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Abstract

In a force-reflecting bilateral teleoperator with a time delay, teleoperator stability is a serious

problem. We have studied a bilateral teleoperator system with a time delay. We obtained stable

conditions using proportional derivative based (PD-based) control law. In this paper, PD-based

control law is further studied. First, we study a PD control law with relative damping gain and its

stabilizing effect that previously has not been studied quantitatively. A stable condition is derived

with this PD-based controller with relative damping gain. Next, teleoperator performance by the PD

control law with relative damping is evaluated and compared to PD control laws with only grounded

damping using transparency analysis with a hybrid matrix. We showed that, the performance of

the PD-based controller can be improved by introducing relative damping gain into the controller.

As a controller design example, numerical simulations and 1-DOF experiments were conducted.

Finally, peg-in-hole experiments and performance evaluations in realistic multi-DOF environments

were conducted to demonstrate performance improvements by introducing the relative damping. A

controller design that guarantees both stability and performance was achieved by iterating stable

gain setting and performance evaluation.

keywords: Bilateral control, Passivity, Teleoperation, Time delay

1 INTRODUCTION

A bilateral teleoperator provides important force information from a remote environment to an operator.

When there is transmission time delay, stability is a major problem with conventional bilateral control

methods such as a symmetric position servos or a force-reflecting servos [23]. Anderson and Spong [1]

proposed a bilateral control law using scattering theory and maintained stability in spite of communica-

tion delays. Niemeyer and Slotine [12] [13] [14] also studied this problem. Besides the above well-known

approaches, there are several other approaches. Leung et al. [9] proposed a bilateral controller for time

delays based on the H∞-optimal control and µ-synthesis framework. Seo, et al. [22] proposed a bilateral

teleoperator with an energy-bounding algorithm. Oboe, et al. [19], Nuno, et al. [15] and Lee, et al.
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[8] dealt with this problem by using a proportional derivative (PD) controller. We focused on PD con-

trollers [5]. The PD bilateral controller has two designs for adding derivative controller gain, grounded

damping, and relative damping. The term “relative damping” means the damping force is proportional

to the difference between master velocity and slave velocity. “Grounded damping” means the damping

force is proportional to the absolute arm velocity. In reference to [5], we derived the stable PD controller

conditions with grounded damping. However, the characteristics of grounded damping gain and relative

damping gain were not studied. Lee, et al [8] studied the PD controller. In their analysis they separately

discussed the passivity of a proportional gain - grounded damping gain system and the passivity of a

relative damping gain system. They achieved a sufficiently stable teleoperator. However, they did not

explain the point how the two types of damping gain effect each other, stability and performance. Nuno,

et al [15] [16] [17] [18] studied PD controllers. In their research, they stabilized a teleoperator system

with a grounded damper gain and relative damper gain. At the end of their study[16], they noticed that

relative damping gain had a stabilizing effect, but their control law was only stabilized by a grounded

damping gain, not with a relative damping gain. The PD controller with only grounded damping and

the PD controller with grounded and relative damping have been commonly used in delayed bilateral

master-slave applications [6] [21], but a comparison of these two controllers has not been conducted.

The effect of the addition of relative damping has not been clarified.

This paper studies the teleoperator stability of a PD controller with both types of damping. A

stability condition is derived. We will show that the introduction of relative damping maintains the

stability of a system with attenuated grounded damping and improves performance. The teleoperator

performance is studied by a transparency analysis using hybrid matrices and simulations. A controller

design procedure that guarantees both stability and performance is proposed. The stability, performance

evaluation method, controller design method and controller performance are evaluated with 1-DOF

numerical simulations. Finally, peg-in-hole experiments are conducted to evaluate the validity of these

methods in a realistic multi-DOF condition.

In this work, we assume the delay is constant, the delay value is known, and the delay from master to

slave and the delay from slave master are equal. The stability under other delay conditions are discussed

in Appendix. D.

2 DYNAMICS, STABILITY AND PERFORMANCE EVAL-

UATION OF THE TELEOPERATOR SYSTEM

2.1 Dynamics of the teleoperator system

We studied the stability of a single degree of freedom teleoperation system composed of a pair of

manipulators with a time delay as shown in Fig. 1. The springs and dampers in the “control” area

of the dashed line box in Fig. 1 are not the real mechanisms. They are mechanical expressions of the

2



control law. The dynamics of master and slave arms can be formulated as follows:

τm + fm = mmẍm + bmẋm (1)

τs − fs = msẍs + bsẋs (2)

where xm and xs denote the respective positions of the master and slave arms, τm and τs are the actuator

driving forces, and bm and bs represent the viscous coefficients of the driving mechanism. fm is the force

the operator applies to the master arm, and fs is the force the slave arm exerts on the environment.

The generalized mass-dashpot-spring models that are used to represent the operator and the task

are

τop = mopẍm + bopẋm + copxm + fm (3)

fs = mwẍs + bwẋs + cwxs (4)

where τop is the force generated by the operator’s muscles. In the preceding equations, m, b, and c are

the inertia, damping, and stiffness parameters. Subscript op is the operator and w is the task.

