF LC. Screening for hepatocellular carcinoma: survival benefit and
cost-effectiveness. Ann Oncol. 2003;14:1463-7.

[48] Zinkin NT GF, Bhaskar K, Out HH, Spentzos D, Kalmowitz B, et al. Serum
proteomics and biomarkers in hepatocellular carcinoma and chronic liver
disease. Clin Cancer Res. 2008.

[49] Partheen K KB, and Sundfeldt K. Evaluation of ovarian cancer biomarkers
HE4 and CA-125 in women presenting with a suspicious cystic ovarian mass. ]
Gynecol Oncol. 2011;22:244-52.

[50] Bozkurt M YA, Aral I. Evaluation of the importance of the serum levels of CA-
125, CA15-3, CA-19-9, carcinoembryonic antigen and alpha fetoprotein for
distinguishing benign and malignant adnexal masses and contribution of
different test combinations to diagnostic accuracy. Eur ] Gynaecol Oncol.
2013;34:540-4.

[51] Okamoto T OT, Izuo M, Ito Y, Yamashita T, Tanaka R et al. . Decision making
using postoperative CEA and CA 15-3 for detection of breast cancer recurrence.
Breast Cancer. 1995;2:127-31.

[52] Stieber P ND, Heinemann V. Tumor markers in metastatic breast cancer:
High tumor specificity within the reference range. ] Clin Oncol. 2006;24.

[53] Passerini R CM, Boveri S, Salvatici M, Radice D, Zorzino L, et al. The Pitfalls of
CA19-9: Routine Testing and Comparison of Two Automated Immunoassays in a
Reference Oncology Center. Am ] Clin Pathol. 2012;138:281-7.

[54] Gui JC YW, and Liu XD. CA19-9 and CA242 as tumor markers for the
diagnosis of pancreatic cancer: a meta-analysis. CLin Exp Med. 2013.

15



[55] Bellehaninna UK CR. Serum CA 19-9 as a Biomarker for panceatic cancer - a
comprehensive review. Indian ] Surg Oncol. 2011;2:88-100.

[56] Cho HY KK, Jeon T, Kim YB, and No JH. CA19-9 elevation in ovarian mature
cystic teratoma: Discrimination from ovarian cancer CA 19-9 level in teratoma.
Med Sci Moni. 2013;19:230-5.

[57] Roy S DA, and Kar K. Comparison of urinary and serum CA 19-9 as markers
of early stage urothelial carcinoma. Int Braz ] Urol. 2013;39:631-8.

[58] Liftner D M], Akrivakis C, Geppert R, Petrides PE, Wernecke KD et al. .
Tumor type M2 pyruvate kinase expression in advanced breast cancer.
Anticancer Res. 2000;20:5077-82.

[59] Barillari P BA, Chirletti P, et al. Role of CEA, TPA, and CA 19-9 in the early
detection of localized and diffuse recurrent rectal cancer. Dis Colon Rectum.
1992;435:471-6.

[60] Palmqvist R EB, Lindmark G, Hallmans G, Tavelin B, Nilsson O et al.
Prediagnostic levels of carcinoembryonic antigen and CA 242 in colorectal
cancer: a matched case-control study. Dis Colon Rectum. 2003;46:1538-44.

[61] Mahdavi A PT, Nezhat F. Induction of ovulation and ovarian cancer: a critical
review of the literature. ASRM. 2006.

[62] Gabrielli S RR, Pilu G, Pavani A, Capelli M, Milano V et al. . Accuracy of
transvaginal ultrasound and serum hCG in the diagnosis of ectopic pregnancy
ultrasound. Obstet Gynecol. 1992;2:110-5.

[63] Lempiainen A HK, Blomqvist C, Alfthan H, Stenman UH. Hyperglycosylated
human chorionic gonadotropin in serum of testicular cancer patients. Clin Chem.
2012.