In this paper, the development of an analytical framework is complemented by the modeling of an

actual teleoperator system. The modeling approach transforms the teleoperator system model into an

electrical circuit. The teleoperator system can be replaced by an electric circuit, see Fig. 2. Replacing

velocity and force in physical systems with current and voltage in circuits, the dynamic characteristics

of the master and the slave arm, the operator, and the environment are represented by impedance

Zm, Zs, Zop, and Ze, respectively. The Vm, Vs, Vop, Im, and Is correspond to fm, fs, fop, ẋm, and ẋs,

respectively. The Um and Us are the actuator drive forces τm and τs.

The Zm, Zs, Zop, and Ze are

Zm =
mms2 + bms

s
(5)

Zs =
mss

2 + bss

s
(6)

Zop =
mops

2 + bops+ cop
s

(7)

Ze =
mws

2 + bws+ cw
s

. (8)

Using these electric circuit representations, the teleoperator system is expressed by Vm

Vs

 =

 z11 z12

z21 z22

 Im

−Is

 (9)

where Z = [zij ] is the impedance matrix of the teleoperator [20].
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Figure 1: Bilateral master slave system with PD controller with only grounded damping gain.
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Figure 2: Electrical circuit expression of master-slave system, operator and environment.

2.2 Stability of PD-based bilateral controller with grounded damping

We derive bilateral PD controller stability with only grounded damping. The PD controller is expressed

by the following equations:

τm = −Km(xm(t)− xs(t− T2))−D1mẋm (10)

τs = Ks(xm(t− T1)− xs(t))−D1sẋs (11)

where Km and Ks are position gains and D1m and D1s are grounded damping gains. T1 and T2 are

time delays from the master to the slave and from the slave to the master, respectively. The physical

interpretation of this controller is shown in Fig. 1.

The impedance matrix of the teleoperator is as follows [3]:

Z =

 mms+ bm +D1m + Km
s Kme−sT2/s

Kse
−sT1/s mss+ bs +D1s +

Ks
s

 . (12)

We derived stability for any passive terminations by applying Llewellyn’s stability criteria [2] [10] to

(12). The teleoperator is stable for all passive terminations if the following conditions are satisfied for

all frequencies:

D1m + bm ≥ 0 (13)
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Figure 3: Master slave system with PD controller with grounded and relative damping gain.

D1s + bs ≥ 0 (14)

(D1m + bm)(D1s + bs) ≥
KmKs

ω2
sin2

ω(T1 + T2)

2
. (15)

Rewriting the right-hand side of (15), using the relationship sin (ω(T1 + T2)/2) < ω(T1 + T2)/2 , ∀

ω, T1, T2 > 0, we get the following inequality:

(D1m + bm)(D1s + bs) ≥
KmKs(T1 + T2)

2

4
. (16)

If we consider a symmetrical system, i.e., Km = Ks = K,D1m = D1s = D1, T1 = T2 = T, bm = bs = b,

then (15) and (16) become (17) and (18), respectively.

(D1 + b)2 ≥ (
K

ω
sinωT )2 (17)

D1 + b ≥ KT (18)

2.3 Stability of PD-based bilateral controller with grounded and relative

damping

We derive bilateral PD controller stability with grounded damping and relative damping. The physical

interpretation of this controller is shown in Fig. 3.

As shown in Fig. 3, we added relative damping gains D2m and D2s in addition to grounded damping

gains D1m and D1s.

This type of PD controller is expressed by the following equations:

τm = −Km(xm(t)− xs(t− T2))

−D2m(ẋm(t)− ẋs(t− T2))−D1mẋm (19)

τs = Ks(xm(t− T1)− xs(t))

+D2s(ẋm(t− T1)− ẋs(t))−D1sẋs . (20)
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Figure 4: Numerical calculation results on the right side of eq. (24) (T=0.05 s, K=10.0 N/m ).

The elements of the impedance matrix are

z11 = mms+ bm +D1m +D2m +
Km

s

z12 = (
Km

s
+D2m)e−sT2

z21 = (
Ks

s
+D2s)e

−sT1

z22 = mss+ bs +D1s +D2s +
Ks

s
. (21)

Again, for simplicity, we consider the above to be a symmetrical system, i.e. Km = Ks = K,D1m =

D1s = D1, D2m = D2s = D2, and T1 = T2 = T .

Applying Llewellyn’s criteria to (21), the teleoperator is stable for passive terminations if the follow-

ing conditions are satisfied at all frequencies:

D1 + b+D2 ≥ 0 (22)

(D1 + b+D2)
2 ≥ (D2 cosωT − K

ω
sinωT )2 . (23)

Eq. (23) can be rewritten as follows:

D1 + b ≥ |D2 cosωT − K

ω
sinωT | −D2 . (24)

By solving (24) numerically, we find parameters D1 and D2 satisfy (22) and (24) under given K, T , and

b .

In Fig. 4, the numerical calculation results on the right side of (24) are shown. In this calculation,

the parameters used are T = 0.05 s, K = 10.0 N/m, and D2 =0.00, 0.10, 0.25, 0.50 and 1.00 N·s/m.

The case D2 = 0.00 corresponds to a PD controller with only grounded damping, see Section 2.2. The
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Table 1: H and G matrix elements, physical interpretations and ideal values.

Element
of

H and G
matrix

Physical interpretation Ideal
value

Condition
Input
port

Output
port Interpretation Conceptual figure

h12 =
Vm

Vs

∣∣∣∣
Im=0

Master
arm is

constrained

Master Slave

Reverse force gain
Vm (=F   )m

Vs (=F  )s

I m (=x   )m

Signal transmission

Environment

Hand
Fixed

Master arm Slave arm

I s (=x   )s


1

h22 =
−Is
Vs

∣∣∣∣
Im=0

1/(Output impedance) 0

h11 =
Vm

Im

∣∣∣∣
Vs=0

Slave
arm is
free

Input impedance
Free

Signal transmission

Hand

Master arm Slave arm

Vm (=F   ) m

I s (=x   )sI m (=x   )m

0

h21 =
−Is
Im

∣∣∣∣
Vs=0

Velocity gain -1

g12 =
Im
−Is

∣∣∣∣
Vm=0

Master
arm is
free

Slave Master

Velocity gain

Signal transmission

Environment

Free

Master arm Slave arm

Vs (=F  )s

I s (=x   )sI m (=x   )m

-1

g22 =
Vs

−Is

∣∣∣∣
Vm=0

Input impedance 0

g11 =
Im
Vm

∣∣∣∣
Is=0

Slave
arm is

constrained

1/(Output impedance)

Signal transmission

Environment
Hand

Fixed

Master arm Slave arm

Vs (=F  )sVm (=F  )m

I s (=x   )sI m (=x   )m

0

g21 =
Vs

Vm

∣∣∣∣
Is=0

Reverse force gain 1

calculation shows that the grounded damping gain D1 can be set smaller as a relative damping gain

D2 increases from zero. It should be noted that, in order to satisfy inequality (24) with K > 0, D1 + b

cannot be zero no matter how large we set D2.

2.4 Teleoperator transparency as a performance measurement and evalua-

tion using hybrid matrix and inverse hybrid matrix

In this section, we study the performance measurement of bilateral teleoperators with two PD controllers,

as shown in the previous section.

For bilataral teleoperation, a completely transparent teleoperation system is ideal, i.e., the operators

feel that they are directly interacting with the remote task [7]. If this ideal is achieved, Vm = Vs and

Is = Im are satisfied.

To measure the performance of the teleoperator quantitatively, Lawrence [7] calculated zt/ze and

compared it to the ideal value 1 + 0j, where zt is the impedance felt by the operator (= Vm/Im) and

ze is the task impedance (= Vs/Is). Using this method, we evaluated how operator feeling is similar to

the remote task, expressed as ze.
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At first, we used the above quantitative method to measure the performance of a teleoperator by

PD controller. When the task dynamics and the master arm dynamics are the same, ze approaches zt

as the frequency increases. Therefore, the ratio zt/ze approaches the ideal value 1+0j, even though the

slave arm does not follow the master arm because of the high frequency motion of the master arm and

the delay between the master and the slave. In this situation, even if the index zt/ze is apparently equal

to 1+ 0j, the slave arm actually cannot follow the master arm. So the situation is not ideal. The affect

of delay between master and slave is not reflected by the index zt/ze. The interaction and tracking of

the master and slave sides are not reflected by the index zt/ze.

According to the discussion above, the performance of our teleoperator with time delay cannot

adequately be evaluated by this method. Therefore, we have come to the following conclusions.

Teleoperator performance is basically limited by master arm dynamics and slave arm dynamics. This

is remarkable, especially in a high-frequency region. Next, we must discern how transmission character-

istics from master to slave and from slave to master effect performance. Therefore, by evaluating each of

these four characteristics, performance can be precisely measured. This can be executed by performance

evaluation with the hybrid matrix H, as proposed by Hannaford [4].

In the next section, we introduce the hybrid matrix expression of the teleoperator [4]. The four

elements of the hybrid matrix are input impedance, reverse force gain, velocity gain, and 1/output

impedance. These elements are derived from the master arm dynamics, the transmission characteristics

from master to slave, the transmission characteristics from slave to master, and the slave arm dynamics.

2.4.1 Performance measurement using H matrix

The teleoperator can be expressed by a hybrid matrix Vm

−Is

 =

 h11 h12

h21 h22

 Im

Vs

 (25)

where H = [hij ] is the hybrid matrix of the teleoperator. The physical interpretation of hij is shown in

Table 1.

If complete teleoperator transparency is achieved, the hybrid matrix becomes as follows:

Hideal =

 0 1

−1 0

 . (26)

Therefore, teleoperator performance can be evaluated by how close the elements of the hybrid matrix

are to the ideal values of Hideal.