[64] Soyluk O BH, Aral F, Alagol F, Ozbey NC. Papillary thyroid carcinoma
patients assessed to be at low or intermediary risk after primary treatment are
at greater risk of long term recurrence if they are thyroglobulin antibody
positive or do not have distinctly low thyroglobulin at initial assessment.
Thyroid. 2011.

[65] Baudin E DCC, Cailleux AF, Leboulleux S, Travagli JP, Schlumberger M.
Positive predictive value of serum thyroglobulin levels, measured during the first
year of follow-up after thyroid hormone withdrawal, in thyroid cancer patients. ]
Clin Endocrinol Metab. 2003;88:1107-10.

[66] Tan H XY, Xu ], Wang F, Nie S, Yang M et al. . Association of increased heat
shock protein 70 levels in the lymphocyte with high risk of adverse pregnancy
outcomes in early pregnancy: a nested case-control study. Cell Stress Chaperon.
2007;12:230-6.

[67] Shibata T AT, Tahara T, Yoshioka D, Maruyama N, Fujita H, Kamiya Y,
Nakamura M et al. Protective role of genetic polymorphism of heat shock protein
70-2 for gastric cancer risk. Dig Dis Sci. 2009.

[68] Uozaki H IT, Kakiuchi C, Horiuchi H, Gotoh T, lijima T et al. . Expressiom of
heat shock proteins in osteosarcoma and its relationship to prognosis. Pathol Res
Pract. 2000;196:665-73.

[69] Margel D P-FM, Baniel ], Yossepowitch O , Cohen IR. Stress proteins and
cytokines are urinary biomarkers for diagnosis and staging of bladder cancer.
Eur ] Uro. 2011.

[70] King KL LA, Chau GY, Chi CW, Wu CW, Huang CL, Lui WY. Prognostic
significance of heat shock protein-27 expression in hepatocellular carcinoma and
its relation to histologic grading and survival. Cancer. 2000.

16



[71] Ulivi P ML, Casoni GL, Scarpi E, Bucchi L, Silvestrini R et al. Multiple marker
detection in peripheral blood for NSCLC diagnosis. PloS One. 2013;8:e57401.

[72] Chen CL TH, Liu JC, Kashiwabara C, Feldman D, Sher L et al. . Reciprocal
regulation by TLR4 and TGF- 3 in tumor-initiating stem-like cells. ] Clin Invest.
2013;123:2832-49.

[73] Gonzalez-Santiago AE M-TL, Sanchez-Llamas F, Troyo-Sanroman R, Gurrola-
Diaz CM. TGF- B 1 serum concentration as a complementary diagnostic
biomarker of lung cancer: establishment of a cut-point value. J Clin Lab Anal.
2011.

[74] Slattery ML H]J, Lundgreen A, Wolff RK. Genetic variation in the TGF-
signaling pathway and colon and rectal cancer risk. Cancer Epidemiol
Biomarkers Prev. 2011.

[75] Mose F NL, Njunguna R, Tamooh H, John-Stewart G, Farquhar C, Kiarie J.
Biomarker evaluation of self-reported condom use among women in HIV-
discordant couples. Int ] STD AIDS. 2013;24:537-40.

[76] Lazzeri M HA, Abrate A, de la Taille A, Redorta JP, McNicholas T et al. .
Clinical performance of serum prostate-specific antigen isoform [-2]proPSA
(p2PSA) and its derivatives, %p2PSA and the prostate health index (PHI), in men
with a family history of prostate cancer: results from a multicentre European
study, the PROMEtheusS project. BJU Intl. 2013;112:313-21.

[77] Yang Z LZ, Zhao B, Zhang W, Zhang ], Gi Z et al. . Diagnosis and preoperative
predictive value of serum HE4 concentrations for optimal debulking in epithelial
ovarian cance. Oncol Letters. 2013;6:28-34.

[78] Yesil A BG, Colak Y, Paker N and Gonen C. Prognostic significance of DR-70
levels in dysplastic colorectal polyps. Gastroenterol Res Pract. 2013.