From (21), the elements of the hybrid matrix of the teleoperator, see Section 2.3, are calculated as
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follows:

h11 = Mms+D2m +D1m + bm +
Km

s

−
(D2s +

Ks

s )(D2m + Km

s )e−s(T1+T2)

Mss+D1s + bs +D2s +
Ks

s

(27)

h12 =
(D2m + Km

s )e−sT2

Mss+D1s + bs +D2s +
Ks

s

(28)

h21 = −
(D2s +

Ks

s )e−sT1

Mss+D1s + bs +D2s +
Ks

s

(29)

h22 =
1

Mss+D1s + bs +D2s +
Ks

s

. (30)

The values of h11, · · ·, h22 depend upon the frequency ω. We calculate the limit of h11, · · ·, h22 as

ω → 0 and ω → ∞ limit as shown in Table 2. In the far right column, the ideal values are shown.

In case of the teleoperation with a time delay, the manipulation speed becomes slower because of the

delay, therefore hij(ω → 0) values are important. From the hij(ω → 0) value in Table 2, Km should be

set equal to Ks in order to achieve |h12| → 1 at ω → 0. Larger values of Km(= Ks) yields smaller |h22|

and larger |h11|. This relationship is a tradeoff. Longer delays cause a larger damping gain D1, a larger

|h11| and result in performance degradation. This means that the master arm responds in a resistant

manner, even when the slave arm is free.

2.4.2 Performance measurement using G matrix

Using H matrix, the performance can be evaluated more precisely than the simple index of zt/ze.

However, as shown in Table 1, we can evaluate the performance with H matrix if the master arm is

constrained or the slave arm is free. Here, we study the performance evaluation of other conditions.

In another expression, the teleoperator can be expressed using the G matrix: Im

Vs

 =

 g11 g12

g21 g22

 Vm

−Is

 (31)

where G = [gij ] is the inverse hybrid matrix of the teleoperator.

Using G matrix, we can evaluate the performance when the master arm is free and the slave arm is

constrained, see Table 1.

If the complete transparency of the teleoperator is achieved, the inverse hybrid matrix becomes as

follows:

Gideal =

 0 −1

1 0

 . (32)

The limits of g11, · · ·, g22 as ω → 0 and ω → ∞ are shown in Table 2.

The relationship between G matrix and H matrix is

G = H−1 =


h22

∆H
− h12

∆H

− h21

∆H

h11

∆H

 (33)
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Table 2: Limit value of hybrid matrix elements and ideal value achieved by perfect transparency.

Matrix Elements
ω → 0 ω → ∞ Ideal

value
Gain Phase Gain Phase

H

h11 D1m +
Km(D1s + bs)

Ks
+Km(T1 + T2) 0 Mmω

π

2
0

h12

Km

Ks
0

Km/Msω
2 (if D2m = 0)

−∞ 1
D2m/Msω (if D2m ̸= 0)

h21 1 π
Ks/Msω

2 (if D2s = 0)
−∞ -1

D2s/Msω (if D2s ̸= 0)

h22
ω

Ks

π

2

1

Msω
−π

2
0

G

g11
ω

Km

π

2

1

Mmω
−π

2
0

g12 1 π
Km/Mmω2 (if D2m = 0)

−∞ -1
D2m/Mmω (if D2m ̸= 0)

g21
Ks

Km
0

Ks/Mmω2 (if D2s = 0)
−∞ 1

D2s/Mmω (if D2s ̸= 0)

g22 D1s +
Ks(D1m + bm)

Km
+Ks(T1 + T2) 0 Msω

π

2
0

where

∆H = h11h22 − h12h21 . (34)

Using the elements of the impedance matrix, ∆H is rewritten as

∆H =
z11
z22

. (35)

When z11 = z22, we obtain the following equation g11 g12

g21 g22

 =

 h22 −h12

−h21 h11

 . (36)

Therefore, if the arm dynamics and the controller designs are the same as the master and the slave,

and z11 = z22 is true, the performance of the teleoperator under the four conditions shown in Table 1

can be evaluated by computing either the H or G matrix. In this situation, if H is equal to the ideal

values of H, the ideal response is realized. However, it is impossible to realize the ideal value with all

4 elements of H. For example, if we select high position gain to improve the performance of the slave

constraint condition, the performance of the slave free condition degrades. Therefore, the designer must

choose important factors and design gains in consideration of the task characteristics.

On the other hand, if the parameters or gain settings between master and slave are different, the
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Figure 5: Plot of the stability condition and D1 gain setting. The solid line is

the right side of (24) and the dashed line is the left side of (24).

evaluation of G includes information different from the evaluation of H. Therefore, both H and G

have to be considered to evaluate the performance. In the case of a scaled teleoperator with force or

position scaling, the ideal values of H and G are not the values shown in Table 2. They are the values

determined by its scaling factor. The performance measurement of a scaled teleoperator with a hybrid

matrix is discussed in appendix A.

3 1-DOF SIMULATION AND CONTROLLER DESIGN

3.1 Controlled system and controller design

In this section we show the results of 1-DOF numerical simulations. We assume a linear master slave

system as shown in Figs. 1 and 3. To confirm the effect of relative damping, we compare the two

controller types. In the simulations, we assume the time delay T1 = T2 = T = 0.05 s, the arm inertia

Mm = Ms = M = 1 kg, and the mechanism viscous coefficient bm = bs = b = 0 N·s/m.

We designed two controllers. Type A controller is a PD controller with grounded damping, as shown

in Section 2.2. Type B controller is a PD controller with grounded and relative damping, as shown in

Section 2.3. With both types, we set the controller proportional gain, Km = Ks = K = 10 N/m. With

type A, we set D2 to satisfy condition (18). With type B controller, we set D2 gain, D2m = D2s = D2 =

1.0 N·s/m. Using numerical calculation, we set D1m = D1s = D1 = 0.02 N·s/m to satisfy the stability

condition (24). Fig. 5 shows the result of numerical calculation with D1 gain setting.

Table 3 shows the controller gains. Fig. 6 shows the bode plot of each element of the hybrid matrix
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Table 3: Gain settings for both controllers: Type A and Type B.

Type K [N/m] D1 [N·s/m] D2 [N·s/m] Description

A 10.0 0.5 0.0 PD controller with grounded damping

B 10.0 0.02 1.0 PD controller with grounded damping

and relative damping

Table 4: Simulation parameter settings.

Case No. Controller Slave side Cw Mw bw

type environment [N/m] [kg] [N·s/m]

1 A Mass hold 0.0 1.0 0.0

2 B Mass hold 0.0 1.0 0.0

3 A Constrained by elastic wall 100.0 0.0 0.0

4 B Constrained by elastic wall 100.0 0.0 0.0

for both types of controller. In the low-frequency area, |h11| is closer to the ideal value for a type B

controller. The magnitude of h11 at ω → 0 is 2.0 with a type A controller, while it is 1.04 with a type B

controller. The ideal value is |h11| = 0.0. This means that a type B controller is less conservative than a

type A controller in the low frequency region, including direct current. By adding the relative damping

gain, the grounded damping gain can be attenuated and overall conservativeness is reduced. Around

ω = 3 rad/s, |h22| is closer to the ideal value in the a type B controller than the a type A. In the high

frequency region, h11 and h22 approach Mmω and 1/Msω, respectively, Mmω and 1/Msω represent the

dynamics of master and slave.

3.2 Simulation cases

Using the control law designed in the previous section, we conducted simulations. The tasks were a

mass pushing task and a wall pushing task. Table 4 shows the simulation cases and parameter settings.

To compare the controller performance using two environmental settings, we calculated four simulation

cases. In all cases, the initial state is xm = 0, xs = 0, ẋm = 0, and ẋs = 0.

In all cases, we assume that the operator applies a force of 1 N for 10 s to the master arm from

t = 10 s to t = 20 s, see Figs. 7 and 8.

We set the slave environment as in Table 4. In cases 1 and 2, the slave environment is a simple mass

hold. In case 3 and 4, the slave arm is constrained by an elastic wall. The natural position of the elastic

wall is xs = 0.
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Figure 6: Frequency-dependent H and G matrix of a Type A controller (only

grounded damping) and a Type B controller (with grounded and rel-

ative damping).

3.3 Simulation result and discussion

Figs. 7 and 8 show the simulation results of the mass pushing task and the wall pushing task. In Fig. 8,

the ideal response is the master arm position and the slave position are the same, and the force at

the master arm and the force at slave arm are the same. In the mass pushing task, the mass moves

slower than the ideal response because of the viscous force of the damping gain and the inertia of the

arms. However, the mass moves more quickly with the type B controller than the type A. This result

agrees with the low-frequency h11 value in Fig. 6. The fluctuation of force at the slave arm is less

with a type B controller, see Fig.7(b). In the wall pushing task, the fluctuation of the arm position is

observed. Fluctuation of arm positions occurs around the frequency of 0.5 Hz and is smaller with a type

B controller. This result agrees with the g11 value in Fig. 6. The simulation results and performance

evaluation results of H are consistent. Appendix B shows the simulation results on the slave side of the

rigid wall environment.
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Figure 9: 1-DOF experimental setup.

4 1-DOF EXPERIMENT

To confirm the effectiveness of the proposed controller and the validity of the simulation results, we

conducted an experiment with a pair of manipulators.

4.1 Experimental System and Experimental Cases

Fig. 9 shows the experimental master-slave system. The master and slave arms are 3-DOF planar-type

manipulators with electric motors, harmonic-drive reduction gears, and an encoder at each joint. In this

experiment, the elbow and wrist joints (J2m,J2s,J3m,J3s) are fixed, and only 1 DOF is used. The arm

length is 0.7 m. A torque sensor is attached to each joint and each joint is controlled by a Torque Servo

Actuator (TSA) [11]. The measured torque error is fed back to the servo controller and a fine torque

control of the output axis is achieved. Using TSA control, undesirable friction torque generated by the

harmonic-drive gear is compensated and attenuated. TSA gain at the shoulder joint is 12. A PC with

an Athlon microprocessor (1.9 GHz) is used to control both arms. The sampling period is 1.0 ms, and

the control law calculation frequency is 1 kHz. Each time delay from master to slave and from slave to

master is 50 ms. The time delay is calculated with software. The signals are buffered in the memory

for the time delay. Inertial parameters of the master and the slave arms are Mm = Ms = 1.27 kg·m2.