[79] Shabaik A LG, Peterson M, Hasteh F, Tipps A, Datnow B, Weidner N.
Reliability of Her2 /neu, estrogen receptor, and progesterone receptor testing by
immunohistochemistry on cell block of FNA and serous effusions from patients
with primary and metastatic breast carcinoma. Diagn Cytopathol. 2011;39:328-
32.

[80] Deandrea S TR, Foschi R, Montella M, Dal Maso L, Falcini F et al. Alcohol and
breast cancer risk defined by estrogen and progesterone receptor status: a case-
control study. Cancer Epidemiol Biomarkers Prev. 2008;17:2025-8.

[81] Huang HJ NP, Drijkoingen M, Paridaens R, Wildiers H, Van Kimbergen E etal.
Association  between  tumour characteristics and HER-2/neu by
immunohistochemistry in 1362 women with primary operable breast cancer. ]
CLin Pathol. 2005;58:611-6.

[82] Sekijima Y US, Tojo K, Sano K, Shimizu Y, Imaeda T et al. High prevalence of
wild-type transthyretin deposition in patients with idiopathic carpal tunnel
syndrome: a common cause of carpal tunnel syndrome in the elderly. Human
Pathol. 2011;42:1785-91.

[83] Zhang ] FP, Liu H, Bai H, Wang Y, Zhang F. Apolipoprotein A-I and B levels,
dyslipidemia and metabolic syndrome in south-west Chinese women with PCOS.
Human Reprod. 2012.

[84] Barroso-Sousa R LR, Patricia I, Mendonca R, Memoria RR, Spiller F et al.
Decreased levels of alpha-1-acid glycoprotein are related to the mortality of
septic patients in the emergency department. Clinics (Sao Paulo). 2013;68:1134-
0.

17



[85] Mainous AG 3rd DV, Knoll ME, Hulihan MM, Grant AM, Wright RU.
Transferrin saturation and hospital length of stay and mortality in Medicare
beneficiaries. ] Am Geriatr Soc. 2013;61:132-6.

[86] Badoux XC KM, Wang X, O’Biren SM, Ferrajoli A, Daferl S et al.
Cyclophosphamide, fludarabine, alemtuzumab, and rituximab as salvage therapy
for heavily pretreated patients with chronic lymphocytic leukemia. Blood.
2011;118:2085-93.

[87] Kammerer S RR, Hoyal CR, Reneland R, Marnellos G, Kiechle M et al.
Association of the NuMA region on chromosome 11q13 with breast cancer
susceptibility. Proc Natl Acad Sci U S A. 2005;102:2004-9.

[88] Soto ME BN, Chineya ACP, Rizo H, Telich-Tarriba JE, Juarez-Orozco LE,
Melendez G et al. Predictive value of antinuclear antibodies in autoimmune
diseases classified by clinical criteria: Analytical study in a specialized health
institute, 1 year follow-up. Results Immunology. 2013.

[89] Joseph B HP, Aziz H, Snyder K, Wynne ], Kulvatunyou N et al. . Continuous
noninvasive hemoglobin monitor from pulse ox: ready for prime time? World ]
Surg. 2013;37:525-9.

[90] Laudisio A BS, Gemma A, Ferrucci L, Antonelli Incalzi R. Metabolic syndrome
and hemoglobin levels in elderly adults: the Invecchiare in Chianti Study. ] Am
Geriatr Soc. 2013;61:963-8.

[91] Takahashi Y NT, Takeno S, Kimura Y, Okubo M, Kawahara K. Reduced
expression of p63 has prognostic implications for patients with esophageal
squamous cell carcinoma. Oncol Reports. 2006;15:323-8.

[92] Kim TW LH, Kang YK, Choe MS, Ryu MH, Chang HM. Prognostic significance
of c-kit mutation in localized gastrointestinal stromal tumors. CLin Cancer Res.
2004;10:3076-81.

[93] Meigs ]JB WK, Sullivan LM, Hunt K], Haffner SM, Stern MP. Using metabolic
syndrome traits for efficient detection of impaired glucose tolerance. Diabetes
Care. 2004;27:1417-26.