Table 5 shows the experimental cases and gain settings. The cases and gain settings are similar to those

shown in Section 3.2. In the case of an elastic wall environment, the slave arm tip is connected to an

elastic cord, and the elastic constant is 48 N·m/rad at the shoulder joint. In order to apply a constant

force to the master, we used a pulley and a weight, see Fig. 9.

4.2 Experimental Results

Fig. 10 shows the experimental results. We conducted the same experiment three times. Fig. 11 shows

the typical time response of a 1-DOF experiment. Fig. 12 shows the motor command. In Fig. 11, we
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Table 5: 1-DOF experiment cases and gain settings.

Case K D1 D2 Slave side Force applied to the master arm Result Typical

No. [N [N·s [N·s environment Tip force [gf] Equivalent joint time

/rad] /rad] /rad] torque [N·m] response

1 10 0.5 0.0 Free 100 0.68
Fig. 10(a)

Fig. 11 (a)

2 10 0.02 1.0 Free 100 0.68 Fig. 11 (b)

3 10 0.5 0.0 Elastic wall 200 1.36
Fig. 10(b)

Fig. 11 (c)

4 10 0.02 1.0 Elastic wall 200 1.36 Fig. 11 (d)
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(a) Arm angular velocity in free motion (b) Overshoot upon contacting the wall

Figure 10: 1-DOF experimental result.

plotted simulation results as well as experimental results. In the simulation, the joint friction of the real

hardware 0.05 N·m is included. In the case of free motion, because of the viscous force of the damping

gain, the arm movement is sticky. However, as shown in Figs. 10 and 11, the arm moves more quickly

with a type B controller than a type A when the same force is applied to the master arm. In the case

of an elastic wall environment, overshoot of the arm position at the moment of wall contact is observed.

The overshoot is smaller with controller type B than type A. The simulation results and experimental

results are consistent. In Fig.12, the motor command fluctuation in free motion is less with a type B

controller.

5 2-DOF PEG-IN-HOLE EXPERIMENT

5.1 Experimental system and experimental cases

To confirm the effectiveness of the proposed control law in a realistic multi-DOF plant, we conducted

a 2-DOF peg-in-hole task. The passivity of a 2-DOF system is discussed in Appendix C. Fig. 13 shows
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Figure 11: Typical time response in 1-DOF experiments: Type A an Type B controllers.
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Table 6: 2-DOF peg-in-hole experiment test cases and results.

Case Control K D1 D2 Visual Task Position Typical Motor

No. ler [N/rad] [N· [N· infor- completion deviation arm tip command

type s/rad] s/rad] mation time trajectory deviation

1 A 50.0 2.5 0.0 Yes

Fig. 15(a) Fig. 15(b)

Fig. 16

Fig. 20
2 B 50.0 0.1 5.0 Yes Fig. 17

3 A 50.0 2.5 0.0 No Fig. 18

4 B 50.0 0.1 5.0 No Fig. 19
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(a) Task and initial position (b) Experiment

Figure 13: Setup of 2-DOF peg-in-hole experiment.

the experiment setup, the same hardware as in 4.1. As shown in Fig. 13, the master and the slave arms

move symmetrically, therefore the direction of xm and xs are opposite. Table 6 shows the experiments

and their gain settings. The controller gain of joint 1 and 2 are the same. Each time delay from master

to slave and from slave to master is 50 ms. The control law calculation frequency is 1 kHz. As a peg, an

aluminum disk of 74 mm diameter is attached at the slave arm tip. The hole, an opening of 74 mm gap

is in a wall, see Fig. 13. The desired task is to push the wall in +y direction, trace the wall toward −x

direction, and insert the peg into the hole. The arm lengths are shown in Fig. 13. The parameters of

the master and the slave are the same. The hole is located at the position of x = −0.3 m. In cases 1 and

2, the operator can see the slave side. In cases 3 and 4, a screen is located between master and slave.

Therefore, the operator cannot see the slave, and the operator operates with only force information.

The operator’s view is shown in Fig. 14.
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(a) Cases 1 and 2 (b) Cases 3 and 4

Figure 14: Operator’s view of slave side.

5.2 Experimental result and discussion

Fig. 15 shows experimental results. Figs. 16 to 19 show typical arm tip trajectory and motor command

time plots. Along the lines illustrating the arm tip trajectories, the circles represent the arm tip positions

at the time of adjacent numbers. The time is from the beginning of the experiment. As seen in Figs. 16

to 19, tasks can be completed even without transmitting visual information to the operator. From this,

we can tell that the force information to the operator is effective. In Fig. 15, task completion time is

shown. When the peg insertion on the slave side reaches the bottom of the hole, we consider the task

completed. In cases with visual information, the task completion times are shorter than in cases without

visual information. As shown in Fig. 15, a type B controller completes the task more quickly than a

type A.

As for position tracking, ideally, the trajectory of the master arm and the slave arm are the same. In

Fig. 15, the average position tracking error of master tip and slave tip during the operation is shown. The

position tracking performance is better with a type B controller than a type A. The position difference

in x direction during the peg insertion is smaller with a type B controller. Therefore, the operator can

acknowledge the position of the hole more accurately with a type B controller.

A force sensor is not attached at the arm tip. Therefore we cannot measure the arm tip force and

evaluate the force tracking. However, the transparency of the control law itself can be evaluated by the

motor command error between master and slave. The result is shown in Fig.20. The error during the

task is smaller with a type B controller than a type A controller. The transparency of control law is

better with type B.

6 CONCLUSION

The stabilizing effect and performance improvement by introducing a relative damper to a PD-based

teleoperator with time delay has been studied. First, we derived the stability condition of a PD-based

controller with only grounded damping, and with both grounded and relative damping. By introducing
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Figure 16: 2-DOF peg-in-hole experiment results with visual information (Type A controller).
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Figure 17: 2-DOF peg-in-hole experiment results with visual information (Type B controller).
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Figure 18: 2-DOF peg-in-hole experiment results without visual information (Type A controller).
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Figure 19: 2-DOF peg-in-hole experiment results without visual information (Type B controller).
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the relative damping, the system maintained stability with attenuated grounded damping. Second,

performance evaluation was conducted using a hybrid matrix. As a result, we showed that introducing

relative damping into a PD-based controller improved the performance of the teleoperator. Third,

to evaluate teleoperator performance, we conducted 1-DOF simulations, 1-DOF experiments and 2-

DOF peg-in-hole experiments. The teleoperator performance was evaluated using these simulations

and experiments. These results showed performance improvement with a PD controller with relative

damping.

With regard to the consistency of the evaluation with H and simulation/experimental results, the

validity of performance evaluation with the H matrix was demonstrated. By iterating the stable gain

setting and performance evaluation using the H matrix as shown in this paper, a controller design that

guarantees both stability and performance has been achieved.

The design methodology of optimum gain balance of relative and grounded damping, performance

comparison with other control law, such as a passivity based approach, and stability analysis with

time-variant delay will be investigated in future research.
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Appendix A. Performance measurement of asymmetrical teleop-

erator using a hybrid matrix

When designing an asymmetrical teleoperator, (27) ∼ (30) can be applied, but (36) does not hold true.

This means, not only H but also G has to be considered to evaluate the performance under the 4

constraint conditions shown in Table 1. In order to evaluate H and G, we have to consider no fewer

than 8 elements, a complicated procedure. However, performance evaluation can be simplified and can

be judged with only the H matrix under the following conditions.

Assume the asymmetrical teleoperator illustrated in Fig. 21 whose position scaling is n and force

scaling is k.

From the meaning of the scaling factor, H and G for the ideal responses are:

Hideal =

 0 k

−1/n 0

 , Gideal =

 0 −n

1/k 0

 . (37)

If we set the gain and arm dynamics according to scaling factor k and n



mm

bm

D1m

D2m

Km


=

k

n



ms

bs

D1s

D2s

Ks


, (38)

the impedance matrix is calculated by

Z =

 k
n (mss+ bs +D1s +

Ks

s ) kKse
sT2/s

1
nKse

sT1/s mss+ bs +D1s +
Ks

s

 . (39)

and results in

∆H =
k

n
. (40)
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Here, ∆H is constant for any ω. Considering (33), the evaluation with H has the same meaning

as that with G. Therefore, when we set the gain and arm dynamics according to (38), asymmetrical

teleoperator performance under the 4 constraint conditions (master free / fixed, slave free / fixed) can

be evaluated by either the H or the G matrix.

Appendix B. Simulation on other conditions

We conducted a 1-DOF simulation with a rigid wall. The slave environment is a stiff elastic wall

(Cw = 10000 N/m). An operator force with 1 N is inputted to the master arm for 10 s. Case 5 is a

PD controller with grounded damping (Type A controller) and Case 6 is a PD controller with grounded

and relative damping (Type B controller). The gain setting is the same as section 3.2. Fig. 22 shows

the simulation results. Fig. 22 is similar to Fig. 8. No significant difference can be seen.

In Fig. 8, significant oscillation can be seen. In the simulation of Fig. 8, we set the damping of

the operator dynamics and slave side environment to be 0 to demonstrate clear and simple teleoperator

performance. In practice these conditions are not realistic. Here, we conducted a 1-DOF simulation with

more realistic conditions. We added damping to both operator dynamics and environment dynamics.

Fig. 23 shows the simulation results. The oscillation is significantly less than Fig. 8. Therefore, in a

realistic condition with damping in the operator and environment sides, the oscillation, as seen in Fig. 8,

does not occur, and the operator can conduct the teleoperation.