[94] Seliger VI RD, Van Goor F, Schmelz A, Mueller P. The predictive potential of
the sweat chloride test in cystic fibrosis patients with the G551D mutation. J Cyst
Fibros. 2013;12:706-13.

[95] McWilliams RR PG, Rabe KG, Holtegaard LM, Lynch PJ, Bishop MD,
Highsmith EW Cystic fibrosis transmembrane conductance regulator (CFTR)
gene mutations and risk for pancreatic adenocarcinoma. Cancer. 2010.

[96] Auewarakul CU LD, Promsuwicha O, ;Munkhetvit C. C kit receptor tyrosine
kinase (CD117) expression and its positive predictive value for the diagnosis of
Thai adult acute myeloid leukemia. Ann Hematol. 2006;85:108-12.

[97] Nakagawa T MS, Goto Y, Koyanagi K, Kitago M, Shingai T et al. . Detection of
circulating tumor cells in early-stage breast cancer metastasis to axillary lymph
nodes. Clin Cancer Res. 2007.

[98] Daga H MH, Yamamoto N, Shibata T, Endo M, Watanabe H et al. Small cell
lung cancer and other thoracic malignancies: 1519PD Phase II study of
Amrubicin in Patients with Refractory or Resistant Rleapsed Small-Cell Lung
Cancer: Japan Clinical Oncology Group Study. Ann Oncol. 2012;23: ix492-ix8.

[99] Tang L ZS, Wei Liu W, Parchim NF, Huang ], Tang Y, Gan P, Zhong M.
Diagnostic accuracy of circulating tumor cells detection in gastric cancer:
systematic review and meta-analysis. BMC Cancer. 2013;13.

18



[100] Jin T, Peng, H, Wu, H. Clinical value of circulating liver cancer cells for the
diagnosis of hepatocellular carcinoma: A meta-analysis. Biomed Rep.
2013;1:731-6.

[101] March S G-PJ, Masaguer A, Pizcueta P, Engel P, Bosch J. 549 P-selectin
mediates leukocyte rolling in concanavalin-A induced hepatitis. | Hepatol.
2004;40.

[102] Msaouel P KM. Diagnostic value of circulating tumor cell detection in
bladder and urothelial cancer: systematic review and meta-analysis. BMC Cancer.
2011.

[103] Walter RB AF, Estey EH, Bernstein ID. Acute myeloid leukemia stem cells
and CD33-targeted immunotherapy. Blood. 2011.

[104] Kyrgidis A TT, Triaridis S. Melanoma: Stem cells, sun exposure and
hallmarks for carcinogenesis, molecular concepts and future clinical
implications. ] Carcinog. 2010.

[105] Saad AA RS, Kanate A, Sebhai A, Merano G, Hobbs G. Correlation among
[18-F] FDG-PET/CT, tumor marker CA 27.29, and circulating tumor cells in
metastatic breast cancer. ] Clin Oncol. 2007;25:suppl 10533.

[106] Murakami Y TH, Tanahashi T, Tanaka ], Kumada T, et al. Comprehensive
miRNA expression analysis in peripheral blood Can diagnose liver disease. PloS
One. 2012;7.

[107] Sozzi G CD, Leon M, Cirincione R, Roz L, Ratcliffe C, Roz E et al.
Quantification of free cirulating DNA As a diagnostic marker in lung cancer. ] Clin
Oncol. 2003;21:3902-8.

[108] Douillard JY OG, Cobo M, Ciuleanu T, McCormack R, Webster A et al. .
First-line gefitinib in Caucasian EGFR mutation-positive NSCLC patients: a phase-
IV, open-label, single-arm study. Brit ] Cancer. 2014;110:55-62.

[109] Medeiros LR RD, da Rosa MI, Bozzetti MC. Accuracy of CA125 in the
diagnosis of ovarian tumors: A quantitative systematic review. Int ] Gynecol
Obstet. 2009;142:99-105.

19