Appendix C. The passivity of a 2-DOF Teleoperator

In this section, we see the stability of a 2-DOF teleoperator is derived from utilization of the passivity of

the 1-DOF teleoperator discussed in the text. Fig. 24 shows a block diagram of the 2-DOF master-slave

system. In Fig. 24, Mii is effective inertia, Mij is coupling inertia, hijj is the centrifugal acceleration

coefficient and hijk(j ̸= k) is the coriolis acceleration coefficient of each arm. The 1-DOF teleoperator

analyzed in the text is shown in the box with a dashed line. The dynamics of the coupling between

links 1 and 2 are shown within the box with a dotted line. From the passivity of a 1-DOF teleoperator,

the arm coupling dynamics and the slave side environment, we obtain the following equations:

∫ ∞

0

(τ ′m1(t)
˙θm1(t)− τ ′s1(t)

˙θs1(t))dt ≥ 0 (41)

∫ ∞

0

(τ ′m2(t)
˙θm2(t)− τ ′s2(t)

˙θs2(t))dt ≥ 0 (42)

∫ ∞

0

(τ ′m1(t)
˙θm1(t) + τ ′m2(t)

˙θm2(t)− τ ′′m1(t)
˙θm1(t)− τ ′′m2(t)

˙θm2(t))dt ≥ 0 (43)

∫ ∞

0

(τ ′s1(t)
˙θs1(t) + τ ′s2(t)

˙θs2(t)− τ ′′s1(t)
˙θs1(t)− τ ′′s2(t)

˙θs2(t))dt ≥ 0 (44)
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∫ t

0

(τ ′′s1(t)
˙θs1(t) + τ ′′s2(t)

˙θs2(t))dt ≥ 0 . (45)

We used the definition of passivity in the n−port network in Anderson and Spong [1]. From (41)

∼(45), we derive ∫ t

0

(τ ′′m1(t)
˙θm1(t) + τ ′′m2(t)

˙θm2(t))dt ≥ 0 . (46)

Equation (46) indicates the 2-DOF master-slave system is passive with regard to input by the operator.

Thus, we come to the conclusion that 2-DOF master slave systems are stable.
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Figure 21: Scaled bilateral master slave system with PD controller.
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Figure 22: Simulation results of rigid wall contact (Cw = 10000N/m).
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Figure 24: 2-DOF master slave system with PD controller.
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Appendix D. Stability with various time delay conditions

In the stability analyses, simulations and experiments in the text, we assume T1=T2, and they are

constant and known delays. From the discussion in sections 2.2 and 2.3 as well as (16) and (24), the

stability with other delay conditions is shown in Table 7.

As shown in the (*) column in Table 7, with a type B controller, if the real time delay T (=T1=T2)

is shorter than the delay Te used in the stability derivation, the system stability is maintained as shown

in the following.

Assume a stable master slave system under delay Te. From (24), we obtain

D1 + b2 ≥ max
ω>0

|D2 cosωTe −
KTe

ωTe
sinωTe| −D2 . (47)

Let

Te > T (48)

max
ω>0

|D2 cosωT − KT

ωT
sinωT | = M1 (49)

max
ω>0

|D2 cosωTe −
KTe

ωTe
sinωTe| = M2 . (50)

From D2 cosωT − KT
ωT sinωT =

√
D2

2 + (KT
ωT )2 cos (ωT + α), we obtain

M1 > D2 (51)

where

cosα =D2/

√
D2

2 + (
KT

ωT
)2 (52)

sinα =
KT

ωT
/

√
D2

2 + (
KT

ωT
)2 . (53)

Assume ω0 is the value which brings the maximum value of (49), see Fig. 25. Then

|D2 cosω0T − KT

ω0T
sinω0T | = M1 . (54)

We introduce ω1 and assume ω0T = ω1Te, and we have

|D2 cosω1Te −
KTe

ω1Te
sinω1Te| = |D2 cosω0T − KTe

ω0T
sinω0T | (55)

= |D2 cosω0T − KT

ω0T
sinω0T − K(Te − T )

ω0T
sinω0T | . (56)

From (51) and (54), D2 cosω0T and − KT
ω0T

sinω0T have the same sign. Then, −K(Te−T )
ω0T

sinω0T has

the same sign. Therefore,

|D2 cosω1Te −
KTe

ω1Te
sinω1Te| = |D2 cosω0T − KT

ω0T
sinω0T |+ |K(Te − T )

ω0T
sinω0T | (57)

> |D2 cosω0T − KT

ω0T
sinω0T | = M1 . (58)

From (50) and inequality (58), we obtain

M2 > M1 . (59)
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Table 7: Stability of Type A and Type B controller with various time delay conditions

condition Type A controller Type B controller

(PD controller (PD controller

with only grounded with grounded

damping) and relative damping)

T
1
an

d
T
2
ar
e
co
n
st
an

t

T1 ̸= T2 Not T1 and T2 but When T1 ̸= T2, the stability

T1 + T2 decides the stability. condition is not simple as

shown in eq.(23) and (24).

T1,T2 Gains can be calculated with The stability is affected by

are unknown only T1 + T2. T1 and T2. Therefore,

the values T1,T2 must be aquired.

There is a difference Stability is maintained In general, the stability is not

between T1 and T2 used T1 + T2(actual) ≤ guaranteed. If T1=T2=T and

in the stability derivation and T1 + T2(used in T is shorter than the delay

actual values of T1 and T2 stability derivation) used in stability derivation,

the stability is maintained.(*)

T1,T2 are time-variant Not assumed in this work. Not assumed in this work.

(*) Derivation is shown in Appnedix.D.

From (47), (49), (50) and (59), we have

D1 + b2 > max
ω>0

|D2 cosωT − KT

ωT
sinωT | −D2 . (60)

Therefore, we conclude that the system is stable even if the real delay T is shorter than the delay Te

used in the stability derivation.
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